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ABSTRACT
The past decade has witnessed significant breakthroughs in the
world of computer vision. Recent deep learning-based computer
vision algorithms exhibit strong performance on recognition, detec-
tion, and segmentation.While the development of vision algorithms
elicits promising applications, it also presents immense computa-
tional challenge to the underlying hardware due to its complex
nature, especially when attempting to process the data at line-rate.

To this end we develop a highly scalable computer vision pro-
cessing framework, which leverages advanced technologies such as
Spark Streaming and OpenCV to achieve line-rate video data pro-
cessing. To ensure the greatest flexibility, our framework is agnostic
in terms of computer vision model, and can utilize environments
with heterogeneous processing devices. To evaluate this frame-
work, we deploy it in a production cloud computing environment,
and perform a thorough analysis on the system’s performance. We
utilize existing real-world live video streams from Simon Fraser
University to measure the number of cars entering our university
campus. Further, the data collected from our experiments is being
used for real-time predictions of traffic conditions on campus.

CCS CONCEPTS
•Computer systems organization→Real-time systemarchi-
tecture; Cloud computing; • Information systems→Multimedia
streaming; Data stream mining; • Computing methodologies→
Visual inspection;
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1 INTRODUCTION
Recent developments and breakthroughs in computer vision have
made possible applications such as auto-driving vehicles, self-checkout
stores (e.g. Amazon Go), and high-accuracy surveillance. With state-
of-the-art algorithms approaching human-level performance on
core vision tasks including recognition, detection, and segmenta-
tion, people can now extract reliable and accurate information from
images or videos and then conduct post processing according to
the specific tasks.

Nowadays, deep learning based methods have exhibited strong
performance, enabling computers to analyze such data automati-
cally and reliably. However, processing speed is one of the major
obstacles that prevents people from using deep learning based com-
puter vision algorithms on large-scale video data. Computers must
produce analysis results no slower than cameras generate new
video data. Otherwise, the amount of data waiting to be analyzed
will grow continuously, and eventually the waiting time for newly
created data will be rendered irrelevant. In other words, a reason-
able analysis system has to process video streams at “line-rate”.
Unfortunately, many effective algorithms and models are so com-
plex that few current hardware systems are capable of executing
them for video data at line-rate.

In real world scenarios, the ability to analyze video is especially
important. Since most events and actions are expressed by continu-
ous scenes, a single image might not capture enough information.
With many successful techniques for image analysis being proposed
and perfected, a common way to analyze a video is to do image-
based analysis first, and possibly consider the temporal connection
later to further investigate the video. This processing manner is
exactly suitable for distributed computing, through which the video
frames can be distributed to a cluster, and image-level information
can be efficiently extracted. The video analysis process can thus be
largely accelerated. In addition to accuracy, processing time, or in
other words, the response time of the video analyzing system, is
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also an important factor for real world applications. Many applica-
tions require a fast response for the analysis result to be useful. If
one considers the large amount of video streams generated in those
scenarios and the high computing complexity of current computer
vision models, it can be very challenging to satisfy both accuracy
and the speed of large-scale video analysis.

There are several solutions to the efficiency problem. For exam-
ple, one can purchase and use a very powerful computer to process
the video data. However, monolithic computers have disadvantages.
First of all, they are expensive, which makes the analysis task pro-
hibitive. Additionally, the maximum computational power a single
machine can have is limited. When the computer vision algorithm
is highly complicated and/or the number of video streams is very
large, it is possible that even the most powerful machine is un-
able to process them at line-rate. In other words, this approach
is not scalable. An alternative solution to the efficiency problem
uses simplified computer vision models if videos are required to
be processed quickly. This solution is not ideal either because the
accuracy of the analysis is sacrificed.

In this paper, a scalable distributed visual computing system
capable of executing any given computer vision algorithms on
video streams is designed and implemented. The features of the
proposed system matches the points we discussed above:

• The system is scalable, whichmeans the computing resources
assigned to it can be adjusted easily. This enables the system
to handle even large amount of video data and process them
at line-rate.

• The system processes video streams in a distributed man-
ner, cuts live video streams on the temporal domain and
distributes video slices to a cluster with scalable comput-
ing resources. The analysis for many video chunks are con-
ducted simultaneously and temporal relations between video
chunks can be considered in post processing.

• The system is designed to support heterogeneous underly-
ing devices, which means the computer vision algorithms
can run on CPUs, GPUs, or other underlying hardware ac-
cording to the configuration of the cluster. Though largely
accelerating the execution of most vision models, powerful
GPUs are not necessarily required by the system. A cluster
consisting of sufficient commodity CPUs can satisfy most
computing tasks as well.

The high-level view of the system is to establish a general visual
computing platform for applying advanced computer vision mod-
els to live video streams and generating valuable information at
line-rate. Sec. 2 discusses the related works in terms of large-scale
video processing, cloud-based computer vision, and multimedia
processing with big-data frameworks. In Sec. 3, we present the
architecture of the proposed system and analyzes each component
in detail. Sec. 4 shows the result of our experiments with regard to
the parameter of the system and its performance under different
settings. Finally, in Sec. 5, we discuss potential use cases of the
proposed system.

2 RELATEDWORK
A common use case of large-scale video analysis is video surveil-
lance. The number of surveillance cameras in the world is growing

dramatically. According to IHS (Information Handling Services
Markit Ltd.), there were 245 million surveillance cameras installed
globally as of 2014 [8], and an estimated 130 million more will be
shipped in 2018 [16]. These surveillance cameras produce a tremen-
dous amount of video data every single second. However, a large
portion of this data is simply stored on a disk and discarded after a
few months, without any useful analysis. To this end researchers
have been developing automated video surveillance systems requir-
ing minimal human interaction. The promise of real-time tracking
of activities of interest, such as crime, or assisted living, has driven
researchers to explore both the possibilities of such a system, as
well as its ramifications. In 2007, Girgensohn et al. proposed an
integrated multi-camera surveillance system capable of tracking
a person from camera to camera [6]. In 2013, a forum held by the
IEEE discussed the history and future of video surveillance, as well
as the challenges faced for fully autonomous video surveillance
to become a reality [13]. One of the major challenges described
was the difficulties in moving such a system from a laboratory to a
real-world environment—Lam explores, and provides a framework
for, the interaction costs of such a system [10], while Dadashi et al.
provides guidelines for system usability to aid operators [3].

Another key challenge raised in the forum is the fact that video
surveillance has turned largely into a data problem, and the lack
of processing power has resulted in videos sitting on mass storage
devices, waiting for analysis after the event has occurred. However,
with the success of cloud computing, this hardware constraint is
no longer an issue: Zhong et al. presented a real-time object recog-
nition system by leveraging the cloud [18], and in 2015, Agrawal et
al. presented a comprehensive, distributed computer vision system
that can process gigapixels of data [1]. At the same time, researchers
have also explored the effects of compression on predominant com-
puter vision techniques [5].

Similarly, recent advancements in big data frameworks present
a unique opportunity to tackle the video processing and analysis
aspect of a surveillance system. In 2010, Pereira et al. proposed a
method for parallelized encoding by splitting and merging along
the temporal domain [12]. By using the split-and-merge method,
researchers have explored using Hadoop for facial detection [7],
and later for general purpose computer vision [14]. In 2015, Yang et
al. presented a similar scalable system utilizing Spark instead of
Hadoop [17]. According to Yang et al., Spark has a superior ef-
ficiency compared to other distributed computation frameworks
such as MapReduce, and is therefore preferred in distributed video
data processing tasks.

The existing literature suggests a need to further explore systems
for scalable line-rate processing of video stream data. To this end,
we present a scalable distributed visual computing system capable
of executing any given computer vision models on video streams
at line-rate.

3 SCALABLE LINE-RATE VISUAL
COMPUTING

The proposed scalable distributed visual computing system consists
of three major modules. In this section, we first provide a high-level
overview about the architecture of the system, clarify the term
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Figure 1: The overall architecture of our scalable distributed video processing system

“line-rate processing”, and introduce each individual module of the
system in detail.

3.1 Overview
3.1.1 System Modules. As shown in Fig. 1, the system consists

of three modules: (1) temporal video slicer; (2) distributed video
processor; and (3) result collector. The system is designed to achieve
line-rate video processing by coordinating different machines in a
cluster instead of using a single powerful computer.

3.1.2 Line-rate Performance. The proposed system has two in-
puts and one output. The user provides video streams (either a
single stream or a group of multiple streams), and specifies the
computer vision model to be applied. The analysis result of a frame
is guaranteed to be available Tdelay after the system receives it
(see discussions in Sec. 4.2). The system is said to have a line-rate
performance as the speed of output is no slower than the input
video streams (both measured in frames per second).

Most video streams, especially the ones created by surveillance
cameras as discussed in Sec. 1, generate new video frames consis-
tently. It is assumed that the computer vision algorithm analyzes
the video stream on a frame-by-frame basis. It treats each frame
as an individual image; analyzes the image, and outputs the result.
Theoretically, the minimum possible delay Tdelay introduced by a
line-rate system is equal to the time required to analyze one frame.
However, in practice, the extra overhead can be so large that it
becomes unreasonable to achieve the theoretical minimum delay.
Detailed discussions can be found in Sec 4.

3.1.3 Assumption. The computer vision model should not as-
sume strong temporal dependencies among consecutive frames.

This allows the video slicer to make cuts at any point in the tempo-
ral domain, without doing harm to the performance (e.g. precision
and recall if the model is used for object detection). As most state-
of-the-art computer vision models are image-based, which actually
first analyze videos in a frame-by-frame manner and then consider
temporal connections later, this assumption does not limit the range
of applications of the proposed system.

3.2 Temporal Video Slicer
When the video streams arrive at the system, they are cut into small
chunks in the temporal domain and buffered to the file system.
Although the computer vision model does not make use of the
temporal dependency among consecutive frames, extreme care
must be taken when deciding the position of cuts.

If temporal compression techniques are used in the input video
stream, which is true in most cases, it will be ideal to only make cuts
at key frames. Otherwise, an unnecessary decoding and re-encoding
overhead will be introduced to the slicer, and this overhead will
obviously be an obstacle for line-rate processing.

There exist many open-source solutions to cut a video stream
only at key frames, including FFmpeg [2], which is used in our
proposed system. FFmpeg allows us to specify the length of each
video chunk (in seconds), and makes cuts at the closest key frames
to the given timestamps.

3.3 Distributed Video Processor
3.3.1 Major Architecture. As discussed previously, the key to

line-rate processing is to generate analysis results at the same speed
as the frame rate of the input video stream. It is challenging for
a single machine with limited computing resources to consume
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Figure 2: Architecture of the Distributed Video Processor

video data at line-rate. This is especially true when the computer
vision algorithm is highly computationally intensive (e.g. complex
neural network models). The distributed video processor as shown
in Fig. 2 exploits a cluster with adaptive computation resources and
processes video chunks in a distributed and parallel manner.

The distributed video processor is built on the streaming module
of Apache Spark, which has good properties ideal for a robust
distributed system (e.g. fault tolerance). During the execution of
the system, the Spark driver program constantly monitors the file
system where the outputs of the temporal video slicer will go. If
any new video chunks are detected, Spark will encapsulate each
chunk into a “task”, and further encapsulate all “tasks” into a “job”.
By default, Spark checks the file system once per second. If the
length of each video chunk is greater than one second, Spark will
detect at most one newly created chunk every time it checks the file
system. As a result, typically, there is only one Spark task per Spark
job. When the Spark task is assigned to an executor by the resource
manager, the driver program sends the executor the path to the
video chunk and the computer vision model in the file system. The
executor is then responsible for opening the video chunk, decoding
it, and performing analysis on the frames using the vision model.
If there are N Spark executors available, a maximum of N video
chunks can be processed concurrently.

It is common for the video chunk to have a relatively high frame
rate. In such circumstances, it is unnecessary to analyze every single
frame for applications like detection because the detection results
of adjacent frames are very similar [9]. To save computational re-
sources and accelerate the process, it is possible to take a sample
in everyM consecutive frames, and use the analysis result on the
sample for all theM frames. However, this kind of decisions should

depend on the actual application—if down-sampling is inappropri-
ate, then adding more computing resources to the system will often
be the safe solution.

3.3.2 Heterogeneous Processing. Many state-of-the-art computer
vision models employ GPUs or even dedicated hardware to acceler-
ate image processing. These neural-network-based models contain
large amount of matrix manipulation that can be done in parallel,
which is a weakness of CPUs but well handled by GPUs. The dis-
tributed video processor is agnostic to the underlying hardware that
actually execute the jobs. Once the job itself checks the availability
of computing devices, it can assign its computation to the specified
ones.

3.4 Result Collector
After the video chunks are processed by each worker node, the
analysis results need to be collected and reassembled so the results
can be analyzed by the user. In this paper, the result collector is im-
plemented as a web server. After finishing the analysis, each worker
node sends the results to the web server through an HTTP POST
request. The result collector then stores it to a relational database
to be later fetched when presenting to the user. As the computa-
tional capacity of each worker node is different, the analysis time
for each video chunk is dynamic. As a result, the analysis results
may not arrive at the collector in the order the chunks are created.
Depending on the application, the result for a specific chunk may
only be useful if we already have the results for all previous chunks.
In such cases, after the result is received by the collector, it waits
until all the previous chunks have analysis results available before
delivering to the user.
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3.4.1 Chunk Reintegration and Presentation. Since the video
stream is split into discrete chunks that are randomly distributed
to worker nodes with varying processing capacities, there is no
guarantee of in-order completion of the chunks. This lack of tempo-
ral cohesion creates a problem when presenting a processed video
stream back to the user, as each chunk depends on the preceding
chunk.

The solution that we currently employ is to simply buffer the
output data by the processing time of the slowest worker. This
delay can also be adjusted based on the length of the discrete video
slices, the number of available workers, and level of fault-tolerance
desired in order to maintain line-rate processing. Given sufficient
uniformly powerful hardware, it may be possible to do real-time
processing.

The major advantage of this approach is that once the initial
buffer period is over, the output chunks can be treated as a reinte-
grated live stream of processed data rather than independent video
slices. This allows us to build a presentation layer utilizing features
contained in most modern browsers. The processed live stream is
buffered in a video tag, and a transparent canvas is overlaid on top
to draw the results of the computer vision analysis.

4 EXPERIMENTS AND ANALYSIS
In this section, we present the experiments for analyzing and mea-
suring the performance of the proposed system.

The accuracy of the system in terms of the precision and recall
is largely determined by the quality of the stream and the computer
vision model for processing the stream, which are the inputs to
the proposed system (see discussions in Sec 3) defined by the user.
In this paper, instead of focusing on the accuracy, we analyze the
system by:

• The requirement on the amount of computing resources
• The balance between the delay and the overhead

4.1 Experiments Setup
The experiments discussed in this paper are conducted in a pro-
duction Spark environment managed by Cloudera Manager at our
university. The cluster is dedicated for the experiments.

The cluster consists of 11 nodes. There is a gateway node and a
history server node. The other 9 nodes are the workers who actually
process video stream using the given computer vision model. The
nodes in the cluster are interconnected by a 10 Gbps Ethernet
connection.

Both the gateway and history server node have 16 vCPUs (In-
tel(R) Xeon(R) CPU E7-4830 v4 @ 2.00GHz) and 61.4 GB of memory
each.

Seven of the worker nodes have 32 vCPUs (Intel(R) Xeon(R) CPU
E7-4830 v4 @ 2.00GHz) and 144.1 GB of memory each. The other
two worker nodes have 40 vCPUs (Intel(R) Xeon(R) CPU E5-2660
v2 @ 2.20GHz) and 112.4 GB of memory each.

The Spark streaming application is submitted using YARN [15] in
the client mode, which means the driver program runs on the gate-
way instead of the worker nodes. We allocate 18 executors when
we submit the application. When the system is running with a full

workload, a maximum of 18 video chunks can be processed simul-
taneously. In such circumstances, each worker node is responsible
for 18 ÷ 9 = 2 chunks.

We use Single Shot Multibox Detector [11] as the computer
vision model in our experiments, as it’s a popular state-of-the-art
object detection model with a good trade-off on accuracy and speed.
The models are pre-trained on the PASCAL VOC dataset [4] and
are able to identify the 20 classes defined by the dataset.

For our initial test data, we used an hour long video of vehicles
entering our university campus on a typical work day. The main
objects in the video are vehicles (cars and buses). The video has
a resolution of 910x512, a frame rate of 30 FPS, and is encoded in
H.264. We create a server to stream this video in an endless loop.

4.2 The Concept of Delay
As discussed previously, it is challenging performing complex com-
puter vision analysis in real-time. We instead focus on developing a
system that can perform such analysis at line-rate with some delay.
Intuitively, the concept of delay is defined as the amount of time
spent on the analysis algorithm. That is, the amount of time elapsed
from when a frame is produced until the analysis result of the same
frame is available:

Tanalysis = tavailable − tproduction (1)

If tavailable is equal to tproduction , which means the analysis
result is available “immediately” after a frame is produced,Tanalysis
will be zero. In such circumstances, the system is said to have real-
time performance.

An important note to make is that in a real-world system, there
can be additional computational overhead to process the analysis
result after its availability. Such post-processing can be as simple as
drawing bounding boxes around the detected objects, or as complex
as sending the result to another system for further analysis. For
simplicity, the overhead for post-processing is not included in (1).

The problem of this intuitive definition (1) is that, after the sys-
tem is up and running, Tanalysis varies from frame to frame. Even
if the complexity of the computer vision model is the same for every
input frame, which is true for most models, the actual execution
time may still be affected by:

• the capacity of the executor responsible for processing the
chunk (the cluster has heterogeneous workers)

• the availability of computational resources (there can be
other applications running in the cluster when deployed in
a production environment)

• the network congestion level (sending and receiving a video
stream itself can easily cause huge network congestion)

Given these uncertainties, it is difficult to accurately derive the
formula for delaymathematically. However, it is possible to estimate
the overall performance of the model when system is kept running
for a long time:

Tdelay = lim
f→∞

f
max
j=0

Tanalysis (j) (2)

where f is the index of the most recent processed frame in the
entire video stream, and Tanalysis (j) is the analysis time for jth
frame.
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Because our system distributes the computation in chunks of
frames, we need to further generalize (2) to accommodate that:

Telapsed (i) = Tchunk (i) +
F∑
j=0

Tanalysis (j) (3)

Telapsed (i) is the amount of time elapsed from the first frame
in chunk i is produced to the analysis result of the first frame
is available. Tchunk (i) is the length of video chunk i (in terms of
seconds), and F is the number of frames in chunk i .

Note that the first frame is not processed immediately after its
production. It is sent to the worker node after the entire chunk i is
received (Tchunk (i) after receiving the first frame).

The generalized version of (2) is given by:

Tdelay = lim
c→∞

cmax
i=0

Telapsed (i) (4)

where c is the index of the most recent processed chunk in the
entire video stream.

4.3 The Requirement on Computing Resources
With the discussion on the definition of delay (4), we are able to
decide whether a system is able to process inputs at a line-rate
through experiments.

After the system starts, we compute maxci=0Telapsed (i) after
the completion of analysis on every chunk. As c increases, if it
converges to a value below a certain threshold given by the user
(the tolerance on the amount of delay), the resources in the system is
considered to be sufficient. The blue line in Fig. 3 shows an example
of such situations. Because maxci=0Telapsed (i) converges to 218
seconds, the system is able to perform computer vision analysis on
the inputs at line-rate with a delay of 218 seconds. In this example,
we take a sample for analysis every 3 frames.

As c increases, if maxci=0Telapsed (i) fails to converge, or con-
verges above the tolerance given by the user, the resources in the
system is said to be insufficient. The orange line in Fig. 3 shows
an example of such situations. In this example, we analyze every
frame of input video.

Figure 3: Sufficient resources for line-rate processing

As shown by the blue line in Fig. 3, even if the resources are suf-
ficient for line-rate processing, maxci=0Telapsed (i) may experience
a dramatic increase when c is small. This is because there is only a
very limited number of video chunks being processed in the cluster
at the beginning of the experiment, and an executor can use all
the resources on the worker node (it is the only active executor).
When the cluster is given more video chunks, other executors on
the same worker node will begin processing as well. Potential re-
source sharing on the worker nodes can often lead to performance
interference, resulting in an increase in Telapsed .

4.4 The Balance Between Delay and Overhead
According to equation (3) and (4) defined in Sec 4.2, the amount of
delay introduced by the system Tdelay , is positively correlated to
the length of each video chunk Tchunk . In simple words, the delay
is small when the video chunk is short, and is large when the video
chunk is long. To reduce the delay, there is a strong motivation
for us to create very small video chunks. In the extreme case, the
system has a minimum delay when each chunk has only one video
frame.

However, the potentially unavoidable overhead brought by the
parallel architecture, including the time spent on allocating re-
sources such as Spark’s Resilient Distributed Datasets (RDDs), and
broadcasting the computer vision model, discourages us from mak-
ing a video chunk too small. When the model is used locally on the
slowest worker node (with 32 CPUs), which is the bottleneck of the
cluster, we find that it takes 18.4sec to analyze one second of the
input video. When the same model is used in our proposed system,
this value increases largely because of this overhead.

As shown in Fig. 4, the horizontal axis is the length of each
video chunk Tchunk , and the vertical axes are the computational
cost per second input (computed by Tdelay

Tchunk
), and the amount of

delay introduced by the systemTdelay . In this figure, the resources
available in the cluster are guaranteed to be more than enough for
all the test cases. We notice that when Tchunk is small, the compu-
tational cost to process an one-second video is high, indicating a
huge overhead. WhenTchunk increases, the computational cost per
second of video converges gradually. When Tchunk = 20sec, the
computational cost per second video is 19.9sec. The overhead here
is (19.9 − 18.4) ÷ 18.4 = 8.2%. When Tchunk = 1sec, the computa-
tional cost per second video is 32.0sec, representing an overhead
of (32.0 − 18.4) ÷ 18.4 = 74.0%.

As can be seen in Fig. 4, if the system splits the video into 20-
second chunks, we will only need 19.9

32.0 = 62.2% of resources com-
pared to the situation where 1-second chunks are generated. How-
ever, by doing so, a greater delay (398sec versus 32sec) will also
be introduced. In a real-world system, although it is hard to do so,
one has to carefully balance the relation between the delay and
computational overhead.

4.5 Exploration of Scalability
Scalability is a key feature of the proposed system. A system is
said to be scalable if its computing capability increases when more
hardware resources are provided. Since our visual computing sys-
tem is built upon Apache Spark, its computing resources can be
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Figure 4: Computational overhead and chunk size

easily adapted by changing the settings through the cluster man-
ager. In our implementation, the cluster manger is Apache Hadoop
Yarn, but it can also be Spark’s own cluster manager or Apache
Mesos. We are interested in investigating how the scaling strategy
influences the performance of the system.

There are two different methods to increase the amount of hard-
ware resources in a distributed computing system. Imagine that all
the worker nodes in the system are lined up in a horizontal line. We
can either increase the hardware capacity of each individual node
(known as “vertical scaling”), or increase the number of nodes with-
out changing the hardware specification of each node (known as
“horizontal scaling”). This section presents a comparison between
these two scaling methods.

The experiment described below only uses a subset of comput-
ing resources discussed in Sec. 4.1. With a total of 80 vCPUs, we
distribute them in three ways:

• 2 worker nodes, each with 40 vCPUs
• 4 worker nodes, each with 20 vCPUs
• 8 worker nodes, each with 10 vCPUs

In all cases, at a particular time, each worker node is responsible
for two video chunks. In the first scenario, there are 2× 2 = 4 video
chunks being processed in parallel. In the second and third scenario,
there are 2×4 = 8 and 2×8 = 16 chunks being processed in parallel,
respectively. We keep the system up and running for 30 minutes,
and the table below shows the computational costs to process one
10-second video chunk in different setups.

Table 1: Computational costs to process one video chunk

2×40 vCPUs 4×20 vCPUs 8×10 vCPUs
taveraдe (sec) 5.88 7.63 14.34

tnormalized (sec) 1.47 0.95 0.89
a taveraдe is the average time to process a video chunk.
b tnormalized is taveraдe divided by the number of parallel
chunks.

As shown in Table 1, taveraдe is an indicator of the delay in-
troduced by the system. When the amount of resources on each
individual worker node increases, the processing of each video
chunk consumes more hardware resources and is therefore faster.
Therefore, if delay is the major concern, vertical scaling will be
better than horizontal scaling.

As also shown in Table 1, tnormalized is an indicator of the
amount of hardware resources used to process a chunk. Recall that
the total amount of hardware resources (80 vCPUs) is fixed among
the three setups. When N chunks are being processed in parallel,
each chunk can be thought of as having used all the 80 vCPUs
for tnormalized =

taveraдe
N time on average. When the number

of workers increases, each chunk uses less hardware resources to
process. Therefore, to keep a line-rate performance, if the total
amount of hardware resources is limited, it will be ideal to scale the
system horizontally so that the limited resources are better utilized.

In practice, there can be a limit to vertical scaling. If it is given
more resources than required, a computer vision algorithm may
not be able to fully utilize them. For example, if the algorithm only
allocates 20 threads during its execution, it will be meaningless to
equip it with more than 20 vCPUs. In such scenarios, horizontal
scaling will be the onlymethod for increasing the hardware capacity
of the system.

4.6 Enhancement using Heterogeneous
Processing

The heterogeneous processing of the proposed system has been
discussed in Sec. 3.3. The experiments in previous sections focus
on exploring (1) the settings and major concepts of the system (e.g.
chunk size, computing resources, delay); (2) performance under
different system settings; and (3) scalability. A CPU-based cluster
as presented in Sec. 4.1 is sufficient for these purposes. However,
we have also begun initial experiments on a GPU-enabled cluster
to investigate the benefits brought by heterogeneous processing.

We perform the same visual computing task, applying the SSD
detector on video streams to get analysis result, but this time on a
single Geforce GTX 1080 GPU. The experiment shows that it takes
24 seconds on average to process a 20-second video chunk with 30
FPS. This result suggests that GPUs will greatly increase the amount
of video data the cluster can process at line-rate due to its highly
optimized parallelism and dedicated software-side accelerations (e.g.
NVIDIA’s CUDA, CuDNN). With the property of heterogeneous
processing, the system will be able to work more efficiently and
handle more complicated tasks when GPUs are included. Besides,
this experiment result justifies the importance of the scalability
of our system - one advanced GPU on a single machine fails to
handle a line-rate processing task, but if the GPU is deployed in
the proposed system, the performance gap can be filled by tens of
commodity CPUs and the whole system can easily reach line-rate.

Though performance of GPUs seems to be dominant on run-
ning most state-of-the-art computer vision models, this does not
mean CPUs are irrelevant for running computer vision models.
A good number of highly optimized libraries are trying to close
the gap between CPUs and GPUs on the tasks with heavy matrix
manipulations, and we also make some exploration on this in our
experiments. Libraries such as Intel MKL can largely improve CPU
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performance. Libraries including OpenCV and Caffe already have
MKL-equipped version, and are now harnessing more computing
power from CPUs taking advantage of these dedicated software
optimization. 1

5 USE CASES
In this section, we first discuss how the users can deploy the pro-
posed system in the cloud using services such as Amazon EC2,
and then we show the potential use cases for the proposed system.
Recall that the major characteristics of the systems are: (1) high
scalability, which enables it to handle multiple video streams and
complex computer vision algorithms simultaneously; (2) line-rate
processing, which makes it applicable to situations requiring high
response.

As presented in Sec. 3, the distributed visual computing system is
built upon Apache Spark, FFmpeg, among other tools and libraries.
Users can either deploy the system on their own cluster or take
advantage of cloud service such as Amazon EC2 for deployment. If
the system is deployed on EC2, the user will be able to adapt the
computing resources based on the workload of actual tasks, and
the scalability of the system will make it easy for users to get ideal
performance economically.

5.1 Traffic Flow Monitoring at Line-Rate
A simple and common use case of the proposed system is sensor-
free traffic flowmonitoring. By using (most likely existing) cameras,
the system can track cars entering and leaving an intersection, and
estimates the situation of traffic flow (i.e. the congestion level). Since
current computer vision algorithms can already classify different
type of cars or recognize the license plate, it’s also possible to record
all these details in a database for further analysis.

The main campus of our university is located on a mountain
with only one major entrance, which is also a four-way intersection.
The campus security has deployed a high-resolution camera at this
intersection. However, the camera is only used to record traffic
videos. No computer vision analysis had been applied on these
videos before our system. In our experiment, the proposed system
is used to receive video stream from this camera, and count the
number of cars and buses entering the campus.

To implement the vehicle counting functionality, the proposed
system needs to be equipped with a properly designed computer
vision algorithm. In this case, SSD detector [11] again is chosen as
the general-purpose object detector. Pre-trained on PASCAL VOC,
the detector is able to give a bounding box for objects of 20 common
classes with high accuracy. For every single frame, SSD detector is
applied for getting the bounding box of all vehicles(i.e. buses and
cars) in the scene. Because the camera is fixed, the vehicles moving
toward one direction will always go through certain regions in the
captured video. Therefore, counting the number of vehicles moving
toward certain direction is equivalent to counting the non-repeated
occurrences (one vehicle is only counted once) of vehicles in certain
small region in the video.

1intel-caffe:https://github.com/intel/caffe
OpenCVwith dedicated CPU accelerations: https://github.com/opencv/opencv/wiki/DNN-
Efficiency

Fig. 5 is an illustration of the counting method. The number of
vehicles travelling along the direction of blue arrow is the same
as the number of vehicles crossing the red segment. The 2D co-
ordinates of detection in adjacent frames are compared, and the
comparison result is used to make sure that there is no repetitive
counting. Note that there exists temporal dependency when the
detection results from adjacent frames are compared, which means
that there will be counting errors at the boundary of video slices.
However, the error will be tolerable if the length of each video
slice is reasonably large. This is because the probability of a vehicle
crossing the counting region at exactly the last moment of a video
slice is rather small when the length of a video slice is large. We
choose a time slice length that will not result in repetitive counts
given the traffic flow in the location of the security cameras we use.
This variable could be adjusted based on the deployment scenario.

Figure 5: The illustration of our vehicle counting method.
The blue arrow is the direction of cars entering campus, the
red segment is the counting region. The system counts a ve-
hicle when its detected bounding box crosses the counting
region.

Figure 6: Cumulative number of vehicles entering the cam-
pus from Nov. 29 to 30, 2017
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Fig. 6 shows the statistics from November 29 (Wednesday) to
November 30 (Thursday), 2017. This figure reveals an interesting
phenomenon: At most times, the number of buses and the number
of cars increases simultaneously (the first-order derivatives of the
two lines are positively correlated). However, at around 21:00, we
notice a very large number of cars entering the campus, while the
number of buses is much smaller. This suggests that many people
are travelling to the campus late at night (possibly students live on
the main campus, but take courses elsewhere). Potentially, the bus
operating company should consider increasing the frequency of its
services during this period.

Our system can also be useful for campus staffs to collect long-
term traffic statistics, according to which the university may want
to adapt its course and exam schedule, and parking lot allocation
to maintain stable traffic with low congestion.

6 CONCLUSION AND FUTUREWORKS
In this paper, we propose a scalable distributed visual computing
system for line-rate processing on video streams. The key feature
of the proposed system is scalability and line-rate processing for
large-scale video data. By distributing computing tasks to a cluster
with heterogeneous underlying hardware, the system is able to
utilize hardware resources and produce analysis results using given
computer vision model at line-rate. On the basis of our implemen-
tation and experiments, we discuss major concepts of the system
and further present the mechanism to estimate the requirement
on computing resources when the system is deployed for real-life
applications. We notice and discuss that there is a balance between
the delay and the overhead introduced by our system. And we also
explore the scalability of the proposed system by comparing vertical
scaling with horizontal scaling. Finally, as an example use case, we
present the results of deploying our system on a cloud environment
to monitor traffic flow at the entrance of our university.

We note that there are room for potential enhancements. One
possibility of future work is to introduce the idea of adaptive chunk
slicing. Since the system consists of heterogeneous underlying
hardware, it will be ideal if the computation is distributed according
to the capacity of each component of the system. This requires the
temporal video slicer module of our system to be aware of the
computing capacity of each node in the cluster, and then cut video
adaptively, assign the longer chunks to worker nodes with high
computing capacity, while leave shorter chunks to slower ones. The
adaptive chunk slicing will further exploit the computing resource
of the system and is a promising future direction of our system.
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