
Memory Efficient Kernel Approximation

Si Si SSI@CS.UTEXAS.EDU
Cho-Jui Hsieh CJHSIEH@CS.UTEXAS.EDU
Inderjit S. Dhillon INDERJIT@CS.UTEXAS.EDU

Department of Computer Science, The University of Texas, Austin, TX 78721, USA

Abstract
The scalability of kernel machines is a big chal-
lenge when facing millions of samples due to
storage and computation issues for large ker-
nel matrices, that are usually dense. Recently,
many papers have suggested tackling this prob-
lem by using a low-rank approximation of the
kernel matrix. In this paper, we first make the
observation that the structure of shift-invariant
kernels changes from low-rank to block-diagonal
(without any low-rank structure) when varying
the scale parameter. Based on this observation,
we propose a new kernel approximation algo-
rithm – Memory Efficient Kernel Approxima-
tion (MEKA), which considers both low-rank
and clustering structure of the kernel matrix.
We show that the resulting algorithm outper-
forms state-of-the-art low-rank kernel approxi-
mation methods in terms of speed, approxima-
tion error, and memory usage. As an example,
on the mnist2m dataset with two-million sam-
ples, our method takes 550 seconds on a sin-
gle machine using less than 500 MBytes mem-
ory to achieve 0.2313 test RMSE for kernel ridge
regression, while standard Nyström approxima-
tion takes more than 2700 seconds and uses more
than 2 GBytes memory on the same problem to
achieve 0.2318 test RMSE.

1. Introduction
Kernel methods (Schölkopf & Smola, 2002) are a class of
machine learning algorithms that map samples from input
space to a high-dimensional feature space. In the high-
dimensional feature space, various methods can be ap-
plied depending on the machine learning task, for example,
kernel support vector machine (SVM) (Cortes & Vapnik,
1995) and kernel ridge regression (Saunders et al., 1998).
A key issue in scaling up kernel machines is the storage and

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

computation of the kernel matrix, which is usually dense.
Storing the dense matrix takes O(n2) space, while com-
puting it takes O(n2d) operations, where n is the number
of data points and d is the dimension. A common solution
is to approximate the kernel matrix using limited memory
storage. This approach not only resolves the memory is-
sue, but also speeds up kernel machine solvers, because the
time complexity for using the kernel is usually proportional
to the amount of memory used to represent the kernel. Most
kernel approximation methods aim to form a low-rank ap-
proximation G ≈ CCT for the kernel matrix G, with
C ∈ Rn×k and rank k � n. Although it is well known
that Singular Value Decomposition (SVD) can compute the
best rank-k approximation, it often cannot be applied to
kernel matrices as it requires the entire kernel matrix to be
computed and stored. To overcome this issue, many meth-
ods have been proposed to approximate the best rank k ap-
proximation of kernel matrix, including Greedy basis se-
lection techniques (Smola & Schölkopf, 2000), incomplete
Cholesky decomposition (Fine & Scheinberg, 2001), and
Nyström methods (Drineas & Mahoney, 2005).

However, it is unclear whether low-rank approximation is
the most memory efficient way to approximate the kernel
matrix. In this paper, we first make the observation that
for practically used shift-invariant kernels, the kernel struc-
ture varies from low-rank to block-diagonal as the scaling
parameter γ varies from 0 to ∞. This observation sug-
gests that even the best rank-k approximation can have ex-
tremely large approximation error when γ is large, so it is
worth exploiting the block structure of the kernel matrix.
Based on this idea, we propose a Memory Efficient Kernel
Approximation (MEKA) method to approximate the ker-
nel matrix. Our proposed method considers and analyzes
the use of clustering in the input space to efficiently exploit
the block structure of shift-invariant kernels. We show that
the blocks generated by kmeans clustering have low-rank
structure, which motivates us to apply Nyström low-rank
approximation to each block separately. Between-cluster
blocks are then approximated in a memory-efficient man-
ner. Our approach only needs O(nk + (ck)2) memory to
store a rank-ck approximation(where c � n is the num-
ber of clusters), while traditional low-rank methods need
O(nk) space to store a rank-k approximation. Therefore,

Memory Efficient Kernel Approximation

using the same amount of storage, our method can achieve
lower approximation error than the commonly used low-
rank methods. Moreover, our proposed method takes less
computation time than other low-rank methods to achieve
a given approximation error.

Theoretically, we show that under the same amount of stor-
age, the error bound of our approach can be better than
standard Nyström, if the gap between k + 1st and ck + 1st

singular values for G is large and values in the between-
cluster blocks are relatively small compared to the within-
cluster blocks. On real datasets, using the same amount of
memory, our proposed algorithm achieves much lower re-
construction error using less time, and is faster for kernel
regression. For example, on the mnist2m dataset with 2
million samples, our method takes 550 seconds on a single
machine using less than 500 MBytes memory to achieve
accuracy comparable with standard Nyström approxima-
tion, which takes more than 2700 seconds and uses more
than 2 GBytes memory on the same problem.

The rest of the paper is outlined as follows. We present re-
lated work in Section 2, and then motivate our algorithm
in Section 3. Our kernel approximation algorithm MEKA
is proposed and analyzed in Section 4. Experimental re-
sults are given in Section 5. We present our conclusions in
Section 6.

2. Related Research
To approximate the kernel matrix using limited memory,
one common way is to use a low-rank approximation. The
best rank-k approximation can be obtained by the SVD,
but it is computationally prohibitive when n grows to tens
of thousands. One alternative is to use randomized SVD
(Halko et al., 2011), but it still needs computation and stor-
age of the entire dense kernel matrix.

In order to overcome the prohibitive time and space com-
plexity of SVD, the Nyström and Random Kitchen Sinks
(RKS) methods have been proposed. The Nyström method
(Williams & Seeger, 2001) generates a low-rank approxi-
mation based on a sampled subset of columns of the ker-
nel matrix. Many strategies have been proposed to im-
prove over the basic Nyström approximation, including en-
semble Nyström (Kumar et al., 2009), Nyström with k-
means to obtain benchmark points (Zhang et al., 2008;
Zhang & Kwok, 2010), and randomized Nyström (Li et al.,
2010). Different Nyström sampling strategies are analyzed
and compared in (Kumar et al., 2012; Gittens & Mahoney,
2013). Another way to approximate the kernel matrix is to
use Random Kitchen Sinks (RKS) (Rahimi & Recht, 2007;
2008), which approximates the Gaussian kernel function
based on its Fourier transform. Recently (Le et al., 2013)
sped up the RKS by using fast Hadamard matrix multi-
plications. (Yang et al., 2012) showed that the Nyström
method has better generalization error bound than the RKS
approach if the gap in the eigen-spectrum of the kernel ma-

trix is large. Another approach proposed by (Cotter et al.,
2011) approximates the Gaussian kernel by the t-th order
Taylor expansion, but it requires O(dt) features, which is
computationally intractable for large d or t.

Many of the above methods can be viewed as faster ways
to approximate the top-k SVD of the kernel matrix, so the
approximation error is always larger than top-k SVD when
using O(nk) memory. As we show in Section 3, the kernel
matrix typically changes from low-rank to block structure
as the scaling parameter γ increases. However, the block
structure of the kernel matrix has never been considered in
dense kernel approximation, although it has been studied
for approximation of other types of matrices. For exam-
ple, (Savas & Dhillon, 2011) applied Clustered Low Rank
Approximation (CLRA) to approximate large and sparse
social networks. CLRA applies spectral clustering to the
adjacency matrix, runs SVD on each diagonal block, and
uses matrix projection to capture off-diagonal information.
All these steps require storage of the whole matrix, thus
is infeasible for large-scale dense kernel matrices. For ex-
ample, computing the whole kernel matrix of the mnist2m
dataset requires about 16 TBytes of memory; moreover the
time for computing the SVD and projection steps is pro-
hibitive. On the same dataset our proposed approach can
achieve good results in 10 minutes with only 500 MBytes
memory (as shown in Section 5). Thus, we need totally dif-
ferent algorithms for clustering and approximating blocks
to yield our memory-efficient scheme.

3. Motivation
We use the Gaussian kernel as an example to discuss the
structure of the kernel matrix under different scale param-
eters. Given two samples xi and xj , the Gaussian ker-
nel is defined as K(xi,xj) = e−γ‖xi−xj‖22, where γ is a
scale or width parameter; the corresponding kernel matrix
G is Gij = K(xi,xj). Low-rank approximation has been
widely used to obtain an approximation for kernel matri-
ces. However, under different scales, the kernel matrix has
quite different structures, suggesting that different approx-
imation strategies should be used for different γ.

Let us examine two extreme cases of the Gaussian kernel:
when γ → 0, G→ eeT where e = [1, . . . , 1]T . As a con-
sequence,G is close to low-rank when γ is small. However,
on the other extreme as γ → ∞, G changes to the identity
matrix, which has full rank with all eigenvalues equal to 1.
In this case, G does not have a low-rank structure, but has a
block/clustering structure. This observation motivates us to
consider both low rank and clustering structure of the ker-
nel. Figure 1(a) and 1(b) give an example of the structure
of a Gaussian kernel with different γ on a real dataset by
randomly sampling 5000 samples from covtype dataset.

Before discussing further details, we first contrast the use
of block and low-rank approximations on the same dataset.
We compare approximation errors for different methods

Memory Efficient Kernel Approximation

(a) RBF kernel matrix with γ = 0.1 (b) RBF kernel matrix with γ = 1 (c) Comparison of different kernel ap-
proximation methods on various γ.

Figure 1. (a) and (b) show that the structure of the Gaussian kernel matrix K(x,y) = e−γ‖x−y‖2 for the covtype data tends to become
more block diagonal as γ increases(dark regions correspond to large values, while lighter regions correspond to smaller values). Plot
(c) shows that low-rank approximations work only for small γ, and Block Kernel Approximation (BKA) works for large γ, while our
proposed method MEKA works for small as well as large γ.

when they use the same amount of memory in Figure 1(c).
Clearly, low rank approximation methods work well only
for very small γ values. Block Kernel Approximation
(BKA), a naive way to use clustering structure of G, as
proposed in Section 4.1, is effective for large γ. Our pro-
posed algorithm, MEKA, considers both block and low-
rank structure of the kernel, and thus performs better than
others under different γ values as seen in Figure 1(c).

4. Our proposed framework
In this section, we first introduce Block Kernel Approxima-
tion (BKA), a simple way to exploit the clustering structure
of kernel matrices, and then propose our main algorithm,
Memory Efficient Kernel Approximation(MEKA), which
overcomes the shortcoming of BKA by considering both
clustering and low-rank structure of the kernel matrix.

4.1. Clustering structure of shift-invariant kernel
matrices

There has been substantial research on approximating shift-
invariant kernels (Rahimi & Recht, 2007). A kernel func-
tionK(xi,xj) is shift-invariant if the kernel value depends
only on xi−xj , that is,K(xi,xj) = f(η(xi−xj)) where
f(·) is a function that maps Rd to R, and η > 0 is a constant
to determine the “scale” of the data. η is very crucial to the
performance of kernel machines and is usually chosen by
cross-validation. We further define gu(t) = f(ηtu) to be
a one variable function along u’s direction. We assume the
kernel function satisfies the following property:
Assumption 1. gu(t)is differentiable in t when t 6= 0.

Most of the practically used shift-invariant kernels sat-
isfy the above assumption, for example, the Gaussian ker-
nel (K(x,y) = e−γ‖x−y‖

2
2), and the Laplacian kernel

(K(x,y) = e−γ‖x−y‖1). It is clear that η2 is equivalent
to γ for the Gaussian kernel. When η is large, off-diagonal
blocks of shift-invariant kernel matrices will become zero,
and all the information is concentrated in diagonal blocks.
To approximate the kernel matrix by exploiting this “clus-
tering structure”, we first present a simple Block Kernel
Approximation (BKA) as follows. Given a good partition

V1, . . . ,Vc of the data points, where each Vs is a subset of
{1, . . . , n}, BKA approximates the kernel matrix as:

G ≈ G̃ ≡ G(1,1) ⊕G(2,2) ⊕ · · · ⊕G(c,c). (1)

Here, ⊕ denotes direct sum and G(s,s) denotes the kernel
matrix for block Vs – note that this implies that diagonal
blocks G̃(s,s) = G(s,s) and all the off-diagonal blocks,
G̃(s,t) = 0 with s 6= t.

BKA is useful when η is large. By analyzing its ap-
proximation error, we now show that k-means in the in-
put space can be used to capture the clustering struc-
ture in shift-invariant kernel matrices. The approxima-
tion error equals ‖G̃ − G‖2F =

∑
i,j K(xi,xj)2 −∑c

s=1

∑
i,j∈Vs

K(xi,xj)2. Since the first term is fixed,
to minimize the error ‖G̃ − G‖2F , it is equivalent to maxi-
mizing the second term, the sum of squared within-cluster
entries D =

∑c
s=1

∑
i,j∈Vs

K(xi,xj)2.

However, directly maximizingD will not give a useful par-
tition – the maximizer will assign all the data into one clus-
ter. The same problem occurs in graph clustering (Shi &
Malik, 2000; von Luxburg, 2007). A common approach is
to normalize D by each cluster’s size |Vs|. The resulting
spectral clustering objective (also called ratio association)
is:

Dkernel({Vs}cs=1) =
c∑
s=1

1
|Vs|

∑
i,j∈Vs

K(xi,xj)2. (2)

Maximizing (2) usually yields a balanced partition, but the
computation is expensive because we have to compute all
the entries in G. In the following theorem, we derive a
lower bound for Dkernel({Vs}cs=1):
Theorem 1. For any shift-invariant kernel that satisfies As-
sumption 1,

Dkernel({Vs}cs=1) ≥ C̄ − η2R2Dkmeans({Vs}cs=1) (3)

where C̄ = nf(0)2

2 ,R is a constant depending on the kernel
function, and Dkmeans ≡

∑c
s=1

∑
i∈Vs
‖xi −ms‖22 is the

k-means objective function, where ms = (
∑
i∈Vs

xi)/|Vs|
for s=1,· · ·, c are the cluster centers.

Memory Efficient Kernel Approximation

]

Figure 2. The Gaussian kernel approximation error of BKA using
different ways to generate five partitions on 500 samples from
covtype. K-means in the input space performs similar to spectral
clustering on kernel matrix, but is much more efficient.

The proof is given in Appendix 7.1. Interestingly, the right
hand side of (3) can be maximized when the k-means ob-
jective function Dkmeans is minimized. Therefore, although
optimal solutions for k-means and ratio association might
be different (consider the two circles non-linear case), The-
orem 1 shows that conducting k-means in the input space
will provide a reasonably good way to exploit the cluster-
ing structure of shift-invariant kernels, especially when it
is infeasible to perform spectral clustering on G as it needs
to precompute the entire kernel matrix. Figure 2 shows
that the partition from k-means works as well as spectral
clustering on G, which directly optimizes Dkernel. One ad-
vantage of conducting k-means is that the time complexity
of each iteration is O(ndc), which is much less than com-
puting the kernel when the dimensionality d is moderate.

4.2. Memory Efficient Kernel Approximation

However, there are two main drawbacks to the above ap-
proach: (i) BKA ignores all the off-diagonal blocks, which
results in large error when η is small (as seen in Figure
1(c)); (ii) for large-scale kernel approximation, it is too
expensive to compute and store all the diagonal block en-
tries. We now propose our new framework: Memory Ef-
ficient Kernel Approximation (MEKA) to overcome these
two drawbacks.

To motivate using low-rank representation in our proposed
method, we first present the following bound:
Theorem 2. Given data points {x1, . . . ,xn} and a parti-
tion {V1, . . . ,Vc}, then for any s, t (s = t or s 6= t)

‖G(s,t)−G(s,t)
k ‖F ≤4Ck−1/d

√
|Vs||Vt|min(rs, rt),

where G(s,t)
k is the best rank-k approximation to G(s,t); C

is the Lipschitz constant of the shift-invariant function; rs
is the radius of the s-th cluster.

The proof is in Appendix 7.2. Theorem 2 suggests that
when we apply k-means, rs will be reduced and can be
quite small, so the diagonal blocks and off-diagonal blocks
tend to be low-rank. We also observe this phenomenon on
real datasets: the rank of each block generated by k-means
clustering is much smaller than by random clustering (see
Appendix 7.4).

Memory Efficient Kernel Approximation (MEKA):
Based on the above observation, we propose a fast and
memory efficient scheme to approximate shift-invariant
kernel matrices. As suggested by Theorem 2, each block
tends to be low-rank after k-means clustering; thus we can
form rank-k approximation for each of the c2 blocks sepa-
rately to achieve low error; however, this approach would
require O(cnk) memory, which can be prohibitive. There-
fore, our proposed method first performs k-means cluster-
ing, and after rearranging the matrix according to clusters,
it computes the low-rank basis only for diagonal blocks
(which are more dominant than off-diagonal blocks) and
uses them to approximate off-diagonal blocks. Empirically,
we observe that the principal angles between basis of diag-
onal blocks and off-diagonal blocks are small(shown in Ap-
pendix 7.5). By using our proposed approach, we focus on
diagonal blocks, and spend less effort on the off-diagonal
blocks. Assume the rank-ks approximation of the sth diag-
onal block is W (s)L(s,s)(W (s))T , we form the following
memory-efficient kernel approximation:

G̃ = WLWT , (4)

where W = W (1) ⊕ W (2) ⊕ · · · ⊕ W (c); L is a “link”
matrix consisting of c2 blocks, where each ks × kt block
L(s,t) captures the interaction between the sth and tth clus-
ters. Let us first assume ks = k, and we will discuss dif-
ferent stategries to choose ks later. Note that if we were to
restrict L to be a block diagonal matrix, G̃ would still be
a block diagonal approximation of G. However, we con-
sider the more general case that L is a dense matrix. In
this case, each off-diagonal block G(s,t) is approximated
as W (s)L(s,t)(W (t))T , and this approximation is memory
efficient as only O(k2) additional memory is required to
represent the (s, t) off-diagonal block. If a rank-k approx-
imation is used within each cluster, then the generated ap-
proximation has rank ck, and takes a total ofO(nk+(ck)2)
storage.

ComputingW (s). Since we aim to deal with dense kernel
matrices of huge size, we use Nyström approximation to
compute low-rank “basis” for each diagonal block. When
applying the standard Nyström method to a ns × ns block
G(s,s), we sample m columns from G(s,s), evaluate their
kernel values, compute the rank-k pseudo-inverse of an
m × m matrix, and form G(s,s) ≈ W (s)(W (s))

T
. The

time required per block is O(nsm(k + d) +m3), and thus
our method requires a total of O(nm(k + d) + cm3) time
to form W . We can replace Nyström by any other kernel
low-rank approximation method discussed in Section 2, but
empirically we observe that the classical Nyström method
combined with MEKA gives excellent performance.

Computing L(s,t). The optimal least squares solution for
L(s,t)(s 6= t) is the minimizer of the local approximation
error ‖G(s,t) −W (s)L(s,t)(W (t))T ‖F . However, forming
the entire G(s,t) block can be time consuming. For ex-
ample, computing the whole kernel matrix for mnist2m

Memory Efficient Kernel Approximation

Table 1. Memory and time analysis of various kernel approxima-
tion methods, where TL is the time to compute the L matrix and
TC is the time for clustering in MEKA.

Method Storage Rank Time Complexity
RKS O(cnk) ck O(cnkd)

Nyström O(cnk) ck O(cnm(ck + d) + (cm)3)
SVD O(cnk) ck O(n3 + n2d)

MEKA O(nk
ck

O(nm(k + d) + cm3)
+(ck)2) +TL + TC

with 2 million data points takes more than a week. There-
fore, to compute L(s,t), we propose to randomly sample a
(1 + ρ)k× (1 + ρ)k submatrix Ḡ(s,t) from G(s,t), and then
find L(s,t) that minimizes the error on this submatrix. If the
row/column index set for the subsampled submatrix Ḡ(s,t)

in G(s,t) is vs/vt, then L(s,t) can be computed in closed
form:

L(s,t) =((W (s)
vs

)TW (s)
vs

)−1(W (s)
vs

)TḠ(s,t)W (t)
vt

((W (t)
vt

)TW (t)
vt

)−1,

where W (s)
vs and W (t)

vt are formed by the rows in W (s) and
W (t) with row index sets vs and vt respectively.

Since there are only k2 variables in L(s,t), we do not need
too many samples for each block, and the time to compute
L(s,t) isO((1+ρ)3k3). In practice, we observe that setting
ρ to be 2 or 3 is enough for a good approximation, so the
time complexity is about O(k3). In practice, many values
in off-diagonal blocks are close to zero, and only few of
them have large values as shown in Figure 1. Based on this
observation, we further propose a thresholding technique
to reduce the time for storing and computing L(s,t). Since
the distance between cluster centers is a good indicator for
the values in an off-diagonal block, we can set the whole
block L(s,t) to 0 if K(ms,mt) ≤ ε for some threshold-
ing parameter ε > 0. Obviously, to choose ε, we need to
achieve a balance between speed and accuracy. When ε is
small, we will compute more L(s,t); while when ε is large,
we will set more L(s,t) to be 0, but increase the approxima-
tion error. The influence of ε on real datasets is shown in
Appendix 7.8.

Choosing the rank ks for each cluster. We need to de-
cide the rank for the sth(s = 1, · · · , c) cluster, ks, which
can be done in different ways: (i) the same k for all the
clusters; (ii) singular value based approach. For (ii), sup-
poseM (s) is thems×ms matrix consisting of the intersec-
tion of ms sampled columns in G(s,s), and M is the cm×
cm(

∑c
s=1ms = cm) block-diagonal matrix with M (s) as

diagonal block. We can choose ks such that the set of top-
ck singular values of M is the union of the singular values
of M (s) in each cluster, that is, [σ1(M), . . . , σck(M)] =
∪cs=1[σ1(M (s)), . . . , σks

(M (s))]. To use (ii), we can over-
sample points in each cluster, e.g., sample 2k points from
each cluster, perform eigendecompostion of a 2k× 2k ker-
nel matrix, sort the eigenvalues from c clusters, and fi-
nally select the top-ck eigenvalues and their correspond-
ing eigenvectors. (i) achieves lower memory usage and is
faster, while (ii) is slower but achieves lower error for di-

agonal blocks. In the experiment, we set all the clusters to
have the same rank k. We show that this simple choice of
ks already outperforms state-of-the-art kernel approxima-
tion methods.

Our main algorithm is presented in Algorithm 1. In Table
1, we compare the time and storage for our method with
SVD, standard Nyström, and RKS. We can see that MEKA
is more memory efficient. For the time complexity, both TL
(time for computing off-diagonal L) and TC (time for clus-
tering) are small because (1) we use thresholding to force
some L(s,t) blocks to be zero, and perform least squares on
small blocks, which means TL can at most be O(1

2c
2k3);

(2)TC is proportional to the number of samples. For a large
dataset, we sample 20000 points for k-means, and thus the
clustering is more efficient than working on the entire data
set. We show the empirical time cost for each step of our
algorithm in Appendix 7.9.

Algorithm 1: Memory Efficient Kernel Approximation
(MEKA)
Input : Data points {(xi)}ni=1, scaling parameter γ, rank k,

and number of cluster c.
Output: The rank-ck approximation G̃ = WLWT using

O(nk + (ck)2) space
Generate the partition V1, . . . ,Vc by k-means;
for s = 1, . . . , c do

Perform the rank-k approximation
G(s,s) ≈W (s)(W (s))T by standard Nyström;

forall (s, t)(s 6= t) do
Sample a submatrix Ḡ(s,t) from G(s,t) with row index
set vs and column index set vt;
Form W

(s)
vs by selecting the rows in W (s) according to

index set vs;
Form W

(t)
vt by selecting the rows in W (t) according to

index set vt;
Solve the least squares problem:
Ḡ(s,t) ≈W (s)

vs L
(s,t)(W (t)

vt)T to obtain L(s,t);

4.3. Analysis
We now bound the approximation error for our proposed
method. We show that when σk+1 − σck+1 is large, where
σk+1 and σck+1 are the k + 1st and ck + 1st singular val-
ues of G respectively, and entries in off-diagonal blocks
are small, MEKA has a better approximation error bound
compared to standard Nyström that uses similar storage.
Theorem 3. Let ∆ denote a matrix consisting of all off-
diagonal blocks of G, so ∆(s,t) = G(s,t) for s 6= t and all
zeros when s = t. We sample cm points from the dataset
uniformly at random without replacement and split them
according to the partition from k-means, such that each
cluster hasms benchmark points and

∑c
s=1ms = cm. Let

Gck be the best rank-ck approximation of G and G̃ be the
rank-ck approximation from MEKA. Suppose we choose
the rank ks for each block using the singular value based

Memory Efficient Kernel Approximation

Table 2. Comparison of approximation error of our proposed method with six other state-of-the-art kernel approximation methods on
real datasets, where γ is the Gaussian scaling parameter; c is the number of clusters in MEKA; k is the rank of each diagonal-block in
MEKA and the rank of the approximation for six other methods. Note that for a given k, every method has roughly the same amount of
memory. All results show relative kernel approximation errors for each k.

Dataset k γ c Nys RNys KNys ENys RKS fastfood MEKA
pendigit 128 2 5 0.1325 0.1361 0.0828 0.2881 0.4404 0.4726 0.0811
ijcnn1 128 1 10 0.0423 0.0385 0.0234 0.1113 0.2972 0.2975 0.0082

covtype 256 10 15 0.3700 0.3738 0.2752 0.5646 0.8825 0.8920 0.1192

Table 3. Comparison of our proposed method with six other state-of-the-art kernel approximation methods on real datasets for kernel
ridge regression, where λ is the regularization constant. All the parameters are chosen by cross validation, and every method has roughly
the same amount of memory as in Table 2. All results show test RMSE for regression for each k. Note that k for fastfood needs to be
larger than d, so we cannot test fastfood on mnist2m when k = 256.

Dataset k γ c λ Nys RNys KNys ENys RKS fastfood MEKA
wine 128 2−10 3 2−4 0.7514 0.7555 0.7568 0.7732 0.7459 0.7509 0.7375

cadata 128 22 5 2−3 0.1504 0.1505 0.1386 0.1462 0.1334 0.1502 0.1209
cpusmall 256 22 5 2−4 8.8747 8.6973 6.9638 9.2831 9.6795 10.2601 6.1130
census 256 2−4 5 2−5 0.0679 0.0653 0.0578 0.0697 0.0727 0.0732 0.0490
covtype 256 22 10 2−2 0.8197 0.8216 0.8172 0.8454 0.8011 0.8026 0.7106
mnist2m 256 2−5 40 2−5 0.2985 0.2962 0.2725 0.3018 0.3834 na 0.2667

approach as mentioned in Section 4.2, then with probabil-
ity at least 1 − δ, the following inequalities hold for any
sample of size cm:

‖G−G̃‖2≤‖G−Gck‖2+
1√
c

2n√
m
Gmax(1 + θ) + 2‖∆‖2,

‖G−G̃‖F ≤‖G−Gck‖F +
(

64k
m

) 1
4

nGmax(1+θ)
1
2 +2‖∆‖F

where θ =
√

n−m
n−0.5

1
β(m,n) log 1

δd
G
max/G

1
2
max; β(m,n) =

1− 1
2 max{m,n−m} ;Gmax = maxiGii; and dGmax represents

the distance maxij
√
Gii +Gjj − 2Gij .

The proof is given in Appendix 7.3. When ks(s =
1, · · · , c) is balanced and n is large, MEKA provides a
rank-ck approximation using roughly the same amount of
storage as rank-k approximation by standard Nyström. In-
terestingly, from Theorem 3, if ‖G−Gk‖2−‖G−Gck‖2 ≥
2‖∆‖2, then

‖G− G̃‖2 ≤ ‖G−Gk‖2 +
1√
c

2n√
m
Gmax(1 + θ).

The second term in the right hand side of above inequal-
ity is only 1√

c
of that in the spectral norm error bound for

standard Nyström that uniformly samplesm columns with-
out replacement in G to obtain the rank-k approximation
as shown in (Kumar et al., 2009). Thus, if there is a large
enough gap between σk+1 and σck+1, the error bound for
our proposed method is better than standard Nyström that
uses similar storage. Furthermore, when γ is large, G tends
to have better clustering structure, suggesting in Theorem
3 that ‖∆‖ is usually quite small. Note that when using the
same rank k for all the clusters, the above bound can be
worse because of some extreme cases, e.g., all the top-ck
eigenvalues are in the same cluster. In practice we do not
observe those extreme situations.

Table 4. Data set statistics (n: number of samples).
Dataset n d Dataset n d
wine 6,497 11 census 22,784 137

cpusmall 8,192 12 ijcnn1 49,990 22
pendigit 10,992 16 covtype 581,012 54
cadata 20,640 8 mnist2m 2,000,000 784

5. Experimental Results
In this section, we empirically demonstrate the benefits of
our proposed method, MEKA on various data sets1 that are
listed in Table 4. All experiment results here are based on
the Gaussian kernel, but we observe similar behavior on
other shift-invariant kernels (see Appendix 7.7 for results
on other kernels). We compare our method with six state-
of-the-art kernel approximation methods:

1. The standard Nyström(Williams & Seeger, 2001)
method(denoted by Nys). In the experiment, we uni-
formly sample 2k columns of G without replacement,
and run Nyström for rank-k approximation.

2. Kmeans Nyström(Zhang & Kwok, 2010) (denoted by
KNys), where the landmark points are the cluster cen-
troids. As suggested in (Zhang et al., 2012), we sample
20000 points for clustering when the total number of
data samples is larger than 20000.

3. Random Kitchen Sinks(Rahimi & Recht, 2008)(denoted
by RKS), which approximates the shift-invariant kernel
based on its Fourier transform.

4. Fastfood with “Hadamard features”(Le et al., 2013)(de-
noted by fastfood).

5. Ensemble Nyström (Kumar et al., 2009)(denoted by
ENys). Due to concern for the computation cost, we
set the number of “experts” in ENys 3.

6. Nyström using randomized SVD(Li et al., 2010) (de-
noted by RNys). We set the number of power iterations
q = 1 and oversampling parameter p = 10.

1All the datasets are downloaded from www.csie.ntu.
edu.tw/˜cjlin/libsvmtools/datasets and UCI
repository(Bache & Lichman, 2013).

Memory Efficient Kernel Approximation

(a) pendigit, memory vs approx. error. (b) ijcnn1, memory vs approx. error. (c) covtype, memory vs approx. error.

(d) pendigit, time vs approx. error. (e) ijcnn1, time vs approx. error. (f) covtype, time vs approx. error.

Figure 3. Low-rank Gaussian kernel approximation results. Methods with approximation error above the top of y-axis are not shown.

We compare all the methods on two different tasks: kernel
low-rank approximation and kernel ridge regression. Note
that both Nyström approximation and our method perform
much better than incomplete Cholesky decomposition with
side information (Bach & Jordan, 2005) (shown in Ap-
pendix 7.6), so we do not include the latter method in our
comparison. All the experiments are conducted on a ma-
chine with an Intel Xeon X5440 2.83GHz CPU and 32G
RAM.

5.1. Kernel approximation quality

We now compare the kernel approximation quality for the
above methods. The parameters are listed in Table 2. The
rank (k) varies from 100 to 600 for ijcnn1 and covtype and
from 20 to 200 for the pendigit data.

Main results. The kernel approximation results are shown
in Table 2 and Figure 3. We use relative kernel approxima-
tion error ‖G − G̃‖F /‖G‖F to measure the quality. We
randomly sampled 20000 rows of G to evaluate the relative
approximation error for ijcnn1 and covtype. In Table 2,
we fix the rank k, or the memory usage of low-rank rep-
resentation, and compare MEKA with the other methods
in terms of relative approximation error. As can be seen,
under the same amount of memory, our proposed method
consistently yields lower approximation error than other
methods. In Figure 3, we show the kernel approximation
performance of different methods by varying k. Our pro-
posed approximation scheme always achieves lower error
with less time and memory. The main reason is that us-
ing similar amount of time and memory, our method aims
to approximate the kernel matrix by a rank-ck approxima-
tion, while all other methods are only able to form a rank-k
approximation.

Robustness to the Gaussian scaling parameter γ. To
show the robustness of our proposed algorithm with dif-
ferent γ as explained in Section 2, we test its performance
on the ijcnn1 (Figure 5(a)) and sampled covtype datasets
(Figure 1(c)). The relative approximation errors for differ-
ent γ values are shown in the figures using a fixed amount
of memory. For large γ, the kernel matrix tends to have
block structure, so our proposed method yields lower error
than other methods. The gap becomes larger as γ increases.
Interestingly, Figure 1(c) shows that the approximation er-
ror of MEKA is even superior to the exact SVD, as it is
much more memory efficient. Even for small γ where the
kernel exhibits low-rank structure, our proposed method
performs better than Nyström based methods, suggesting
that it can get the low rank structure of the kernel matrix.

Robustness to the number of clusters c. Compared with
Nyström, one main extra parameter for our method is the
number of clusters c. In Figure 5(b), we test our method
with different values of c on ijcnn1 dataset. In this ex-
periment, c ranges from 5 to 25 and the rank k = 100
in each cluster. The memory usage is nk + (ck)2, so the
storage increases as c increases. For a fair comparison, we
increase the rank of other methods as c increases, so that
all the methods use the same amount of memory. Figure
5(b) shows that the performance of our proposed method is
stable for varying choices of c.

5.2. Kernel Ridge Regression
Next we compare the performance of various methods on
kernel ridge regression (Saunders et al., 1998):

max
α

λαTα+αTGα− 2αTy, (5)

where G is the kernel matrix formed by training samples
{x1, . . . ,xl}, and y ∈ Rl are the targets. For each ker-
nel approximation method, we first form the approximated

Memory Efficient Kernel Approximation

(a) wine, time vs regression error. (b) cpusmall, time vs regression error. (c) cadata, time vs regression error.

(d) census, time vs regression error. (e) covtype, time vs regression error. (f) mnist2m, time vs regression error.

Figure 4. Kernel ridge regression results for various data sets. Methods with regression error above the top of y-axis are not shown. All
the results are averaged over five independent runs.

(a) Comparison under differ-
ent γ.

(b) Comparison under differ-
ent numbers of clusters.

Figure 5. The kernel approximation errors for different Gaussian
scaling parameter γ and c on ijcnn1 dataset.

kernel G̃, and then solve (5) by conjugate gradient (CG).
The main computation in CG is the matrix vector prod-
uct G̃v. Using low-rank approximation, this can be com-
puted using O(nk) flops. For our proposed method, we
compute WLWTv, where WTv =

∑c
s=1W

(s)v(s) re-
quires O(nk) flops, L(Wv) requires O(‖L‖0) flops, and
W (LWTv) requires O(nk) flops. Therefore, the time
complexity for computing the matrix vector product for
both MEKA and low-rank approximation methods are pro-
portional to the memory for storing the approximate kernel
matrices.

The parameters are chosen by five fold cross-validation and
shown in Table 3. The rank for these algorithms is varied
from 100 to 1000. The test root mean square error (test
RMSE) is defined as ‖yte − Gteα‖, where yte ∈ Ru is
testing labels and Gte ∈ Ru×l is the approximate kernel
values between testing and training data. The covtype and
mnist2m data sets are not originally designed for regres-
sion, and here we set the target variables to be 0 and 1
for mnist2m and -1 and 1 for covtype. Table 3 compares
the kernel ridge regression performance of our proposed

scheme with six other methods given the same amount of
memory or same k in terms of test RMSE. It shows that our
proposed method consistently performs better than other
methods. Figure 4 shows the time usage of different meth-
ods for regression by varying the memory or rank k. As
we can see that using the same amount of time, our pro-
posed algorithm always achieves the lowest test RMSE.
The total running time consists of the time for obtaining
the low-rank approximation and time for regression. The
former depends on the time complexity for each method,
and the latter depends on the memory requirement to store
the low-rank matrices. As shown in the previous experi-
ment, MEKA is faster than the other methods while achiev-
ing lower approximation error and using less memory. As
a consequence, it achieves lower test RMSE in less time
compared to other kernel approximation methods.

6. Conclusions
In this paper, we have proposed a novel method, Mem-
ory Efficient Kernel Approximation (MEKA) for approx-
imating shift invariant kernel matrices. We observe that
the structure of the shift invariant kernel matrix changes
from low rank to block diagonal as the scale parameter is
changed. Our method exploits both low-rank and block
structure present in the kernel matrix, and thus performs
better than previously proposed low-rank based methods
in terms of approximation and regression error, speed and
memory usage.

Acknowledgements This research was supported by NSF
grants CCF-1320746 and CCF-1117055. C.-J.H also ac-
knowledges support from an IBM PhD fellowship.

Memory Efficient Kernel Approximation

References
Bach, Francis R. and Jordan, Michael I. Predictive low-

rank decomposition for kernel methods. In ICML, 2005.

Bache, K. and Lichman, M. UCI machine learning repos-
itory, 2013. URL http://archive.ics.uci.
edu/ml.

Cortes, C. and Vapnik, V. Support-vector networks. Ma-
chine Learning, 20:273–297, 1995.

Cotter, A., Keshet, J., and Srebro, N. Explicit approxima-
tions of the Gaussian kernel. arXiv:1109.47603, 2011.

Cucker, F. and Smale, S. On the mathematical foundations
of learning. Bulletin of the American Mathematical So-
ciety, 39:1–49, 2001.

Drineas, P. and Mahoney, M. W. On the Nyström method
for approximating a Gram matrix for improved kernel-
based learning. Journal of Machine Learning Research,
6:2153–2175, 2005.

Fine, S. and Scheinberg, K. Efficient SVM training us-
ing low-rank kernel representations. Journal of Machine
Learning Research, 2:243–264, 2001.

Gittens, A. and Mahoney, M. W. Revisiting the Nyström
method for improved large-scale machine learning. In
ICML, 2013.

Halko, N., Martinsson, P. G., and Tropp, J. A. Finding
structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions. SIAM
Review, 53(2):217–288, 2011.

Kumar, S., Mohri, M., and Talwalkar, A. Ensemble
Nyström methods. In NIPS, 2009.

Kumar, S., Mohri, M., and Talwalkar, A. Sampling meth-
ods for the Nyström method. Journal of Machine Learn-
ing Research, 13:981–1006, 2012.

Le, Q. V., Sarlos, T., and Smola, A. J. Fastfood – approx-
imating kernel expansions in loglinear time. In ICML,
2013.

Li, Mu, Kwok, James T., and Lu, Bao-Liang. Making
large-scale Nyström approximation possible. In ICML,
2010.

Rahimi, A. and Recht, B. Random features for large-scale
kernel machines. In NIPS, 2007.

Rahimi, A. and Recht, B. Weighted sums of random
kitchen sinks: replacing minimization with randomiza-
tion in learning. In NIPS, 2008.

Saunders, C., Gammerman, A., and Vovk, V. Ridge re-
gression learning algorithm in dual variables. In ICML,
1998.

Savas, B. and Dhillon, I. S. Clustered low rank approxi-
mation of graphs in information science applications. In
SDM, 2011.

Schölkopf, B. and Smola, A. J. Learning with kernels. MIT
Press, 2002.

Shi, J. and Malik, J. Normalized cuts and image segmenta-
tion. IEEE Trans. Pattern Analysis and Machine Intelli-
gence, 22(8):888–905, 2000.

Smola, A. J. and Schölkopf, B. Sparse greedy matrix ap-
proximation for machine learning. In ICML, 2000.

Stewart, G.W. and Ji-Guang, Sun. Matrix Perturbation
Theory. Academic Press, Boston, 1990.

von Luxburg, U. A tutorial on spectral clustering. Statistics
and Computing, 17(4), 2007.

Williams, Christopher and Seeger, M. Using the Nyström
method to speed up kernel machines. In NIPS, 2001.

Yang, T., Li, Y.-F., Mahdavi, M., Jin, R., and Zhou, Z.-H.
Nyström method vs random Fourier features: A theoret-
ical and empirical comparison. In NIPS, 2012.

Zhang, K. and Kwok, J. T. Clustered Nyström method for
large scale manifold learning and dimension reduction.
IEEE Trans. Neural Networks, 21(10):1576–1587, 2010.

Zhang, K., Tsang, I. W., and Kwok, J. T. Improved
Nyström low rank approximation and error analysis. In
ICML, 2008.

Zhang, K., Lan, L., Wang, Z., and Moerchen, F. Scaling up
kernel SVM on limited resources: A low-rank lineariza-
tion approach. In AISTATS, 2012.

Memory Efficient Kernel Approximation

7. Appendix
7.1. Proof of Theorem 1

Proof. We use u to denote the unit vector in the direction
of xi − xj . By the mean value theorem, we have

K(xi,xj) = gu(η‖xi−xj‖2) = gu(0)+ηg′u(s)‖xi−xj‖2

for some s ∈ (0, η‖xi − xj‖2). By definition, f(0) =
gu(0), so

f(0) ≤ K(xi,xj) + ηR‖xi − xj‖2, (6)

where R := sup
θ∈R,‖v‖=1

|g′v(θ)|. (7)

Squaring both sides of (6) we have

f(0)2 ≤K(xi,xj)2 + η2R2‖xi − xj‖22
+ 2K(xi,xj)(ηR‖xi − xj‖2).

From the classical arithmetic and geometric mean inequal-
ity, we can upper bound the last term by

2K(xi,xj)(ηR‖xi − xj‖2) ≤ 1
2
f(0)2,

therefore

f(0)2

2
≤ K(xi,xj)2 + η2R2‖xi − xj‖22. (8)

Plugging in (8) into Dkernel({Vs}cs=1), we have

Dkernel({Vs}cs=1)

≥
c∑
s=1

1
|Vs|

∑
i,j∈Vs

(
f(0)2

2
− η2R2‖xi − xj‖22

)

≥ nf(0)2

2
− η2R2

c∑
s=1

1
|Vs|

∑
i,j∈Vs

‖xi − xj‖22,

which proves the desired bound (3).

7.2. Proof of Theorem 2

Proof. To prove this theorem, we use the ε-net theorem in
(Cucker & Smale, 2001). This theorem shows that when
X = [x1, . . . ,xn] are in a ball with radius r, there exists
T = (4r

r̄)d balls of radius r̄ that cover all the data points
X . Now we set T to be k, so r̄ = k−1/d4r.

We consider {x1, . . . ,xns
} are data points in the s-th clus-

ter, {y1, . . . ,yny
} are data points in the t-th cluster, and

ns = |Vs|, nt = |Vt|. Our goal is to show that G(s,t) is
low-rank, where G(s,t)

i,j = K(xi,yj). Assume rt is the ra-
dius of the t-th cluster, therefore we can find k balls with
r̄ = k−1/d4rt to cover {yj}

nt
j=1.

Assume centers of the balls are {m1,m2, . . . ,mk}, then
we can form a low-rank matrix Ḡ(s,t) = Ū V̄ T , where for
all i = 1, . . . , ns, j = 1, . . . , nt, and s = 1, . . . , k,

Ūi,s = K(xi,ms) and V̄j,s =

{
1 if yj ∈ Ball(ms),
0 otherwise.

Assume yj is in ball s, then

(G(s,t)
ij − Ḡ(s,t)

ij)2 = (f(xi − yj)− f(xi −ms))2

≤ C2‖(xi − yj)− (xi −ms)‖2

= C2‖yj −ms‖22
≤ C2r̄2.

Therefore, if (G(s,t))∗ is the best rank k approximation for
G(s,t), then

‖G(s,t)−(G(s,t))∗‖F ≤ ‖G(s,t)−Ḡ(s,t)‖F ≤ Ck−1/d4rt
√
nsnt.

(9)

Similarly, by dividing {xi}m1
i=1 to k balls we can get the

following inequality:

‖G(s,t) − (G(s,t))∗‖F ≤ Ck−1/d4rs
√
nsnt. (10)

Combining (9) and (10) we can prove Theorem 2.

7.3. Proof of Theorem 3

Proof. Let B denote the matrix formed by the diagonal
block of G, that is, B = G(1) ⊕ G(2) ⊕ · · · ⊕ G(c). Ac-
cording to the definition of ∆, G = B + ∆. In MEKA, the
error ‖G̃−G‖2 consists of two components,

‖G̃−G‖2 = ‖B̃ −B + (∆̃−∆)‖ ≤ ‖B̃ −B‖+ ‖∆̃−∆‖
(11)

where B̃ and ∆̃ are the approximations for B and ∆ in
MEKA respectively.

Let us first consider the error in approximating the diagonal
blocks ‖B̃ − B‖2. Since we sample cm benchmark points
from n data points uniformly at random without replace-
ment and distribute them according to the partition com-
ing from k-means, the s-th cluster now has ms benchmark
points with

∑s=c
s=1ms = cm. For the s-th diagonal block

G(s), we will perform the rank-ks approximation using
standard Nyström, so we have G(s) ≈ E(s)(M (s)

ks
)+E(s),

where E(s) denotes the matrix formed by ms sampled
columns from G(s) and M (s)

ks
is a ms × ms matrix con-

sisting of the intersection of sampled ms columns.

Suppose we use the singular value based approach to
choose ks for s-th cluster as described in Section 4.2, and
M+
ck = (M (1)

k1
)+⊕ (M (2)

k2
)+⊕ · · ·⊕ (M (c)

kc
)+, where M is

Memory Efficient Kernel Approximation

the cm×cm block diagonal matrix that consists of the inter-
section of the sampled cm columns. Then we can see that
approximating the diagonal blocks B is equivalent to di-
rectly performing standard Nyström on B by sampling cm
benchmark points uniformly at random without replace-
ment to achieve the rank-ck approximation. The standard
Nyström’s norm-2 and Frobenius error bound are given in
(Kumar et al., 2009), so ‖B − B̃‖2 can be bounded with
probability at least 1− δ as

‖B − B̃‖2 ≤ ‖B −Bck‖2+ (12)

2n√
cm

Bmax[1 +

√
n− cm
n− 0.5

1
β(cm, n)

log
1
δ
dBmax/B

1
2
max],

where Bck denotes the best rank-ck approximation to
B; Bmax = maxiBii; dBmax represents the distance
maxij

√
Bii +Bjj − 2Bij .

To bound ‖∆̃−∆‖2, recall that some off-diagonal blocks in
MEKA are set to 0 by thresholding and 0 is one special so-
lution of least squares problem to compute L(s,t), we have
‖∆̃−∆‖2 ≤ ‖∆‖2.

Furthermore, according to perturbation theory (Stewart &
Ji-Guang, 1990), we have

‖B −Bck‖2 ≤ ‖G−Gck‖2 + ‖∆‖2. (13)

The inequality in (12) combined with (13) gives a bound
on ‖G̃−G‖2 as,

‖G̃−G‖2
≤ ‖B −Bck‖2 + ‖∆‖2+

2n√
cm

Bmax[1 +

√
n− cm
n− 0.5

1
β(cm, n)

log
1
δ
dBmax/B

1
2
max]

≤ ‖G−Gck‖2 + 2‖∆‖2+

2n√
cm

Bmax[1 +

√
n− cm
n− 0.5

1
β(cm, n)

log
1
δ
dBmax/B

1
2
max]

≤ ‖G−Gck‖2 + 2‖∆‖2+

2n√
cm

Gmax[1 +

√
n− cm
n− 0.5

1
β(cm, n)

log
1
δ
dGmax/G

1
2
max]

≤ ‖G−Gck‖2 + 2‖∆‖2+

1√
c

2n√
m
Gmax[1 +

√
n−m
n− 0.5

1
β(m,n)

log
1
δ
dGmax/G

1
2
max],

where Gck denotes the best rank-ck approximation to
G; Gmax = maxiGii; dGmax represents the distance
maxij

√
Gii +Gjj − 2Gij . The third inequality is be-

cause G = B + ∆, Bmax ≤ Gmax and dBmax ≤ dGmax.
The last inequality is because n� m and n� cm.

Similarly by using perturbation theory and upper bounds
for the Frobenius error of standard Nyström, the result fol-
lows.

Table 5. Rank of each block(from a subsampled ijcnn1 data set)
using k-means clustering.

16 14 13 7 7
14 29 13 9 9
13 13 20 10 10
7 9 10 29 11
7 9 10 11 28

Table 6. Rank of each block(from a subsampled ijcnn1 data set)
using random partition.

139 99 101 44 45
99 116 86 43 44

101 86 131 46 47
44 43 46 47 45
45 44 47 45 49

7.4. Empirical observation on low rank structure after
k-means clustering

Theorem 2 suggests that each block of the kernel matrix
will be low rank if we find the partition by k-means in the
input space. In the following we show some empirical jus-
tification. We present the numerical rank for each block,
where numerical rank for a m by n matrix A is defined as
the number of singular values with magnitude larger than
max(n,m)‖A‖2δ. We sample 4000 data points from the
ijcnn1 dataset and generate 5 clusters by k-means and ran-
dom partition. Table 5 shows the numerical rank for each
block using k-means, while Table 6 shows the numerical
rank for each block when the partitions are random. We
observe that by using k-means, the rank for each block is
fairly small.

7.5. The principal angles between the basis of diagonal
and off-diagonal blocks

In MEKA, we use the diagonal blocks’ basis to approxi-
mate the off-diagonal blocks’ basis to reduce memory re-
quirements. Furthermore, we observe that the principal an-
gles between the basis of diagonal and off-diagonal blocks
are small, which provides empirical justification to reuse

Figure 6. The cosine values of the principal angles between
the basis of diagonal and off-diagonal blocks of a Gaussian
kernel(γ = 1 and 1000 random samples from covtype) with re-
spect to different ranks. The cosine values of the principal angles
are close to 1 showing that two basis are similar.

Memory Efficient Kernel Approximation

(a) wine, time vs regression error. (b) cpusmall, time vs regression error.

Figure 7. Kernel ridge regression results on wine and cpusmall datasets for Nys, CSI, and MEKA. Methods with regression error above
the top of y-axis are not shown in the figures.

(a) memory vs approx. error. (b) time vs approx. error.

Figure 8. Low-rank Laplacian kernel approximation results for pendigit.

the basis. In Figure 6, we randomly sampled 1000 data
points from the covtype dataset and generated 5 clusters
by k-means. The blue line shows the cosine values of the
principal angles between a basis of a diagonal block G(s,s)

and that of an off-diagonal block G(s,t) for different rank
k, where s and t are randomly chosen. We can observe that
most of the cosine values are close to 1, showing that the
two basis are similar.

7.6. The comparison of MEKA and Nys with CSI

Figure 7 compares our proposed method with the standard
Nyström(Nys), and incomplete Cholesky with side infor-
mation (CSI) for approximating the Gaussian kernel on the
wine and cpusmall datasets. All the settings are the same
with Table 3. We observe that both MEKA and Nys are
much faster than CSI for kernel regression.

7.7. The performance of MEKA for approximating the
Laplacian kernel on pendigit dataset

Figure 8 compares our proposed method with the standard
Nyström(Nys), Randomized Nyström(RNys), and Kmeans

Nyström(KNys) for approximating the Laplacian kernel on
the pendigit data, where c = 3 and γ = 2−7. Similar to
Gaussian kernel, we observe that MEKA is more memory
efficient and faster than other methods for approximating
the Laplacian kernel.

7.8. Influence of ε in MEKA

We test the influence of thresholding parameter ε on the
ijcnn1 data (Figure 9). Recall that we set L(s,t) = 0
if K(ms,mt) ≤ ε. For large ε, we will set more off-
diagonal blocks in L to be 0. In this case, although MEKA
yields higher approximation error(because it omits more
off-diagonal information), it is faster. On the other hand,
for small ε, when more off-diagonal information is consid-
ered, we will notice an increase in time and decrease in
approximation error. In the rest of our experiments, we set
ε to be 0.1.

7.9. Time cost for each step in MEKA

In Figure 10, we show the time cost for each step of MEKA
on ijcnn1 dataset. Here the parameter γ is set to be 1.

Memory Efficient Kernel Approximation

Figure 9. Time cost (in seconds) and kernel approximation quality
of MEKA when varying the thresholding parameter ε for setting
off-diagonal blocks in L to be zero.

Figure 10. Time cost (in seconds) for performing each step of
MEKA when varying the number of clusters c.

The execution time of our proposed algorithm mainly con-
sists of three parts:(1) time for performing k-means clus-
tering, TC ; (2) time for forming the “basis”, W from the
diagonal blocks, TW (3) Time to compute the link matrix
L from off-diagonal blocks, TL. From Figure 10, we ob-
serve that when the number of clusters c is small, TW will
dominant the whole process. As c increases, the time for
computing the link matrixL, TL, increases. This is because
the number of off-diagonal blocks increases quadratically
as c increases. Since the time complexity for k-means is
O(ncd), TC will increase as c increases.

