Enabling High-Quality Untethered Virtual Reality

NSDI 2017
Headset’s cable not only limits player’s mobility but also creates a tripping hazard.
Go Wireless

- **Wifi**
 - Cannot support required data rates
 - Zotac has gone as far as stuffing full PC in player’s backpack

- **mmWave**
 - High frequency RF signals in range of 24 GHz and higher
 - 802.11ad operates in mmWave and can transmit over 2GHz bandwidth and deliver up to 6.8Gbps
mmWave - Fundamental Challenges

● Blockage
 ○ mmWave links require line of sight between transmitter and receiver
 ○ A small obstacle like player’s hand can block the signal

● Mobility
 ○ mmWave radios use highly directional antennas
 ○ Transmitter’s beam needs to be aligned with receiver’s beam
How to maintain LOS at all times?
Programmable mmWave Mirrors

- mmWave mirror works by capturing RF signal on receive antenna, amplifying it and ‘reflecting’ using transmit antenna
- Control
 - Angle of incidence
 - Angle of reflection
- Can be steered electronically in a few μs
- AP transmits VR content
- AP transmits control information to mirror over Bluetooth

SNR is good!
Beam Alignment and Tracking (I)

1. Beam alignment between **AP** and **mirror**
 - Set mirror’s transmit and receive beams in same direction, α
 - Set **AP**’s transmit and receive beams in same direction, β
 - Try all combinations of α and β, pick the one that maximizes SNR

2. Beam alignment and tracking between **AP** and **headset**
 - VR systems already track location and orientation of headset using laser trackers and IMU
 - Co-locate AP with one of VR laser trackers and exploit VR tracking system
3. Beam alignment and tracking between mirror and headset
 ○ We can get angle between AP and mirror as explained earlier
 ○ To estimate angle between mirror and headset
 ■ AP transmits to mirror
 ■ Mirror tries every beam angle to find the angle that gives highest SNR at headset