CS 343: Artificial Intelligence

Particle Filters and Applications of HMMs

Prof. Scott Niekum — The University of Texas at Austin

[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
Recap: Reasoning Over Time

- **Markov models**

 \[P(X_1) \quad P(X|X_{-1}) \]

 ![Diagram of Markov models]

- **Hidden Markov models**

 \[P(E|X) \]

<table>
<thead>
<tr>
<th>X</th>
<th>E</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>rain</td>
<td>umbrella</td>
<td>0.9</td>
</tr>
<tr>
<td>rain</td>
<td>no umbrella</td>
<td>0.1</td>
</tr>
<tr>
<td>sun</td>
<td>umbrella</td>
<td>0.2</td>
</tr>
<tr>
<td>sun</td>
<td>no umbrella</td>
<td>0.8</td>
</tr>
</tbody>
</table>
Recap: Forward Algo - Passage of Time

- Assume we have current belief $P(X \mid \text{evidence to date})$

$$B(X_t) = P(X_t \mid e_{1:t})$$

- Then, after one time step passes:

$$P(X_{t+1} \mid e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t \mid e_{1:t})$$

$$= \sum_{x_t} P(X_{t+1} \mid x_t, e_{1:t})P(x_t \mid e_{1:t})$$

$$= \sum_{x_t} P(X_{t+1} \mid x_t)P(x_t \mid e_{1:t})$$

- Basic idea: beliefs get “pushed” through the transitions
 - With the “B” notation, we have to be careful about what time step t the belief is about, and what evidence it includes

- Or compactly:

$$B'(X_{t+1}) = \sum_{x_t} P(X' \mid x_t)B(x_t)$$
Recap: Forward Algo - Passage of Time

- As time passes, uncertainty “accumulates”

(Transition model: ghosts usually go clockwise)
Recap: Forward Algo - Observation

- Assume we have current belief $P(X \mid \text{previous evidence})$:
 \[
 B'(X_{t+1}) = P(X_{t+1} \mid e_{1:t})
 \]

- Then, after evidence comes in:
 \[
 P(X_{t+1} \mid e_{1:t+1}) = \frac{P(X_{t+1}, e_{t+1} \mid e_{1:t})}{P(e_{t+1} \mid e_{1:t})} \\
 \propto_{X_{t+1}} P(X_{t+1}, e_{t+1} \mid e_{1:t})
 \]
 \[
 = P(e_{t+1} \mid e_{1:t}, X_{t+1}) P(X_{t+1} \mid e_{1:t})
 \]
 \[
 = P(e_{t+1} \mid X_{t+1}) P(X_{t+1} \mid e_{1:t})
 \]

- Or, compactly:
 \[
 B(X_{t+1}) \propto_{X_{t+1}} P(e_{t+1} \mid X_{t+1}) B'(X_{t+1})
 \]

- Basic idea: beliefs “rewighted” by likelihood of evidence
- Unlike passage of time, we have to renormalize
Recap: Forward Algo - Observation

- As we get observations, beliefs get reweighted, uncertainty “decreases”

\[B(X) \propto P(e|X)B'(X) \]
Recap: The Forward Algorithm

- We are given evidence at each time and want to know

\[
B_t(X) = P(X_t|e_{1:t})
\]

- We can derive the following updates

\[
P(x_t|e_{1:t}) \propto_X P(x_t, e_{1:t})
\]

\[
= \sum_{x_{t-1}} P(x_{t-1}, x_t, e_{1:t})
\]

\[
= \sum_{x_{t-1}} P(x_{t-1}, e_{1:t-1})P(x_t|x_{t-1})P(e_t|x_t)
\]

\[
= P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1})P(x_{t-1}, e_{1:t-1})
\]

We can normalize as we go if we want to have \(P(x|e)\) at each time step, or just once at the end...
Recap: Online Filtering w/ Forward Algo

Elapse time: compute \(P(X_t | e_{1:t-1}) \)

\[
P(x_t | e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) \cdot P(x_t | x_{t-1})
\]

Observe: compute \(P(X_t | e_{1:t}) \)

\[
P(x_t | e_{1:t}) \propto P(x_t | e_{1:t-1}) \cdot P(e_t | x_t)
\]

Belief: \(<P(\text{rain}), P(\text{sun})>\)

- \(P(X_1)\) <0.5, 0.5> Prior on \(X_1\)
- \(P(X_1 | E_1 = \text{umbrella})\) <0.82, 0.18> Observe
- \(P(X_2 | E_1 = \text{umbrella})\) <0.63, 0.37> Elapse time
- \(P(X_2 | E_1 = \text{umb}, E_2 = \text{umb})\) <0.88, 0.12> Observe
Particle Filtering
Particle Filtering

- **Filtering: approximate solution**

- Sometimes $|X|$ is too big to use exact inference
 - $|X|$ may be too big to even store $B(X)$
 - E.g. X is continuous

- **Solution: approximate inference**
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states

- This is how robot localization works in practice

- Particle is just new name for sample
Our representation of $P(X)$ is now a list of N particles (samples)
- Generally, $N << |X|$ (but not in project 4)
- Storing map from X to counts would defeat the point

$P(x)$ approximated by number of particles with value x
- So, many x may have $P(x) = 0!$
- More particles, more accuracy

For now, all particles have a weight of 1

Particle filtering uses three repeated steps:
- Elapse time and observe (similar to exact filtering) and resample
Example: Elapse Time

Belief over possible ghost positions at time t

Elapse Time

Policy: ghosts always move up (or stay in place if already at top)

New belief at time $t+1$
Example: Elapse Time

Belief over possible ghost positions at time t

Elapse Time

Policy: ghosts always move up (or stay in place if already at top)

New belief at time $t+1$
Each particle is moved by sampling its next position from the transition model

\[x' = \text{sample}(P(X'|x)) \]

- Sample frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)
Example: Observe

Belief over possible ghost positions before observation

Observation and evidence likelihoods $p(e | X)$

New belief after observation
Example: Observe

Belief over possible ghost positions before observation

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>●</td>
</tr>
</tbody>
</table>

Observation and evidence likelihoods $p(e \mid X)$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

New belief after observation

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1</td>
</tr>
</tbody>
</table>
- Slightly trickier:
 - Don’t sample observation, fix it
 - Similar to likelihood weighting, downweight samples based on the evidence
 \[
 w(x) = P(e|x)
 \]
 \[
 B(X) \propto P(e|X)B'(X)
 \]
 - As before, the probabilities don’t sum to one, since all have been downweighted

Particles:

\[(3,2) w=.9\]
\[(2,3) w=.2\]
\[(3,2) w=.9\]
\[(3,1) w=.4\]
\[(3,3) w=.4\]
\[(3,2) w=.1\]
\[(3,3) w=.4\]
\[(1,3) w=.4\]
\[(2,3) w=.2\]
\[(3,2) w=.9\]
\[(2,2) w=.4\]
Particle Filtering: Resample

- Rather than tracking weighted samples, we resample.

- N times, we choose from our weighted sample distribution (i.e. draw with replacement).

- This is equivalent to renormalizing the distribution.

- Now the update is complete for this time step, continue with the next one.

Particles:
- \((3,2) \ w=.9\)
- \((2,3) \ w=.2\)
- \((3,2) \ w=.9\)
- \((3,1) \ w=.4\)
- \((3,3) \ w=.4\)
- \((3,2) \ w=.9\)
- \((1,3) \ w=.1\)
- \((2,3) \ w=.2\)
- \((3,2) \ w=.9\)
- \((2,2) \ w=.4\)

(New) Particles:
- \((3,2)\)
- \((2,2)\)
- \((3,2)\)
- \((2,3)\)
- \((3,3)\)
- \((3,2)\)
- \((1,3)\)
- \((2,3)\)
- \((3,2)\)
- \((3,2)\)
Recap: Particle Filtering

- Particles: track samples of states rather than an explicit distribution
Moderate Number of Particles
One Particle
Huge Number of Particles
Robot Localization

- **In robot localization:**
 - We know the map, but not the robot’s position
 - Observations may be vectors of range finder readings
 - State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store $B(X)$
 - Particle filtering is a main technique
Particle Filter Localization (Sonar)

Global localization with sonar sensors
Robot Mapping

- **SLAM: Simultaneous Localization And Mapping**
 - We do not know the map or our location
 - State consists of position AND map!
 - Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

DP-SLAM, Ron Parr
Particle Filter SLAM – Video 1
Dynamic Bayes Nets
Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from $t-1$

- Dynamic Bayes nets are a generalization of HMMs
Exact Inference in DBNs

- Variable elimination applies to dynamic Bayes nets

- Procedure: “unroll” the network for T time steps, then eliminate variables until $P(X_T|e_{1:T})$ is computed

- Online belief updates: Eliminate all variables from the previous time step; store factors for current time only
DBN Particle Filters

- A particle is a complete sample for a time step

- **Initialize**: Generate prior samples for the $t=1$ Bayes net
 - Example particle: $G_1^a = (3,3)$ $G_1^b = (5,3)$

- **Elapse time**: Sample a successor for each particle
 - Example successor: $G_2^a = (2,3)$ $G_2^b = (6,3)$

- **Observe**: Weight each *entire* sample by the likelihood of the evidence conditioned on the sample
 - Likelihood: $P(E_1^a | G_1^a) * P(E_1^b | G_1^b)$

- **Resample**: Select samples (tuples of values) in proportion to their likelihood (weight)
Most Likely Explanation
HMMs: MLE Queries

- HMMs defined by
 - States X
 - Observations E
 - Initial distribution: $P(X_1)$
 - Transitions: $P(X|X_{-1})$
 - Emissions: $P(E|X)$

- New query: most likely explanation: $\arg \max_{x_{1:t}} P(x_{1:t}|e_{1:t})$

- New method: the Viterbi algorithm

- Question: Why not just apply filtering and predict most likely value of each variable separately?
State Trellis

- State trellis: graph of states and transitions over time

- Each arc represents some transition $x_{t-1} \rightarrow x_t$
- Each arc has weight $P(x_t|x_{t-1})P(e_t|x_t)$
- Each path is a sequence of states
- The product of weights on a path is that sequence’s probability along with the evidence
- Forward algorithm computes sums of all paths to each node, Viterbi computes best paths
- Exponentially many paths, but dynamic programming can find best path in linear time!
Forward / Viterbi Algorithms

Forward Algorithm (Sum)

\[f_t[x_t] = P(x_t, e_{1:t}) \]
\[= P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1}) f_{t-1}[x_{t-1}] \]

Viterbi Algorithm (Max)

\[m_t[x_t] = \max_{x_{1:t-1}} P(x_{1:t-1}, x_t, e_{1:t}) \]
\[= P(e_t|x_t) \max_{x_{t-1}} P(x_t|x_{t-1}) m_{t-1}[x_{t-1}] \]
Speech Recognition
Speech Recognition in Action
Digitizing Speech
Speech waveforms

- Speech input is an acoustic waveform

Figure: Simon Arnfield, http://www.psyc.leeds.ac.uk/research/cogn/speech/tutorial/
Spectral Analysis

- **Frequency gives pitch; amplitude gives volume**
 - Sampling at ~8 kHz (phone), ~16 kHz (mic) (kHz=1000 cycles/sec)

- **Fourier transform of wave displayed as a spectrogram**
 - Darkness indicates energy at each frequency

Human ear figure: depion.blogspot.com
Acoustic Feature Sequence

- Time slices are translated into acoustic feature vectors (~39 real numbers per slice)

- These are the observations E, now we need the hidden states X
Speech State Space

- **HMM Specification**
 - $P(E|X)$ encodes which acoustic vectors are appropriate for each phoneme (each kind of sound)
 - $P(X|X')$ encodes how sounds can be strung together

- **State Space**
 - We will have one state for each sound in each word
 - Mostly, states advance sound by sound
 - Build a little state graph for each word and chain them together to form the state space X
States in a Word
Transitions with a Bigram Model

Training Counts

<table>
<thead>
<tr>
<th>Count</th>
<th>Word Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>198015222</td>
<td>the first</td>
</tr>
<tr>
<td>194623024</td>
<td>the same</td>
</tr>
<tr>
<td>168504105</td>
<td>the following</td>
</tr>
<tr>
<td>158562063</td>
<td>the world</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>14112454</td>
<td>the door</td>
</tr>
</tbody>
</table>

\[\hat{P}(\text{door}|\text{the}) = \frac{14112454}{23135851162} \]

\[= 0.0006 \]
Decoding

- Finding the words given the acoustics is an HMM inference problem
- Which state sequence $x_{1:T}$ is most likely given the evidence $e_{1:T}$?

\[
x_{1:T}^* = \arg \max_{x_{1:T}} P(x_{1:T} | e_{1:T}) = \arg \max_{x_{1:T}} P(x_{1:T}, e_{1:T})
\]

- From the sequence x, we can simply read off the words
Next Time: Value of Information