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Abstract. Many important functions over strings can be represented
as finite-state string transducers. In this paper, we present an automata-
theoretic technique for algorithmically verifying that such a function is
robust to uncertainty. A function encoded as a transducer is defined to
be robust if for each small (i.e., bounded) change to any input string, the
change in the transducer’s output is proportional to the change in the
input. Changes to input and output strings are quantified using weighted
generalizations of the Levenshtein and Manhattan distances over strings.
Our main technical contribution is a set of decision procedures based
on reducing the problem of robustness verification of a transducer to
the problem of checking the emptiness of a reversal-bounded counter
machine. The decision procedures under the generalized Manhattan and
Levenshtein distance metrics are in Pspace and Expspace, respectively.
For transducers that are Mealy machines, the decision procedures under
these metrics are in Nlogspace and Pspace, respectively.

1 Introduction

Many tasks in computing involve the evaluation of functions from strings to
strings. Such functions are often naturally represented as finite-state string trans-
ducers [12, 17, 2, 21]. For example, inside every compiler is a transducer that
maps user-written text to a string over tokens, and authors of web applications
routinely write transducers to sanitize user input. Systems for natural language
processing use transducers for executing morphological rules, correcting spelling,
and processing speech. Many of the string algorithms at the heart of computa-
tional biology or image processing are essentially functional transducers.

The transducer representation of functions has been studied thoroughly over
the decades, and many decision procedures and expressiveness results about
them are known [17, 21]. Less well-studied, however, is the behavior of finite-state
transducers under uncertain inputs. The data processed by real-world transduc-
ers often contains small amounts of error or uncertainty. The real-world im-
ages handled by image processing engines are frequently noisy, DNA strings
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that transducers in computational biology process may be incomplete or incor-
rectly sequenced, and text processors must account for wrongly spelled keywords.
Clearly, it is desirable that such random noise in the input does not cause a
transducer to behave unpredictably. However, this is not mandated by tradi-
tional correctness properties: a transducer may have a “correct” execution trace
on every individual input, but its output may be highly sensitive to even the
minutest perturbation to these inputs.

One way to ensure that a transducer behaves reliably on uncertain inputs is
to show that it is robust, as formalized in [15, 4, 6]. Informally, robustness means
that small perturbations to the transducer’s inputs can only lead to small changes
in the corresponding outputs. In this paper, we present an automata-theoretic
technique for verifying that a given functional transducer is robust in this sense.

Our definition of robustness of (functional) transducers is inspired by the
analytic notion of Lipschitz continuity. Recall that a function f over a metric
space (let us say with distance metric d) is K-Lipschitz if for all x, y, we have
d(f(x), f(y)) ≤ Kd(x, y). Intuitively, a Lipschitz function responds proportion-
ally, and hence robustly, to changes in the input. In our model, a transducer is
robust if the function encoded by the transducer satisfies a property very similar
to Lipschitz-continuity. The one difference between the Lipschitz criterion and
ours is that the output of a Lipschitz-continuous function changes proportionally
to every change to the input, however large. From the modeling point of view,
this requirement seems too strong: if the input is noisy beyond a certain point, it
makes little sense to constrain the behavior of the output. Accordingly, we define
robustness of a transducer T with respect to a certain threshold B on the amount
of input perturbation—given constantsB,K and a distance metric d over strings,
T is (B,K)-robust if for all x, y: d(x, y) ≤ B ⇒ d(T (x), T (y)) ≤ Kd(x, y).

Our main technical contribution is a set of decision procedures based on re-
ducing the problem of verifying (B,K)-robustness of a transducer to the prob-
lem of checking the emptiness of a reversal-bounded counter machine. Naturally,
whether a transducer is robust or not depends on the distance metric used. We
present decision procedures to verify robustness under two distance metrics that
are weighted generalizations of the well-known Manhattan and Levenshtein dis-
tances over strings. Our decision procedures under these metrics are in Pspace
and Expspace, respectively. When the transducer in question is restricted to
be a Mealy machine, we present simpler decision procedures under these metrics
that are in Nlogspace and Pspace, respectively.

The rest of the paper is organized as follows. In Sec. 2, we present our formal
models and definitions. In Sec. 3, we present a class of distance-tracking automata
that are central to our decision procedures, presented in Sec. 4. We conclude with
a discussion of related work in Sec. 5.

2 Preliminaries

In this section, we define our transducer models, distance metrics and our notion
of robustness. In what follows, we use the following notation. Input strings are
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typically denoted by lowercase letters s, t etc. and output strings by s′, t′ etc.
We denote the concatenation of strings s and t by s.t, the ith character of string
s by s[i], the substring s[i].s[i + 1]. . . . .s[j] by s[i, j], the length of the string s
by |s|, and the empty string and empty symbol by ε.

Functional Transducers. The transducers considered in this paper may be
nondeterministic, but must define functions between regular sets of strings. For-
mally, a transduction R from a finite alphabet Σ to a finite alphabet Γ is an
arbitrary subset of Σ? × Γ ?. We use R(s) to denote the set {t | (s, t) ∈ R}. We
say that a transduction is functional if ∀s ∈ Σ?, |R(s)| ≤ 1.

A finite transducer (ft) is a finite-state device with two tapes: a read-only
input tape and a write-only output tape. It scans the input tape from left to
right; in each step, it reads an input symbol, nondeterministically chooses its
next state, writes a corresponding finite string to the output tape, and advances
its reading head by one position to the right. The output of an ft is the string
on the output tape if the ft finishes scanning the input tape in some designated
final state. Formally, a finite transducer T is a tuple (Q,Σ, Γ, q0, E, F ) where Q
is a finite nonempty set of states, q0 is the initial state, E ⊆ Q×Σ × Γ ? ×Q is
a set of transitions, and F is a set of final states4.

A run of T on a string s = s[0]s[1] . . . s[n] is defined in terms of the sequence:
(q0, w

′
0), (q1, w

′
1), . . . , (qn, w

′
n), (qn+1, ε) where for each i ∈ [0, n], (qi, s[i], w

′
i, qi+1)

is a transition in E. A run is called accepting if qn+1 ∈ F . The output of T along
a run is the string w′0.w

′
1. . . . .w

′
n if the run is accepting, and is undefined oth-

erwise. The transduction computed by an ft T is the relation JT K ⊆ Σ? × Γ ?,
where (s, s′) ∈ JT K iff there is an accepting run of T on s with s′ as the output
along that run. T is called single-valued or functional if JT K is functional. Check-
ing if an arbitrary ft is functional can be done in polynomial time [10]. The
input language, L, of a functional transducer T is the set {s | JT K(s) is defined}.
When viewed as a relation over Σ?×Γ ?, JT K defines a partial function; however,
when viewed as a relation over L× Γ ?, JT K is a total function.

Mealy Machines. These are deterministic, symbol-to-symbol, functional trans-
ducers. The notion of determinism is the standard one, and a symbol-to-symbol
transduction means that for every transition of the form (q, a, w′, q′), |w′| = 1.
The input language L of a Mealy machine T is the set Σ? (i.e., every state is
accepting). Thus, the transduction JT K : Σ? → Γ ? is a total function.

In what follows, we use the term finite transducers, or simply transducers,
to refer to both functional transducers and Mealy machines, and distinguish be-
tween them as necessary. As a technicality that simplifies our proofs, we assume
that for all i > |s|, s[i] = #, where # is a special end-of-string symbol not in Σ
or Γ .

Distance Metrics. A metric space is an ordered pair (M,d), where M is a set
and d : M ×M → R, the distance metric, is a function with the properties:

4 Some authors prefer to call this model a generalized sequential machine, and de-
fine transducers to allow ε-transitions, i.e., the transducer can change state without
moving the reading head. Note that we disallow ε-transitions.
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(1) d(x, y) ≥ 0, (2) d(x, y) = 0 iff x = y, (3) ∀x, y : d(x, y) = d(y, x), and (4)
∀x, y, z : d(x, z) ≤ d(x, y) + d(y, z).

The Hamming distance and Levenshtein distance metrics are often used to
measure distances (or similarity) between strings. The Hamming distance, de-
fined for two equal length strings, is the minimum number of symbol substi-
tutions required to transform one string into the other. For strings of unequal
length, the Hamming distance is replaced by the Manhattan distance or the
L1-norm that also accounts for the difference in the lengths. The Levenshtein
distance between two strings is the minimum number of symbol insertions, dele-
tions and substitutions required to transform one string into the other.

The Hamming/Manhattan and Levenshtein distances only track the number
of symbol mismatches, and not the degree of mismatch. For some applications,
these distance metrics can be too coarse. Hence, we use distance metrics equipped
with integer penalties - pairwise symbol mismatch penalties for substitutions and
a gap penalty for insertions/deletions. We denote by diff(a, b) the mismatch
penalty for substituting symbols a and b, with diff(a, b) = 0 if a = b. We
require diff(a, b) to be well-defined when either a or b is #. We denote by α the
fixed, non-zero gap penalty for insertion or deletion of a symbol. We now define
the weighted extensions of the Manhattan and Levenshtein distances formally.

The generalized Manhattan distance is defined by the following recurrence
relations, for i, j ≥ 1, and s[0] = t[0] = ε:

dM (s[0], t[0]) = 0 dM (s[0, j], t[0, j]) = dM (s[0, j-1], t[0, j-1]) + diff(s[j], t[j]). (1)

The generalized Levenshtein distance is defined by the following recurrence
relations, for i, j ≥ 1, and s[0] = t[0] = ε:

dL(s[0], t[0]) = 0, dL(s[0, i], t[0]) = iα, dL(s[0], t[0, j]) = jα
dL(s[0, i], t[0, j]) = min( dL (s[0, i-1], t[0, j-1]) + diff(s[i], t[j]),

dL (s[0, i-1], t[0, j]) + α,
dL (s[0, i], t[0, j-1]) + α).

(2)

The first three relations in (2), that involve empty strings, are obvious. The gen-
eralized Levenshtein distance between the nonempty prefixes, s[0, i] and t[0, j], is
the minimum over the distances corresponding to three possible transformations:
(1) optimal (generalized Levenshtein) transformation of s[0, i-1] into t[0, j-1] and
substitution of s[i] with t[j], with a mismatch penalty of diff(s[i], t[j]), (2) opti-
mal transformation of s[0, i-1] into t[0, j] and deletion of s[i], with a gap penalty
of α, and, (3) optimal transformation of s[0, i] into t[0, j-1] and insertion of t[j]
with a gap penalty of α.

Observe that if diff(a, b) is defined to be 1 for a 6= b and 0 otherwise, the
above definitions correspond to the usual Manhattan and Levenshtein distances,
respectively. In our work, diff(a, b) and α are external parameters provided to
the algorithm by the user, and we require that the resulting generalized Man-
hattan and Levenshtein distances are distance metrics.

Robustness. As explained in Sec. 1, our notion of robustness for finite trans-
ducers is an adaptation of the analytic notion of Lipschitz continuity, and is
defined with respect to a fixed bound on the amount of input perturbation.
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Definition 2.1 (Robust String Transducers). Given an upper bound B on
the input perturbation, a constant K and a distance metric d : Σ∗ × Σ∗ ∪
Γ ? × Γ ? → N, a transducer T defined over a regular language L ⊆ Σ∗, with
JT K : L→ Γ ?, is called (B,K)-robust if:

∀δ ≤ B, ∀s, t ∈ L : d(s, t) = δ ⇒ d(JT K(s), JT K(t)) ≤ Kδ.

3 Distance Tracking Automata

In Sec. 4, we show how to reduce the problem of verifying robustness of finite
transducers to the problem of checking emptiness of carefully constructed com-
posite machines. A key component of these constructions are machines that can
track the generalized Manhattan or Levenshtein distance between two strings.
Our earlier work [18] presents automata constructions for tracking the usual
Manhattan and Levenshtein distances. In this section, we first briefly review
reversal-bounded counter machines and then adapt our distance tracking au-
tomata constructions for the generalized versions of the distance metrics.

3.1 Review: Reversal-bounded Counter Machines [13, 14]

A (one-way, nondeterministic) h-counter machine A is a (one-way, nondetermin-
istic) finite automaton, augmented with h integer counters. Let G be a finite set
of integer constants (including 0). In each step, A may read an input symbol,
perform a test on the counter values, change state, and increment each counter
by some constant g ∈ G. A test on a set of integer counters Z = {z1, . . . , zh} is a
Boolean combination of tests of the form zθg, where z ∈ Z, θ ∈ {≤,≥,=, <,>}
and g ∈ G. Let TZ be the set of all such tests on counters in Z.

Formally, A is defined as a tuple (Σ,X, x0, Z,G,E, F ) where Σ, X, xo, F ,
are the input alphabet, set of states, initial state, and final states respectively. Z
is a set of h integer counters, and E ⊆ X×(Σ∪ε)×TZ×X×Gh is the transition
relation. Each transition (x, σ, t, x′, g1, . . . , gh) denotes a change of state from x
to x′ on symbol σ ∈ Σ ∪ ε, with t ∈ TZ being the enabling test on the counter
values, and gk ∈ G being the amount by which the kth counter is incremented.

A configuration µ of a one-way multi-counter machine is defined as the
tuple (x, σ, z1, . . . , zh), where x is the state of the automaton, σ is a sym-
bol of the input string being read by the automaton and z1, . . . , zh are the
values of the counters. We define a move relation →A on the configurations:
(x, σ, z1, . . . , zh) →A (x′, σ′, z′1, . . . , z

′
h) iff (x, σ, t(z1, . . . , zh), x′, g1, . . . , gh) ∈ E,

where, t(z1, . . . , zh) is true, ∀k: z′k = zk + gk, and σ′ is the next symbol in the
input string being read. A path is an element of →?

A , i.e., a path is a finite
sequence of configurations µ1, . . . , µm where for all j : µj →A µj+1. A string
s ∈ Σ? is accepted by A if (x0, s[0], 0, . . . 0) →?

A (x, s[j], z1, . . . , zh), for some
x ∈ F and j ≤ |s| (we make no assumptions about z1, . . . , zh in the accepting
configuration). The set of strings (language) accepted by A is denoted L(A).
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In general, multi-counter machines can simulate actions of Turing machines
(even with just 2 counters). In [13], the author presents a class of counter ma-
chines - reversal-bounded counter machines - with efficiently decidable properties.
A counter is said to be in the increasing mode between two successive configura-
tions if the counter value is the same or increasing, and in the decreasing mode
if the counter value is strictly decreasing. We say that a counter is r-reversal
bounded if the maximum number of times it changes mode (from increasing to
decreasing and vice versa) along any path is r. We say that a multi-counter ma-
chine A is r-reversal bounded if each of its counters is at most r-reversal bounded.
We denote the class of h-counter, r-reversal-bounded machines by NCM(h, r).

Lemma 3.1. [11] The nonemptiness problem for A in class NCM(h, r) can be
solved in NLogspace in the size of A.

Recall that for all i > |s|, s[i] = #. In what follows, let Σ# = Σ ∪ {#}.

3.2 Automaton for Tracking Generalized Manhattan Distance

We now define automata D=δ
M , D>δ

M that accept pairs of strings (s, t) such
that dM (s, t) = δ, dM (s, t) > δ, respectively, where dM (s, t) is the Manhat-
tan distance between s and t. The automata D=δ

M , D>δ
M are 1-reversal-bounded

1-counter machines (i.e., in NCM(1,1)), and are each defined as a tuple (Σ# ×
Σ#, X, x0, Z,G,E, {acc}), where (Σ#×Σ#) is the input alphabet,X = {x0, x, acc},
is a set of three states, x0 is the initial state, Z = {z} is a single 1-reversal-
bounded counter, G = {δ, 0} ∪ ∪a,b∈Σ# {diff(a, b)} is a set of integers, and
{acc} is the singleton set of final states. The transition relations of D=δ

M , D>δ
M

both include the following transitions:

1. An initialization transition (x0, (ε, ε), true, x, δ) that sets the counter z to δ.
2. Transitions of the form (x, (a, a), z ≥ 0, x, 0), for a 6= #, that read a pair of

identical, non-# symbols, and leave the state and counter unchanged.
3. Transitions of the form (x, (a, b), z ≥ 0, x,−diff(a, b)), for a 6= b, which

read a pair (a, b) of distinct symbols, and decrement the counter z by the
corresponding mismatch penalty diff(a, b).

4. Transitions of the form (acc, (∗, ∗), ∗, acc, 0), which ensure that the machine
stays in its final state upon reaching it.

The only difference in the transition relations of D=δ
M , D>δ

M is in their tran-
sitions into accepting states. The accepting transitions of D=δ

M are of the form
(x, (#, #), z = 0, acc, 0), and move D=δ

M to an accepting state upon reading a
(#, #) pair when the counter value is zero, i.e., when the Manhattan distance
between the strings being read is exactly equal to δ. The accepting transitions of
D>δ
M are of the form (x, (∗, ∗), z < 0, acc, 0), and move D>δ

M to an accepting state
whenever the counter value goes below zero, i.e., when the Manhattan distance
between the strings being read is greater than δ.

Lemma 3.2. D=δ
M , D>δ

M accept a pair of strings (s, t) iff dM (s, t) = δ, dM (s, t) >
δ, respectively.
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Note: The size of D=δ
M or D>δ

M is O(δ + |Σ|2MAXdiffΣ ), where MAXdiffΣ is the
maximum mismatch penalty over Σ.

3.3 Automaton for Tracking Generalized Levenshtein Distance

The standard dynamic programming-based algorithm for computing the Leven-
shtein distance dL(s, t) can be extended naturally to compute the generalized
Levenshtein distance using the recurrence relations in (2). This algorithm orga-
nizes the bottom-up computation of the generalized Levenshtein distance with
the help of a table t of height |s| and width |t|. The 0th row and column of t
account for the base case of the recursion. The t(i, j) entry stores the generalized
Levenshtein distance of the strings s[0, i] and t[0, j]. In general, the entire table
has to be populated in order to compute dL(s, t). However, when one is only
interested in some bounded distance δ, then for every i, it suffices to compute
values for the cells from t(i, i − δ) to t(i, i + δ) [12]. We call this region the δ-
diagonal of t, and use this observation to construct dfa’s D=δ

L , D>δ
L that accept

pairs of strings (s, t) such that dL(s, t) = δ, dL(s, t) > δ, respectively5.
In each step, D=δ

L , D>δ
L read a pair of input symbols and change state to

mimic the bottom-up edit distance computation by the dynamic programming
algorithm. As in the case of Manhattan distance, D=δ

L , D>δ
L are identical, except

for their accepting transitions. Formally, D=δ
L , D>δ

L are each defined as a tuple
(Σ#×Σ#, Q, q0, ∆, {acc}), where (Σ#×Σ#), Q, q0, ∆, {acc} are the input alpha-
bet, the set of states, the initial state, the transition function and the singleton
set of final states respectively. A state is defined as the tuple (x, y, e), where x
and y are strings of length at most δ and e is a vector containing 2δ+ 1 entries,
with values from the set {0, 1, . . . , δ,⊥,>}). A state of D=δ

L , D>δ
L maintains the

invariant that if i symbol pairs have been read, then x, y store the last δ symbols
of s, t (i.e., x = s[i-δ+1, i], y = t[i-δ+1, i]), and the entries in e correspond to the
values stored in t(i, i) and the cells within the δ-diagonal, above and to the left
of t(i, i). The values in these cells greater than δ are replaced by >. The initial
state is q0 = (ε, ε, 〈⊥, . . . ,⊥, 0,⊥, . . . ,⊥〉), where ε denotes the empty string, ⊥
is a special symbol denoting an undefined value, and the value 0 corresponds
to entry t(0, 0). Upon reading the ith input symbol pair, say (a, b), D=δ

L , D>δ
L

transition from state qi-1 = (xi-1, yi-1, ei-1) to a state qi = (xi, yi, ei) such that
xi, yi are the δ-length suffices of xi-1.a, yi-1.b, respectively, and ei is the appro-
priate set of entries in the δ-diagonal of t computed from xi-1, yi-1, ei-1, the
input symbol pair and the relevant mismatch/gap penalties (for more details,
see [18]).

Finally, upon reading the symbol (#, #) in state (x, y, e), we add transitions
to the single accepting state acc in D=δ

L (and in D>δ
L ) iff:

– |s| = |t|, i.e., x and y do not contain #, and the (δ + 1)th entry in e is δ (>
in the case of D>δ

L ), or,

5 The fact that there exists a dfa that accepts string pairs within bounded (gener-
alized) Levenshtein distance from each other follows from results in [8, 9]. However,
these theorems do not provide a constructive procedure for such an automaton.
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2>2

2

>
>>>

>
>
>>>

>
>
>>>

(ε, ε, 〈⊥,⊥, 0,⊥,⊥〉)

(a, c, 〈⊥, 1, 2, 1,⊥〉)

(ac, ca, 〈2, 1, 2, 1, 2〉)

(cc, ac, 〈2,>, 2, 1, 2〉)

(cc, ca, 〈>,>,>,>, 2〉)

(ca, a#, 〈>,>,>,>,>〉)

accept

(a, c)

(c, a)

(c, c)

(c, a)

(a, #)

(#, #)

Fig. 3.1: Dynamic programming table emulated by D>2
L . The table t filled by the

dynamic programming algorithm for δ = 2 is shown to the left, and a computation
of D>2

L on the strings s = accca, t = caca is shown to the right. Here, Σ = {a, b, c},
diff(a, b) = diff(b, c) = diff(a, #) = 1, diff(a, c) = diff(b, #) = 2, diff(c, #) = 3
and α = 1.

– |s| = |t|+ `, i.e., y contains ` #’s, x contains no #, and the (δ+ 1− `)th entry
in e is δ (> in the case of D>δ

L ), or,
– |t| = |s|+ `, i.e., x contains ` #’s, y contains no #, and the (δ+ 1 + `)th entry

in e is δ (> in the case of D>δ
L ).

Upon reaching acc, D=δ
L , D>δ

L remains in it.

Example Run. A run of D>2
L on the string pair s = accca, t = caca that checks

if dL(s, t) > 2, is shown in Fig. 3.1. The mismatch and gap penalties are as
enumerated in the caption.

The following lemma states the correctness of these constructions. The proof
follows from the state-invariants maintained by D=δ

L , D>δ
L and their accepting

transitions.

Lemma 3.3. D=δ
L , D>δ

L accept a pair of strings (s, t) iff dL(s, t) = δ, dL(s, t) >
δ, respectively.

Note: The size of D=δ
L or D>δ

L is O((δ|Σ|)4δ).

4 Robustness analysis

From Definition 2.1, it follows that checking (B,K)-robustness of a transducer
T is equivalent to checking if for each δ ≤ B, ∀s, t ∈ L : d(s, t) = δ =⇒
d(JT K(s), JT K(t)) ≤ Kδ. Thus, we focus on the problem of checking robustness
of a transducer for some fixed input perturbation δ. We reduce this problem to
checking language emptiness of a product machine Aδ constructed from (1) an
input automaton AδI that accepts a pair of strings (s, t) iff d(s, t) = δ, (2) a
pair-transducer P that transforms input string pairs (s, t) to output string pairs
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(s′, t′) according to T , and (3) an output automaton AδO that accepts (s′, t′) iff
d(s′, t′) > Kδ. We construct Aδ such that T is robust iff for all δ ≤ B, the
language of Aδ is empty.

Later in this section, we present specialized constructions for AδI , AδO for
checking robustness of Mealy machines and functional transducers, with respect
to the generalized Manhattan and Levenshtein distances. The definition of the
pair-transducer P is standard in all these scenarios, and hence we present it first.
We next define the product machine Aδ for two relevant scenarios. Scenario 1 is
when AδI and AδO are both dfas - as we will see, this scenario presents itself while
checking robustness of either type of transducer with respect to the generalized
Levenshtein distance. Scenario 2 is when AδI and AδO are both 1-reversal-bounded
counter machines - this scenario presents itself while checking robustness of either
type of transducer with respect to the generalized Manhattan distance.

Recall that Σ# = Σ ∪{#}. Let Γ # = Γ ∪{#}, Γ ε,# = Γ ∪{ε, #}, Σ̃ = Σ#×Σ#

and Γ̃ = Γ ε,# × Γ ε,#.
Pair-transducer, P . Given a transducer T , the pair-transducer P reads an
input string pair and produces an output string pair according to T . Formally,
given T = (Q,Σ, Γ, q0, E, F ), P is defined as the tuple (QP , Σ̃, Γ̃ , q0P , EP , FP )
where QP = Q×Q, q0P = (q0, q0), FP = F×F , and, EP is the set of all transitions
of the form ((q1, q2), (a, b), (w′, v′), (q′1, q

′
2)) such that (q1, a, w

′, q′1) ∈ E and
(q2, b, v

′, q′2) ∈ E. While for Mealy machines, in all transitions in EP , w′, v′ are
symbols in Γ ∪{#}, for arbitrary functional transducers, w′, v′ may be strings of
different lengths, and either or both could be ε. We define the function JPK such
that JPK(s, t) = (s′, t′) if JT K(s) = s′ and JT K(t) = t′.
Product machine, Aδ. Given input automaton AδI , pair transducer P and out-
put automaton AδO , the product machine Aδ is constructed to accept all string
pairs (s, t) such that (s, t) is accepted by AδI and there exists a string pair (s′, t′)
accepted by AδO with (s′, t′) = JPK(s, t). Notice that while in each of its transi-
tions, AδO can only read a pair of symbols at a time, each transition of P potentially
generates a pair of (possibly unequal length) output strings. Hence, Aδ cannot
be constructed as a simple synchronized product.
Scenario 1. Given a dfa input automaton AδI = (QI , Σ̃, q0I , ∆I , FI ), pair trans-

ducer P = (QP , Σ̃, Γ̃ , q0P , EP , FP ) and a dfa output automaton AδO = (QO , Γ̃ , q0O ,

∆O , FO), Aδ is a dfa given by the tuple (Q, Σ̃, q0, ∆, F ), where Q ⊆ QI×QP×QO ,
q0 = (q0I , q0P , q0O ), F = FI × FP × FO , and E is defined as follows:
∆((qI , qP , qO), (a, b)) = (q′I , q

′
P , q
′
O) iff

1. ∆I (qI , (a, b)) = q′I , and
2. there exist w′, v′ such that

(a) (qP , (a, b), (w
′, v′), q′P ) ∈ EP , and

(b) ∆∗O(qO , (w
′, v′)) = q′O .

Scenario 2. For counter machines, one also needs to keep track of the counters.
Given input automaton AδI in NCM(hI ,1), of the form (Σ̃,XI , x0I , ZI , GI , EI , FI ),

pair transducer P = (QP , Σ̃, Γ̃ , q0P , EP , FP ) and output automaton AδO in class

NCM(hO ,1), of the form (Γ̃ ,XO , x0O , ZO , GO , EO , FO), Aδ is in NCM(h,1), with
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h = hI + hO , and is given by the tuple (Σ̃,X, x0, Z,G,E, F ), where X ⊆ XI ×
QP × XO , x0 = (x0I , q0P , x0O ), Z = ZI ∪ ZO , G = GI ∪ GO , F = FI × FP × FO ,
and E is defined as follows:
((xI , qP , xO), (a, b), t, (x′I , q

′
P , x
′
O), gI1, . . . , gIhI , gO1, . . . , gOhO ) ∈ E iff

1. (xI , (a, b), tI , x
′
I , gI1, . . . , gIhI ) ∈ EI with t⇒ tI , and

2. there exist w′, v′ such that

(a) (qP , (a, b), (w
′, v′), q′P ) ∈ EP , and

(b) (xO , (w
′[0], v′[0]), zO1, . . . , zOhO )→?

Aδ
O

(x′O , (w
′[j], v′[`]), z′O1, . . . , z

′
OhO

), with

j = |w′|−1, ` = |v′|−1, t⇒ tO where tO is the enabling test correspond-
ing to the first move along →?

Aδ
O

and ∀k: z′Ok = zOk + gOk.

4.1 Mealy Machines

Generalized Manhattan Distance. For a Mealy machine T , it is easy to see
from the descriptions of AδI , AδO and from the constructions in Sec. 3.2 that AδI is
the same as D=δ

M and AδO is essentially the same as D>Kδ
M , with the alphabet being

Γ̃ . Thus, AδI and AδO are both in NCM(1,1). Let Aδ be the product machine, as
defined in Scenario 2 using AδI , P and AδO . From Lemma 3.2 and the definition
of Aδ, it follows that Aδ accepts all input strings (s, t) such that dM (s, t) = δ,
and there exists (s′, t′) = JPK(s, t) with dM (s′, t′) > Kδ. Thus, any pair of input
strings accepted by Aδ is a witness to the non-robustness of T ; equivalently T is
robust iff Aδ is empty for all δ ≤ B.

The product machine Aδ is in NCM(2, 1) and its size is polynomial in size(T ),
δ, K, |Σ|, |Γ | and MAXdiff, where MAXdiff is the maximum mismatch penalty over
Σ and Γ . Since, we need to check nonemptiness of Aδ for all δ ≤ B, we have the
following theorem using Lemma 3.1.

Theorem 4.1. Robustness verification of a Mealy machine T with respect to the
generalized Manhattan distance can be accomplished in NLogspace in size(T ),
B, K, |Σ|, |Γ | and MAXdiff (maximum mismatch penalty).

Generalized Levenshtein Distance. For a Mealy machine T , AδI is the same

as D=δ
L and AδO is the same as D>Kδ

L , with alphabet Γ̃ . Thus, AδI and AδO are
both dfas. Let Aδ be a product machine, as defined in Scenario 1 using AδI , P
and AδO . As before, from Lemma 3.3 and the definition of Aδ, it follows that T
is robust iff Aδ is empty for all δ ≤ B.

The size of Aδ is O(size2(T )|Σ|4δ(|Γ |K)4Kδδ4δ(1+K)). Since the emptiness
of the dfa Aδ can be checked in NLogspace in the size of Aδ, and we need to
repeat this for all δ ≤ B, we have the following theorem.

Theorem 4.2. Robustness verification of a Mealy machine T with respect to
the generalized Levenshtein distance can be accomplished in PSpace in B and
K.
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4.2 Functional Transducers

Checking robustness of functional transducers is more involved than checking
robustness of Mealy machines. The main reason is that P may produce output
symbols for two strings in an unsynchronized fashion, i.e., the symbols read
by AδO may be of the form (a, ε) or (ε, a). While this does not affect the input
automata constructions, the output automata for functional transducers differ
from the ones for Mealy machines.

Generalized Manhattan Distance. As stated above, AδI is the same as D=δ
M .

The construction of AδO is based on the observation that if s′, t′ are mismatched in
1+Kδ positions, dM (s′, t′) is guaranteed to be greater than Kδ. Let η = 1+Kδ.
We define AδO to be in class NCM(1 + 2η, 1) with a distance counter z and two
sets of position counters c1, . . . , cη and d1, . . . , dη. The counter z is initialized
to Kδ and for all j, position counters cj , dj are initialized to hold guesses for
η mismatch positions in s′, t′, respectively. In particular, the position counters
are initialized such that for all j, cj = dj , cj ≥ 0, and cj < cj+1, thereby
ensuring that the counter pairs store η distinct position guesses 6. For notational
convenience, we denote the initial position guess stored in the position counter
cj (or dj) by pj .

Intuitively, for each j, AδO uses its position counters to compare the symbols
at the pthj position of each string. For all j, AδO decrements cj , dj upon reading

a nonempty symbol of s′, t′, respectively. Thus, AδO reads the pthj symbol of s′,

t′ when cj = 0, dj = 0, respectively. If the pthj symbols are mismatched symbols

a, b, then AδO decrements the distance counter z by diff(a, b). Now, recall that
the symbol at the pthj position for one string may arrive before that for the other
string. Thus, for instance, cj may be 0, while dj is still positive. In this case,
AδO needs to remember the earlier symbol in its state till the delayed symbol
arrives. Fortunately, AδO has to remember at most η symbols corresponding to
the η guessed positions. When the delayed symbol at position pj of the trailing
string arrives, i.e. dj finally becomes 0, AδO compares it to the symbol stored in
its state and decrements z as needed.

Formally, a state of AδO is a tuple of the form (pos, id, vec), where pos ∈ [1, η]
is a positive integer (initially 0) that keeps track of the earliest position for which
AδO is waiting to read symbols of both strings, id ∈ {0, 1, 2} is used to track which
of the strings is leading the other, and vec is a η-length vector that stores the
symbols of the leading string. Initially, all entries of vec are ⊥. The invariant
maintained by the state is as follows: if pos = j, (a) id = 0 iff cj > 0, dj > 0
and vecj = ⊥, (b) id = 1 iff cj ≤ 0, dj > 0 and vecj = s′[pj ], and (c) id = 2 iff
cj > 0, dj ≤ 0 and vecj = t′[pj ]. Thus, if cj becomes zero while dj is non-zero,
id is set to 1, and vecj is set to the symbol read, i.e., s′[pj ]; when dj eventually

6 Note that this can be done nondeterministically as follows. First all 2η counters are
incremented by 1, and at some nondeterministically chosen point, the machine stops
incrementing the c1, d1 counters, then at some further point stops incrementing the
c2, d2 counters, and so on. This ensures that for each j, cj = dj , and the higher index
counters have higher (distinct) values.
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becomes zero due to the pthj symbol of t′ being read, then vecj is set to ⊥, z is
decremented by diff(s′[pj ], t

′[pj ]) and pos is incremented. The case when the
pthj symbol of t′ is output before that of s′ is handled symmetrically. AδO moves to
an accepting state whenever the value in z goes below 0, i.e. dM (s′, t′) > Kδ, and
stays there. AδO moves to a special rejecting state if the value in z is nonnegative
and either the string pairs or all position guesses are exhausted, i.e., if AδO reads
a (#, #) symbol or if all position counters are negative.

In effect, the construction ensures that if AδO accepts a pair of strings (s′, t′),
then dM (s′, t′) > Kδ. On the other hand, note that if dM (s′, t′) > Kδ, then there
exists a run of AδO in which it correctly guesses some mismatch positions (whose
number is at most η) such that their cumulative mismatch penalty exceeds Kδ.

Lemma 4.1. The above AδO accepts a pair of strings (s, t) iff dM (s, t) > Kδ.

Note that the size of AδO is O(Γ 2Kδ). Let Aδ be a product machine, as defined in
Scenario 2 using AδI , P and AδO . From Lemma 3.2, Lemma 4.1 and the definition
of Aδ, it follows that T is robust iff Aδ is empty for all δ ≤ B. Aδ is in class
NCM(2+2η, 1), and its size is O(size2(T )(δ+ |Σ|2MAXdiffΣ )Γ 2Kδ), with MAXdiff
being the maximum mismatch penalty over Σ. Since we need to repeat this for
all δ ≤ B, we have the following theorem using Lemma 3.1.

Theorem 4.3. Robustness verification of a functional transducer T with respect
to the generalized Manhattan distance can be accomplished in PSpace in B, K.

Generalized Levenshtein distance. The input automaton AδI is the same as
D=δ
L . In order to track the generalized Levenshtein distance between the unsyn-

chronized output strings generated by P , AδO needs to remember substrings of
the leading string in its state, and not simply the symbols at possible mismatch
positions. A natural question to ask is whether there exists a bound on the length
of the substrings that AδO needs to remember in its state. We first address this
question before defining AδO .

Consider AδI ⊗ P , the synchronous product of the input automaton AδI and

the pair transducer P . Let TI⊗P = (QI⊗P , Σ̃, Γ̃ , q0I⊗P , EI⊗P , FI⊗P ) be obtained
by trimming AδI ⊗ P , i.e., by removing all states that are not reachable from the
initial state or from which no final state is reachable. The set EI⊗P of transitions
of TI⊗P can be extended in a natural way to the set E∗I⊗P of paths of TI⊗P . Note
that for any path (q0I⊗P , (w, v), (w′, v′), qfI⊗P ) from the initial state to some final
state qfI⊗P ∈ FI⊗P , dL(w, v) = δ and JPK(w, v) = (w′, v′).

We define the pairwise-delay of a path π of TI⊗P , denoted pd(π), as the
difference in lengths of its output string labels: for π = (q, (w, v), (w′, v′), q′),
pd(π) = abs (|w′| − |v′|). TI⊗P is said to have bounded pairwise-delay if the
pairwise-delay of all its paths is bounded. For TI⊗P with bounded pairwise-
delay, we denote the maximum pairwise-delay over all paths of TI⊗P by D(TI⊗P ).
Let `max be the length of the longest output string in any transition of T , i.e.,
`max = max{|w′| | (q, a, w′, q′) ∈ E}, and let QI , Q be the set of states of AδI , T .

Lemma 4.2. TI⊗P has bounded pairwise-delay, with D(TI⊗P ) < |Q|2.|QI |`max,
iff the pairwise-delay of all cyclic paths in TI⊗P is 0.
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Proof. If there is a cyclic path c = (q, (w, v), (w′, v′), q) in TI⊗P with pd(c) 6= 0,
then for n traversals through c, pd(cn) = n(pd(c)), and hence D(TI⊗P ) is not
bounded. If for all cycles c, pd(c) = 0, then for any path π, pd(π) = pd(πacy),
where πacy is the acyclic path obtained from π by iteratively removing all cycles
from π. Thus, D(TI⊗P ) is bounded by the maximum possible pairwise-delay
along any acyclic path of TI⊗P . This maximum delay is (|QI⊗P | − 1)`max and is
exhibited along an acyclic path of maximum length |QI⊗P | − 1, with the output
string pair along each transition being ε and a string of length `max. By definition
of TI⊗P , |QI⊗P | ≤ |Q|2.|QI |. The result follows. ut

Corollary 1. TI⊗P has bounded pairwise-delay iff each simple cycle of TI⊗P is
labeled with equal length output strings.

Lemma 4.3. If TI⊗P does not have bounded pairwise-delay, T is non-robust.

Proof. We exhibit a witness for non-robustness of T . If TI⊗P does not have
bounded pairwise-delay, then there is some simple cycle c : (q, (wc, vc), (w

′
c, v
′
c), q)

in TI⊗P with |w′c| 6= |v′c|. Consider the paths π1 = (q0I⊗P , (w1, v1), (w′1, v
′
1), q)

and π2 = (q, (w2, v2), (w′2, v
′
2), qfI⊗P ), with qfI⊗P ∈ FI⊗P . Let us assume that

|w′1| > |v′1|, |w′c| > |v′c| and |w′2| > |v′2| (the other cases can be handled similarly).
Let |w′c| − |v′c| = lc and |w′1.w′2| − |v′1.v′2| = l.

Then, given δ, K, there exists n ∈ N such that l + nlc > Kδ. The witness
path π to non-robustness of T can now be constructed from π1, followed by n-
traversals of c, followed by π2. By definition of TI⊗P , the generalized Levenshtein
distance, dL(w1.(wc)

n.w2, v1.(vc)
n.v2), of the input string labels of π, equals δ,

and by construction of π, the difference in the lengths, and hence the generalized
Levenshtein distance, dL(w′1.(w

′
c)
n.w′2, v

′
1.(v

′
c)
n.v′2) of the output string labels of

π exceeds Kδ. ut

Lemma 4.2 is helpful in constructing an output automaton AδO that accepts
a pair of output strings (s′, t′) iff dL(s′, t′) > Kδ. The construction of AδO is very

similar to that of D>Kδ
L , defined over alphabet Γ̃ , with one crucial difference.

Having read the jth symbol of s′, in order to compute all entries in the jth row
of the Kδ-diagonal in the dynamic programming table, we need to have seen the
(j + Kδ)th symbol of t′. However, the maximum delay between s′ and t′ could
be as much as D(TI⊗P ) (by Lemma 4.2). Hence, unlike D>Kδ

L , which only needs
to remember strings of length Kδ in its state, AδO needs to remember strings of
length D(TI⊗P ) + Kδ in its state. Thus, a state of AδO is a tuple (x, y, e), where
x and y are strings of length at most D(TI⊗P ) +Kδ, and e is a vector of length
2Kδ + 1.

Lemma 4.4. If TI⊗P has bounded pairwise-delay, AδO as described above accepts
a pair of strings (s′, t′) iff dL(s′, t′) > Kδ.

Note that AδO is a dfa with size O(|Γ |4(Kδ+D(TI⊗P ))), where D(TI⊗P ) is the max-
imum pairwise-delay of T and is O(size2(T )|Σ|4δδ4δ`max). Summarizing our
robustness checking algorithm for a functional transducer T , we first check if
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TI⊗P does not have bounded pairwise-delay. To do this, we check if there exists a
simple cycle c in TI⊗P for which pd(c) 6= 0. If yes, T is non-robust by Lemma 4.3.
If not, we construct the product machine Aδ, as defined in Scenario 1 using AδI ,
P and AδO . By Lemma 3.3, Lemma 4.4 and the definition of Aδ, it follows that
T , with bounded pairwise-delay, is robust iff Aδ is empty for all δ ≤ B.

Checking if there exists a simple cycle c in TI⊗P with pd(c) 6= 0 can be done
in NLogspace in the size of TI⊗P

7, which is O(size2(T )|Σ|4δδ4δ). Also, the
nonemptiness of Aδ can be checked in NLogspace in its size, as given by the
product of size(TI⊗P ) and size(AδO). Repeating this for all δ ≤ B, we have the
following theorem.

Theorem 4.4. Robustness verification of a functional transducer T with respect
to the Levenshtein distance can be accomplished in ExpSpace in B.

5 Related Work

In prior work [15], [4–6] on continuity and robustness analysis, the focus is on
checking if the function computed by a program has desirable properties such as
Lipschitz continuity. While these papers reason about programs that manipulate
numbers, we focus on robustness analysis of programs manipulating strings. As
the underlying metric topologies are quite different, the results from prior work
and our current approach are complementary.

More recent papers have aimed to develop a notion of robustness for reactive
systems. In [19], the authors present polynomial-time algorithms for the anal-
ysis and synthesis of robust transducers. Their notion of robustness is one of
input-output stability, that bounds the output deviation from disturbance-free
behaviour under bounded disturbance, as well as the persistence of the effect
of a sporadic disturbance. Also, unlike our distance metrics, their distances are
measured using cost functions that map each string to a nonnegative integer.
In [16, 3, 1], the authors develop different notions of robustness for reactive sys-
tems, with ω-regular specifications, interacting with uncertain environments. In
[7], the authors present a polynomial-time algorithm to decide robustness of se-
quential circuits modeled as Mealy machines, w.r.t. a common suffix distance
metric. Their notion of robustness also bounds the persistence of the effect of a
sporadic disturbance.

In recent work in [18], we studied robustness of networked systems in the
presence of channel perturbations. While the automata-theoretic framework em-
ployed in [18] is similar to the one proposed here, there are important differences
in the system model, robustness definitions and the distance metrics. In [18], we
tracked the deviation in the output of a synchronous network of Mealy machines,
in the presence of channel perturbations, w.r.t. the (non-weighted) Manhattan
and Levenshtein distances. As is evident in this paper, tracking distances and
checking robustness for arbitrary functional transducers w.r.t. generalized dis-
tance metrics present a new set of challenges.

7 This can be done using a technique similar to the one presented in [20] (Theorem
2.4) for checking nonemptiness of a Büchi automaton.
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