CS 343: Artificial Intelligence

Decision Networks and Value of Perfect Information

Prof. Scott Niekum — The University of Texas at Austin

[These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
Decision Networks
Decision Networks

Weather

Umbrella

Forecast
Decision Networks

- **MEU:** choose the action which maximizes the expected utility given the evidence
- Can directly operationalize this with decision networks
 - Bayes nets with nodes for utility and actions
 - Lets us calculate the expected utility for each action
- **New node types:**
 - Chance nodes (just like BNs)
 - Actions (rectangles, cannot have parents, act as observed evidence)
 - Utility node (diamond, depends on action and chance nodes)
Decision Networks

- **Action selection**
 - Instantiate all evidence
 - Set action node(s) each possible way
 - Calculate posterior for all parents of utility node, given the evidence
 - Calculate expected utility for each action
 - Choose maximizing action
Decision Networks

Umbrella = leave

\[EU(\text{leave}) = \sum_{w} P(w)U(\text{leave}, w) \]
\[= 0.7 \cdot 100 + 0.3 \cdot 0 = 70 \]

Umbrella = take

\[EU(\text{take}) = \sum_{w} P(w)U(\text{take}, w) \]
\[= 0.7 \cdot 20 + 0.3 \cdot 70 = 35 \]

Optimal decision = leave

\[MEU(\varnothing) = \max_{\alpha} EU(\alpha) = 70 \]

\[
\begin{array}{|c|c|}
\hline
W & P(W) \\
\hline
\text{sun} & 0.7 \\
\text{rain} & 0.3 \\
\hline
\end{array}
\]

<table>
<thead>
<tr>
<th>A</th>
<th>W</th>
<th>U(A,W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>leave</td>
<td>sun</td>
<td>100</td>
</tr>
<tr>
<td>leave</td>
<td>rain</td>
<td>0</td>
</tr>
<tr>
<td>take</td>
<td>sun</td>
<td>20</td>
</tr>
<tr>
<td>take</td>
<td>rain</td>
<td>70</td>
</tr>
</tbody>
</table>
Decisions as Outcome Trees

- Almost exactly like expectimax / MDPs
- What’s changed?
Example: Decision Networks

Umbrella = leave

\[
EU(\text{leave}|\text{bad}) = \sum_{w} P(w|\text{bad})U(\text{leave}, w) \\
= 0.34 \cdot 100 + 0.66 \cdot 0 = 34
\]

Umbrella = take

\[
EU(\text{take}|\text{bad}) = \sum_{w} P(w|\text{bad})U(\text{take}, w) \\
= 0.34 \cdot 20 + 0.66 \cdot 70 = 53
\]

Optimal decision = take

\[
\text{MEU}(F = \text{bad}) = \max_{u} EU(u|\text{bad}) = 53
\]
Decisions as Outcome Trees

Weather
Forecast = bad

Umbrella

W | \{b\}

\begin{align*}
 & W(t,s) \\
 & W(t,r)
\end{align*}

\begin{align*}
 & W(l,s) \\
 & W(l,r)
\end{align*}

\begin{align*}
 & \text{take} \\
 & \text{leave}
\end{align*}

U
Ghostbusters Decision Network

Diagram showing the decision network with Ghost Location as the root node and sensors (1,1) to (m,1) and (1,2) to (1,n) as branches leading to Bust.
Ghostbusters — Where to measure?
Value of Information
Value of Information

- **Idea:** compute value of acquiring evidence
 - Can be done directly from decision network

- **Example:** buying oil drilling rights
 - Two blocks A and B, exactly one has oil, worth k
 - You can drill in one location
 - Prior probabilities 0.5 each, & mutually exclusive
 - Drilling in either A or B has EU = k/2, MEU = k/2

- **Question:** what’s the value of information of O?
 - Value of knowing which of A or B has oil
 - Value is expected gain in MEU from new info
 - Survey may say “oil in a” or “oil in b,” prob 0.5 each
 - If we know OilLoc, MEU is k (either way)
 - Gain in MEU from knowing OilLoc?
 - VPI(OilLoc) = k/2
 - Fair price of information: k/2
VPI Example: Weather

MEU with no evidence

\[
\text{MEU}(\phi) = \max_a \text{EU}(a) = 70
\]

MEU if forecast is bad

\[
\text{MEU}(F = \text{bad}) = \max_a \text{EU}(a|\text{bad}) = 53
\]

MEU if forecast is good

\[
\text{MEU}(F = \text{good}) = \max_a \text{EU}(a|\text{good}) = 95
\]

Forecast distribution

<table>
<thead>
<tr>
<th>F</th>
<th>P(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>good</td>
<td>0.59</td>
</tr>
<tr>
<td>bad</td>
<td>0.41</td>
</tr>
</tbody>
</table>

\[
\text{VPI}(E'|e) = \left(\sum_{e'} P(e'|e) \text{MEU}(e, e') \right) - \text{MEU}(e)
\]

<table>
<thead>
<tr>
<th>A</th>
<th>W</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>leave</td>
<td>sun</td>
<td>100</td>
</tr>
<tr>
<td>leave</td>
<td>rain</td>
<td>0</td>
</tr>
<tr>
<td>take</td>
<td>sun</td>
<td>20</td>
</tr>
<tr>
<td>take</td>
<td>rain</td>
<td>70</td>
</tr>
</tbody>
</table>

\[
\begin{array}{c|c|c}
W & P(W|F=\text{bad}) & \\
\hline
\text{sun} & 0.34 & \\
\text{rain} & 0.66 & \\
\end{array}
\]

\[
\begin{array}{c|c|c}
W & P(W|F=\text{good}) & \\
\hline
\text{sun} & 0.95 & \\
\text{rain} & 0.05 & \\
\end{array}
\]
Value of Information

- Assume we have evidence $E=e$. Value if we act now:
 \[\text{MEU}(e) = \max_a \sum_s P(s|e) U(s, a) \]

- Assume we see that $E' = e'$. Value if we act then:
 \[\text{MEU}(e, e') = \max_a \sum_s P(s|e, e') U(s, a) \]

- BUT E' is a random variable whose value is unknown, so we don’t know what e' will be

- Expected value if E' is revealed and then we act:
 \[\text{MEU}(e, E') = \sum_{e'} P(e'|e) \text{MEU}(e, e') \]

- Value of information: how much MEU goes up by revealing E' first then acting, over acting now:
 \[\text{VPI}(E'|e) = \text{MEU}(e, E') - \text{MEU}(e) \]
VPI Properties

- **Nonnegative**
 \[\forall E', e : \text{VPI}(E'|e) \geq 0 \]

- **Nonadditive**
 Typically (but not always):
 \[\text{VPI}(E_j, E_k|e) \neq \text{VPI}(E_j|e) + \text{VPI}(E_k|e) \]

- **Order-independent**
 \[
 \begin{align*}
 \text{VPI}(E_j, E_k|e) &= \text{VPI}(E_j|e) + \text{VPI}(E_k|e, E_j) \\
 &= \text{VPI}(E_k|e) + \text{VPI}(E_j|e, E_k)
 \end{align*}
 \]
Quick VPI Questions

▪ The soup of the day is either clam chowder or split pea, but you wouldn’t order either one. What’s the value of knowing which it is?

▪ There are two kinds of plastic forks at a picnic. One kind is slightly sturdier. What’s the value of knowing which?

▪ You’re playing the lottery. The prize will be $0 or $100. You can play any number between 1 and 100 (chance of winning is 1%). What is the value of knowing the winning number?
Value of Imperfect Information?

- No such thing
- Information corresponds to the observation of a node in the decision network
- If data is “noisy” that just means we don’t observe the original variable, but another variable which is a noisy version of the original one
- $\text{VPI(OilLoc)} = \frac{k}{2}$

- $\text{VPI(ScoutingReport)}$?

- VPI(Scout) ?

- $\text{VPI(Scout | ScoutingReport)}$?
POMDPs
POMDPs

- **MDPs have:**
 - States S
 - Actions A
 - Transition function $P(s' | s, a)$ (or $T(s, a, s')$)
 - Rewards $R(s, a, s')$

- **POMDPs add:**
 - Observations O
 - Observation function $P(o | s)$ (or $O(s, o)$)

- **POMDPs are MDPs over belief states b (distributions over S)**
In (static) Ghostbusters:
- Belief state determined by evidence to date \{e\}
- Tree really over evidence sets
- Probabilistic reasoning needed to predict what new evidence will be gained, given past evidence and the action taken

Solving POMDPs
- One way: use truncated expectimax to compute approximate value of actions
- What if you only considered busting or one sense followed by a bust?
- You get a VPI-based agent!
Video of Demo Ghostbusters with VPI
More Generally

- General solutions map belief functions to actions
 - Can divide regions of belief space (set of belief functions) into policy regions (gets complex quickly)
 - Can build approximate policies using discretization methods
 - Can factor belief functions in various ways

- Overall, POMDPs are very (actually PSPACE) hard

- Most real problems are POMDPs, but we can rarely solve then in general!