
Symbolic Pruning of Concurrent Program Executions

Chao Wang
NEC Laboratories America

chaowang@nec-labs.com

Swarat Chaudhuri
Pennsylvania State University

swarat@cse.psu.edu

Aarti Gupta
NEC Laboratories America
agupta@nec-labs.com

Yu Yang
University of Utah

yuyang@cs.utah.edu

ABSTRACT
We propose a new algorithm for verifying concurrent programs,
which uses concrete executions to partition the program into a set of
lean partitions called concurrent trace programs (CTPs), and sym-
bolically verifies each CTP using a satisfiability solver. A CTP,
derived from a concrete execution trace, implicitly captures all per-
mutations of the trace that also respect the control flow of the pro-
gram. We show that a CTP, viewed as a coarser equivalence class
than the popular (Mazurkiewicz) trace equivalence in partial or-
der reduction (POR) literature, leads to more effective pruning of
the search space during model checking. While classic POR can
prune away redundant interleavings within each trace equivalence
class, the pruning in POR is not property driven. We use symbolic
methods to achieve property-driven pruning. The effort of explo-
ration is distributed between a symbolic component (verification of
a particular CTP) and an enumerative component (exploration of
the space of CTPs). We show that the proposed method facilitates
more powerful pruning of the search space during the enumerative
exploration.

Categories and Subject Descriptors: D.2.4 [Software/ program
Verification]: Model checking

General Terms: Verification

Keywords: Concurrency, Partial order reduction, Pruning, SAT

1. INTRODUCTION
Dynamic model checking as in [8, 16, 23] has the advantage of

directly verifying concurrent programs written in full-fledged pro-
gramming languages such as C and Java, by systematically exe-
cuting a program in its target environment under different thread
schedules (interleavings). Since they concretely executethe pro-
gram itself rather than a model, these methods do not producebo-
gus errors when verifying safety properties, such as local asser-
tions. For verifying terminating programs, unless context-bounding
is imposed [16], these methods are also complete (do not missany
real error). However, explicitly enumerating thread interleavings is
expensive since the number of interleavings may be astronomically
large. Dynamic partial order reduction (DPOR) [6] has been used

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC-FSE’09,August 23–28, 2009, Amsterdam, The Netherlands.
Copyright 2009 ACM 978-1-60558-001-2/09/08 ...$5.00.

in this context to prune away redundant thread interleavings—for
each (Mazurkiewicz) trace equivalence class of interleavings, if a
representative has been checked, the remaining ones are regarded
as redundant. However, DPOR only removes redundant interleav-
ings within each equivalence class, it does not help when an equiv-
alence class itself is redundant, e.g., with respect to a correctness
property. In such cases, a property specific reduction is required to
prune away the redundant equivalence classes.

Property specific reduction can be achieved by symbolic meth-
ods [9, 4, 18, 11, 1, 22] using an underlying satisfiability (SAT or
SMT) solver1. In symbolic methods, verification is often posed as
a satisfiability problem such that the SAT formula is satisfiable iff
there exists an interleaving execution of the program that violates
the property. The reduction happens inside the SAT solver through
the addition of learned clauses derived by conflict analysis[20].
The pruning is potentially more powerful than POR because the in-
terleavings blocked by a learned clause may come from different
trace equivalence classes. However, a disadvantage of SAT-based
symbolic analysis is that it does not scale well to the entirepro-
gram, because the cost of checking all possible program executions
is often too high.

In this paper, we propose a new framework in which concrete
execution and symbolic analysis are used side-by-side to strike a
balance between efficiency and scalability. More specifically, we
use an enumerative algorithm to systematically generate execution
traces of the program. For each trace, we derive a lean partition of
the program called a concurrent trace program (CTP), which im-
plicitly captures all possible permutations of the trace that respect
the control flow of the program. Our symbolic analysis includes

1. Check: First, we check each CTP symbolically for property
violations. If an error is found in the CTP, it is guaranteed to
be a real error, and we are done.

2. Prune: Otherwise, we use a conservative analysis of the CTP
to identify redundant CTPs in future search, i.e., CTPs whose
error-freedom is implied by the current one.

Pruning is realized inside the enumerative algorithm, by skipping
traces that may lead to the redundant CTPs.

In our method, exploration is distributed between the symbolic
component which verifies a particular CTP and the enumerative
component which explores the space of CTPs. The CTP partition-
ing is effective for pruning the search space because of the follow-
ing reasons. First, a CTP partition has significantly fewer interleav-
ings than the whole program, making it more amenable to symbolic
analysis. Second, for terminating programs (w.r.t. an input), the set
1In this paper,SAT formuladenotes a formula either in Boolean
logic or in a quantifier-free first-order logic;SAT solverdenotes a
decision procedure of SAT formulas.

of CTPs is finite. Third, decomposing the verification problem into
subproblems over the CTPs does not negatively affect partial order
reduction. By definition, if one interleaving is in the CTP, then so
are all its trace-equivalent interleavings. In other words, we need to
consider no more than the interleavings within a CTP to get the full
benefit of POR. For symbolic POR techniques [11, 22], restricting
the set of executions to each CTP significantly lowers the encoding
overhead.

Our method also uses SAT-based symbolic analysis to provide
crucial pruning capability to the enumerative exploration. We use
pruning to meet two objectives. First, we want to ensure thatsym-
bolic analysis inCheck works on distinct CTPs to avoid duplicated
work. Second, when a CTP is proved to be error-free, if it implies
that some other CTPs in future search are error-free as well,we
want to avoid generating these CTPs. We propose a conservative
analysis of the observed CTPs to identify these two types of re-
dundant CTPs. Note that pruning redundant CTPs is orthogonal to
applying POR to each individual CTP.

We have implemented the proposed techniques and conducted
experiments on some multithreaded C programs written usingthe
POSIX threads (PThreads) library. Our preliminary results show
that the symbolic reduction is significantly more effectivethan dy-
namic POR [6] in pruning the search space.

The remainder of this paper is organized as follows. In Sec-
tion 2, we formally define programs, traces, and CTPs. In Sec-
tion 3, we present the enumerative algorithm that produces execu-
tion traces, In Section 4, we present the SAT-based algorithm for
checking property violations in a CTP, followed by the symbolic
pruning algorithm in Section 5. We present our experimentalre-
sults in Section 6, review related work in Section 7, and givecon-
clusions in Section 8.

2. CONCURRENT TRACE PROGRAMS
In this section, we introduce a simple but general concurrent lan-

guage; we also define traces and concurrent trace programs.

2.1 Programs
A program in our language consists of a setSV of shared vari-

ablesand a finite set ofthreadsT0, . . . , Tk. LetT id = {0, 1, . . . , k}
be the set of thread indices andT0 be the main thread. Each thread
Ti consists of a set ofcontrol locationsLoci, a set oflocal vari-
ablesLV i, and a set ofoperations. EachLoci contains unique
entry andexit locationslentry , lexit of the thread, as well as two
imaginary locations⊥,⊤: threadTi is in⊥ before its creation and
is in⊤ after termination. We define operationχ as a triple(l, a, l′),
wherel, l′ ∈ Loci anda is anaction label. Note that by definition,
each operationχ belongs to only one thread. LetVi = SV ∪ LV i

be the set of variables accessible to threadTi.
Each action labela in Ti has one of the following forms:

• guarded assignment(assume(c), asgn), wherec is a condi-
tion overVi, andasgn = {lval := exp} is a set of parallel
assignments, wherelval ∈ Vi andexp is an expression over
Vi. Intuitively, the assignments proceed iff conditionc is
true.

• fork(j), wherej ∈ T id andj 6= i, starts the execution of
child threadTj .

• join(j), wherej ∈ T id andj 6= i, waits for child threadTj

to terminate.

• assert(c), wherec is a condition overVi, assertsc.

While this language is simple, by defining expressions suitably and
using source-to-source transformations, we can model all state-
ments in multi-threaded C. We omit the details on modeling the
C language constructs such as pointers and structures, since they
are not directly related to concurrency; for more information refer
to recent efforts in [3, 10, 13].

The guarded assignment action(assume(c), asgn) may have
the following variants: (1) whenc = true, it can represent normal
assignments; (2) when the assignment set is empty,assume(c) it-
self can represent thethen-branch of anif(c)-else statement,
while assume(¬c) can represent theelse-branch; and (3) with
both guard and assignments, it can represent an atomiccheck-and-
set, which is the foundation of all kinds of synchronization primi-
tives. In particular, we precisely capture the semantics ofall syn-
chronization primitives in the standardPThreadslibrary. For exam-
ple, acquiring locklk in threadTi is modeled as(assume(lk =
0), {lk := i}), wherei is the thread id; and acquiring the count-
ing semaphorese is modeled as(assume(se > 0), {se := se −
1}). Actions fork and join represent thread creation and ter-
mination, respectively. InPThreadslibrary, they correspond to
pthread_create andpthread_join. Action assert(c) speci-
fies the correctness property, and it corresponds to the assertion
function in the standard C library.

2.2 Execution Traces
We have defined operationχ = (l1, a, l2), wherel1, l2 ∈ Loci,

as the instance of a statement in thei-th thread. This is needed be-
cause a statement in the textual representation of a multithreaded C
program may be executed by multiple threads. Furthermore, since
each operationχ may be executed more than once within a thread,
e.g., when it is in a loop, we defineevent t = (lk1 , a, lk2), where
k ∈ N, to denote thek-th instance ofχ in an execution trace.

We define the semantics of a program using alabeled transition
system. Let V = SV ∪

⋃
i
LV i be the set of variables in the pro-

gram. LetVal be a set of values for variables inV . V al contains
a special symbol⊥UI , denoting the uninitialized value. We also
assume that when threadTi is in locations⊥ or ⊤, all local vari-
ables inSVi have the value⊥UI . A stateof the program is a tuple
s = (σV , PC), whereσV : V → Val assigns a value to each
variable, andPC is a function mapping each thread idi ∈ T id
to its current control locationl ∈ Loci. For convenience, we may
uses[v] ands[exp] to denote the values ofv andexp in states.

Transitions have the forms
t
−→ s′, wheres = (σV , PC) and

s′ = (σ′V , PC′) are states, andt is an event. Intuitively, the exis-
tence of such a transition means: the program state changes from
s to s′ when we executet. More formally, lett = (l, a, l′) be an

event of threadTi; there exists a transitions
t
−→ s′ iff PC(i) = l,

PC′(i) = l′, and one of the following conditions holds:

• a = (assume(c), asgn), s[c] = true; for eachlval := exp

in asgn, s′[lval] = s[exp]; and statess, s′ agree otherwise.

• a = fork(j), PC(j) = ⊥, PC′(j) = lentry, wherelentry ∈
Locj is the entry ofTj ; and statess, s′ agree otherwise.

• a = join(j), PC(j) = lexit, PC′(j) = ⊤, wherelexit ∈
Locj is the exit ofTj ; and statess, s′ agree otherwise.

• a = assert(c), s[c] = true; and statess, s′ agree otherwise.
Note that ifs[c] = false, an error will be raised.

Based on the above semantics, we define the execution traces.

DEFINITION 1. LetP be a program ands0 be the initial state.
Let ρ = t1 . . . tn be an event sequence. The tuple(s0, ρ) defines

T0

int x = 0;
int y = 0;
pthread_t t1, t2;
main() {

t1 pthread_create(t1,foo);
t2 pthread_create(t2,bar);
t3 pthread_join(t2);
t4 pthread_join(t1);
t5 assert(x != y);

}

T1

foo() {
int a;

t11 a=y;
t12 if (a==0) {
t13 x=1;
t14 a=x+1;
t15 x=a;
t16 }else
t17 x=0;
t18 }

T2

bar() {
int b;

t21 b=x;
t22 if (b==0) {
t23 y=1;
t24 b=y+1;
t25 y=b;
t26 }else
t27 y=0;
t28 }

(below is the trace)

ThreadT0: ThreadT1 ThreadT2

t0: x=0,y=0;
t1: fork(1)
t2: fork(2)
——————–> t11: a=y;

t12: assume(a=0)
t13: x=1;
t14: a=x+1;
t15: x=a;
t18:
——————–> t21: b=x;

t26: assume(b6=0)
t27: y=0;

<——————– t28:
t3: join(2)
t4: join(1)
t5: assert(x 6= y);

Figure 1: A C program and one of its execution trace.

an execution trace iff there is a state sequences0 . . . sn such that,

there exist transitionssi−1

ti−→ si for i = 1, . . . , n.

By definition all events in an execution trace are unique. In the
sequel, we shall assume that programP has a unique initial state;
therefore, we may useρ instead of(s0, ρ) when referring to an
execution trace.

Example. Fig. 1 shows an example of a multithreaded C program
with two shared variablesx andy (which can be translated into our
language). The main threadT0 createsT1 andT2 (which in turn
start runningfoo andbar, respectively), waits for them to termi-
nate, and asserts(x 6= y). From the initial statex = y = 0, there
exists an execution traceρ = t1t2{t11–t15}t18t21t26t27t28{t3–
t5}. The events inρ are shown in Fig. 1, from top to bottom, in
their execution order. Herepthread_create andpthread_join
are routines inPThreadslibrary, directly corresponding tofork/join
in our model. Due to fork/join, the thread routinesfoo andbar run
concurrently with each other. The assertion att5 defines the cor-
rectness property, which holds in some, but not in all, execution
traces of the program. In particular, the assertion holds inρ.

2.3 Concurrent Trace Programs
Let ρ be an execution trace andT = {t | t is an event inρ}. We

view ρ as atotal orderof the elements inT .

DEFINITION 2. Theconcurrent trace programCTPρ is a par-
tially ordered set(T,⊑), whereT = {t | t is an event inρ}, and
⊑ is the partial order such that, for two arbitrary eventsti, tj ∈ T ,
we haveti ⊑ tj iff i = j, or one of the following conditions holds:

1. tid(ti) = tid(tj) andi < j in ρ,

2. tid(ti) 6= tid(tj) and there existtk, tl ∈ T such thatti ⊑
tk, tl ⊑ tj , and

• eithertk has actionfork(tid(tl)),

• or tl has actionjoin(tid(tk)).

Intuitively, the first condition captures the constraint that events in
the same thread are ordered by their execution order inρ. The sec-
ond condition says that events of a child thread happen afterfork,
but beforejoin of the parent thread. Since the partial order is con-
structed fromρ, which represents a concrete program execution,
fork of a thread always comes before itsjoin.

Not all linearizations ofCTPρ may correspond to execution
traces of the programP . Let ρ′ = t′1 . . . t′n be a linearization (total
order) ofCTPρ; we say thatρ′ is afeasible linearizationiff ρ′ is an
execution trace. By definition, all feasible linearizations of CTPρ

model the real behavior of programP . Therefore, any error found
in CTPρ is guaranteed to be a real error.

According to the definition, ifρ, ρ′ are execution traces of the
same program and they have the same set of events, thenCTPρ and
CTPρ′ are the same. Therefore, we can regard two tracesρ, ρ′ as
CTP-equivalentiff they have the same set of events. Now we com-
pare CTP-equivalence with the popular Mazurkiewicz-traceequiv-
alence [15]. In the POR literature, two eventst1, t2 are indepen-
dent if (1) executing one does not enable/disable another, and (2)
they do not have data conflict, i.e., there does not exist a state s
where botht1, t2 are enabled, access the same variable, and at least
one of them is a write. Two traces are (Mazurkiewicz)equivalent
iff one trace can be transformed into another by repeatedly swap-
ping adjacent independent events. Therefore, two (Mazurkiewicz)
equivalent traces have the same set of events.

THEOREM 1. Letρ1, ρ2 be two execution traces of programP .
If ρ1, ρ2 are (Mazurkiewicz) equivalent, thenCTPρ1

= CTPρ2
.

The seemingly trivial theorem has significant implications. Recall
that classic POR relies on trace equivalence. For each (Mazurkiewicz)
trace equivalence class, if a representative interleavinghas been
checked, the remaining interleavings are regarded as redundant and
therefore are pruned away. Theorem 1 shows that, in order to apply
POR, we need to consider no more than the interleavings within
a CTP, because the CTP always contains (Mazurkiewicz) equiva-
lence classes in their entirety. This allows us to take full benefit
of the POR reduction, while focusing on smaller partitions (CTP)
rather than whole programs. The overhead of symbolic encoding
of POR is also reduced.

Example. Fig. 2 illustrates theCTPρ derived from the traceρ
in Fig. 1. In the graph representation, nodes denote controllo-
cations and edges denote events. We use△ to indicate the start
of fork (denotednfork), and∇ to indicate the end ofjoin (de-
notednjoin). According to their semantics,fork results in si-
multaneously executing all outgoing edges ofnfork, while join

results in simultaneously executing all incoming edges ofnjoin.
The three vertical paths in this figure, from left to right, represents
the control flow paths inT1, T0, T2, respectively. SinceCTPρ

defines a partial order, interleavings different fromρ are also al-
lowed. For instance, althought15 appeared beforet21 in ρ, in-
sideCTPρ, it is allowed to be executed aftert21. However, not
all linearizations ofCTPρ are feasible. Consider the traceρ′′ =
t1t2t21t26t27t28{t11-t15}t18{t3-t5}; it is not a feasible lineariza-
tion becauset26 :assume(b 6=0) is violated. In contrast, the trace
ρ′′′ = t1t2{t11-t14}t21t26t27t28t15t18{t3-t5} is a feasible lin-
earization. In Section 4, we discuss a SAT-based encoding which
explores only feasible linearizations ofCTPρ. Finally, note that
ρ′′′ andρ are not Mazurkiewicz equivalent (and yet they are CTP-
equivalent).

FORK

t5 : assert(x 6= y);
JOIN

t0 : x=0,y=0;

t11: a=y;

t12:(a = 0)

t13 : x=1;

t14 : a=x+1;

t21: b=x;

t27 : y=0;

t26:(b 6= 0)

T2
T1

t1

t2

t3

t4

t15 : x=a;

t18

t28

T0

Figure 2: The concurrent trace program for ρ in Fig. 1.

3. ENUMERATIVE SEARCH
In our framework, the execution traces of a program are pro-

duced by anenumerativealgorithm that systematically explores the
concurrent program. For each execution traceρ, we deriveCTPρ

and symbolically checkall its feasible linearizations for property
violations. If we find a bug inCTPρ, it is guaranteed to be a real
bug in the program. If we do not find any bug inCTPρ, the enu-
merative algorithm moves on to the next execution traceρ′.

In this section, we first review the baseline enumeration algo-
rithm, and then highlight and motivate our modifications.

3.1 Baseline Search Algorithm
The baseline enumerative algorithm is similar to dynamic model

checking [8, 16, 23]. The algorithm is implemented in a so-called
schedulerprocess, running concurrently with the program under
verification (a separate process). Our scheduler controls the exe-
cution order of the program’s statements and records the execution
trace in a stackS. It is important to note that our scheduler records
only the event sequencet1 . . . ti, not the concrete states represented
as variable valuations—due to the large state space, such a stateful
approach often runs into scalability problems in practicalsettings.
We adopt the stateless model checking approach, where each state
si ∈ S is representedimplicitly by the event sequencet1 . . . ti that
leads to statesi (from the initial states0).

During the enumerative search, in eachs ∈ S, we maintain the
following data structures:

• The sets.enabled consists of all events that can be executed
from s; that is, it containst iff s

t
−→ s′ exists for somes′.

• The sets.done ⊆ s.enabled consists of all the events that
have been executed froms in some previous runs.

• The sets.backtrack ⊆ T id consists of the enabled threads
(ids) that remains to be explored froms in future runs.

The pseudo code of our algorithm is shown in Fig. 3 (ignore
lines 4-6 and the subroutines in lines 20-41 for now). Procedure
FUSION-SEARCHstarts from states0 and keeps executing the pro-
gram till it terminates, where termination is signaled bys.enabled =
∅. Each execution step is a (recursive) call to FUSION-SEARCH. At
each step, a previously unexplored enabled eventt is picked from
s.enabled such thattid(t) is also in the backtrack sets.backtrack.

1: Initially: S is empty; lets0 be the initial state; FUSION-
SEARCH(S, s0)

2: FUSION-SEARCH(S, s) {
3: if (s.enabled = ∅) {
4: if (CTP-CHECK-PROPERTY(S)) // check
5: return bug-found; //
6: CTP-PRUNE-BACKTRACKSETS(S); // prune
7: }
8: else {
9: S.push(s);

10: s.backtrack ← {tid(t) | t ∈ s.enabled};
11: s.done← ∅;
12: while (∃t ∈ s.enabled: tid(t) ∈ s.backtrack, andt 6∈

s.done) {
13: s.done← s.done ∪ {t};

14: executet, and lets′ be a state such thats
t
→ s′;

15: FUSION-SEARCH(S, s′);
16: }
17: S.pop();
18: }
19: }

20: CTP-CHECK-PROPERTY(S) {
21: letρ be the completed execution trace stored inS;
22: letCTPρ be the concurrent trace program derived fromρ;
23: if (ΦCTPρ is satisfiable)
24: return true;
25: else
26: return false;
27: }

28: CTP-PRUNE-BACKTRACKSETS(S) {
29: letρ be the completed execution trace stored inS;
30: letCTP+

ρ be the concurrent trace abstraction fromρ;
31: letn be the length ofρ = t1 . . . tn;
32: for (i = n− 1, . . . , 1) {
33: lets be the state inS beforeti ∈ ρ was executed;
34: letpfx = t1 . . . ti be the prefix ofρ up to thei-th step;
35: letΦpfx be order constraint imposed bypfx;
36: if ((Φ

CTP
+
ρ
∧ Φpfx) is unsatisfiable)

37: s.backtrack ← ∅;
38: else
39: return;
40: }
41: }

Figure 3: The FUSION algorithm for symbolic pruning

Once the termination state is reached (line 3), a complete execu-
tion traceρ can be derived from the search stackS. To move
on to the next trace, FUSION-SEARCH returns to a previous step,
picks another enabled eventt such thattid(t) ∈ s.backtrack,
and continues the execution. The algorithm stops when FUSION-
SEARCH(S,s0) returns.

The sets.backtrack is crucially important in affecting the search
performance. In the baseline algorithm, sinces.backtrack con-
tains all threads that are enabled ats, when the algorithm stops, all
possible interleavings of the program have been explored. There is
a scalability problem in the baseline algorithm, since the number of
interleavings of a nontrivial concurrent program is often astronom-
ically large [16].

3.2 The Goal of Pruning
The goal of our symbolic analysis is to solve the aforementioned

interleaving explosion problem. Our analysis consists of two phases,
i.e.,checkandprune, corresponding to lines 4-6 of the pseudo code
in Fig. 3. Recall that once the algorithm reaches line 3, the particu-
lar run of the program has completed, and the execution traceρ can
be retrieved from the search stackS. First, we call CTP-CHECK-
PROPERTY to deriveCTPρ and check its feasible linearizations
for property violations. If we find an error inCTPρ, it is a real
error and the algorithm stops. If we cannot find any error inCTPρ,
we call CTP-PRUNE-BACKTRACKSETSto prune the future search
space. Since the enumerative search is conducted in a DFS or-
der, pruning can be realized by removing some backtrack points
(in s.backtrack) that correspond to the redundant CTPs.

In CTP-PRUNE-BACKTRACKSETS, there are two challenging
problems that need to be solved. First, how to prune the backtrack
points so that, among the produced execution tracesρ1, ρ2, . . .,
we haveCTPρi

6= CTPρj
for all i 6= j. It ensures that CTP-

CHECK-PROPERTYalways works on distinct CTPs to avoid du-
plicated work. Second, how to prune the backtrack points so that
whenCTPρi

6= CTPρj
, if the currentCTPρi

being error-free
implies that the futureCTPρj

is error-free as well, the redundant
traceρj will not be generated in the first place. It is important to
note thatwe do not (intend to) solve these two problems precisely,
i.e. some CTPs we check may be redundant. The main idea of our
pruning effort is to use a fast and conservative analysis, which can
weed out many, but perhaps not all, redundant CTPs. In the next
two sections, we shall present symbolic algorithms for checking
CTPρ and for identifying redundant backtrack points.

4. SYMBOLICALLY CHECKING CTPS
Given CTPρ, we symbolically check all its feasible lineariza-

tions for property violations. We express this verificationproblem
as a SAT formulaΦCTPρ such that it is satisfiable iff a feasible
linearization violates the correctness property.

Although our symbolic encoding is applicable to any loop-free
concurrent program, in this section we shall present the algorithm
by tailoring it to CTPs only. In the next section, we will extend it
to handle the more general case.

4.1 Constructing the CSSA Form
Our SAT encoding is based on transforming a loop-free program

(e.g., a CTP) into a concurrent static single assignment (CSSA)
form [14]. This CSSA form has the property that each variableis
defined exactly once. Adefinition of variablev is an event that
modifiesv, and auseis an event whenv appears in an expression
(condition or right-hand-side of an assignment).

The transformation consists of (1) renaming variables thathave
more than one definition, (2) addingφ-functions at the merging
points of if-else statements to represent the confluence of multiple
definitions in thread-local branches, and (3) addingπ-functions be-
fore shared variable uses to represent the confluence of multiple
definitions in different threads. Whileφ-functions exist in stan-
dard SSA form,π-functions are unique to concurrent programs.
Since each thread in a CTP has a single thread-local path without
branches,φ-functions are not needed in a CTP2.

DEFINITION 3. Aφ-function, for a local variablev at the merg-
ing node of multiple branches of the same thread, has the form
φ(v1, . . . , vk), where eachvi (1 ≤ i ≤ k)is the definition ofv in
thei-th incoming branch.

2We will useφ-functions inCTP+
ρ (Section5).

DEFINITION 4. A π-function, for a shared variablev at the
node before its use, has the formπ(v1, . . . , vk), where eachvi

(1 ≤ i ≤ k) is either the most recent definition in the same thread
(as the use), or a definition in another concurrent thread.

We construct the CSSA form of a program as follows:

1. Create unique names for local variables in their definitions.

2. Create unique names for shared variables in their definitions.

3. Add aφ-function for each local variablev at the thread-local
merging node of two branches, create a unique namew, and
add definitionw← φ(v1, . . . , vk).

4. For each use of a local variable, replace the use with the most
recent (unique) definition.

5. For each use of a shared variablev, the most recent definition
may not be unique (depending on the interleaving).

• Add aπ-function immediately before the use, create a
unique namew, and add definitionw← π(v1, . . . , vk);

• Replace the use with the newly definedw.

Example. The CSSA form of the CTP in Fig. 2 is as follows:

t0 : x0 := 0;
y0 := 0;

t1 :
t2 :

t11 : w1 ← π(y0, y1) t21 : w2 ← π(x0, x1, x2)
a1 := w1; b1 := w2;

t12 : assume(a1 = 0) t26 : assume(b1 6= 0)
t13 : x1 := 1; t27 : y1 := 0;
t14 : w3 ← π(x1) t28 :

a2 := w3 + 1;
t15 : x2 := a2;
t18 :

t3 :
t4 :
t5 : w4 ← π(x2)

w5 ← π(y1)
assert(w4 6= w5);

We createw1 ← π(y0, y1) at t11 to denote the most recent def-
inition of the shared variabley. This may be eithery0 defined in
t0, or y1 defined int27. We create the otherw-variables in a sim-
ilar way. Note that theπ-functions forw3, w4, w5 have only one
parameter because their most recent definitions can be statically de-
termined. In particular, forx at t5, we can statically determine that
definitionsx0, x1 must happen beforex2 due to the semantics of
fork/join—therefore they cannot be the most recent definition.

4.2 From CSSA to ΦCTPρ

The CSSA form in [14] was designed for compiler optimizations
whereφ, π functions are treated asnondeterministic choices. The
interpretation is too conservative for verification. We interpret them
precisely in our SAT encoding described below.

Execution time. We start by assigning each eventt a fresh integer
variableO(t) denoting its execution time. We useHB(t, t′) to
express the constraint thatt is executed beforet′. In the SAT/SMT
formula,HB(t, t′) is implemented as adifference logicconstraint:
O(t) < O(t′), or simplyO(t)−O(t′) ≤ −1.

Path conditions. For all eventst in CTP , we define the path con-
dition g(t) such thatt is executed iffg(t) is true. Consider the
graph representation of a CTP (e.g., Fig. 2); thepredecessorof an
eventt is the edge immediately precedingt in the graph. We define
the path condition as follows:

• If t is the first event in the CTP (at the entry of main thread),
let g(t) := true.

• If t is a join, and t1, . . . , tk are the predecessors oft, let
g(t) =

∧k

i=1
g(ti).

• Otherwise, lett1, . . . , tk be the predecessors oft, andgin :=∨k

i=1
g(ti): if t has the actionassume(c), theng(t) :=

c ∧ gin; otherwise,g(t) := gin.

We constructΦCTP as follows (ΦCTP = true initially)

1. Program Order: For each eventt ∈ CTP ,

• if t is the first event in the CTP, do nothing;

• otherwise, for each predecessort′ of t in the CTP, let
ΦCTP := ΦCTP ∧HB(t′, t).

This rule captures the program order specified in Definition 2.

2. Actions: For each eventt ∈ CTP ,

• if t haslval := exp, let ΦCTP := ΦCTP ∧ (lval =
exp);

• if t hasassert(c), letΦCTP := ΦCTP ∧¬(g(t)→ c);

This rule captures the standard semantics of assignments and
assertions. The correctness property(g(t)→ c) states thatc
must hold ift is executed. We negate the property to look for
bugs.

3. π-Functions: For eachw ← π(v1, . . . , vk), defined int, let
ti be the event that definesvi, let ΦCTPρ :=

ΦCTPρ ∧
∨k

i=1
(w = vi) ∧ g(ti) ∧HB(ti, t)∧∧k

j=1,j 6=i
(HB(tj, ti) ∨HB(t, tj))

Intuitively, the π-function evaluates tovi iff it chooses the
i-th definition in theπ-set. Having chosenvi, all other defi-
nitionsj 6= i must occur either beforeti, or after this use of
vi in t.

4. φ-Functions: For eachw ← φ(v1, . . . , vk), defined int, let
ti be the predecessor oft such thatti is in the branch that
definesvi.

ΦCTPρ := ΦCTPρ ∧
k∨

i=1

(φ = vi) ∧ g(ti)

That is, theφ-function evaluates tovi iff the branch ofti is
executed. If no branching exists in any thread, as is the case
for CTPρ, this rule is not needed.

THEOREM 2. Formula ΦCTPρ is satisfiable iff there exists a
feasible linearization ofCTPρ violating the correctness property.

The symbolic encoding of formulaΦCTP directly follows the se-
mantics of CTP as defined in Section 2. Therefore, the theorem
holds by construction. Note that solutions (variable assignments)
to ΦCTP correspond to linearizations ofCTP .

It is important to point out that the encoding allows interleavings
between threads to take place, subject only to the HB-constraints
added in rules 1 and 3. Since CTP has a finite size, the formula
ΦCTP can be expressed in a quantifier-free first-order logic. In our
implementation, the formula is decided by an off-the-shelfSatisfi-
ability Modulo Theory (SMT) solver [5].

5. PRUNING REDUNDANT CTPS
The pruning problem in Section 3 can be formulated into a SAT

problem similar toΦCTPρ . However, pruning requires an over-
approximation of the behavior of the program, whereasCTPρ is
an underapproximation. Detailed explanation is given as follows.

Let ρ = t1 . . . tn be the current trace andpfx = t1 . . . ti, where
1 ≤ i < n be a prefix ofρ. LetW(pfx) be the set of traces{ρ′}
such thatpfx matches a prefix ofρ′. Assume that executingpfx

leads to states. The pruning problem, i.e., whethers.backtrack
can be pruned away, is deciding whether the correctness property
holds on all traces inW(pfx). If the answer is yes, we do not
need to generate these traces. However,CTPρ may not capture
all traces inW(pfx). Consider the CTP in Fig. 2 as an example:
assume thatpfx = t0t1t2t21; continuingpfx by executingT2 leads
to the execution oft22, which is not captured inCTPρ.

Therefore, we need to derive fromρ anconcurrent trace abstrac-
tion (CTA)which models all the events inρ, and also (conserva-
tively) models the untaken branches in all threads.

5.1 Concurrent Trace Abstraction (CTA)
To model both branches in anif(c)-else statement, we add a

phantom edgefor the untaken branch guarded by(¬c). A precise
modeling of the code in the untaken branch is undesirable dueto
scalability concerns. Instead, we consider appropriate abstractions
depending on the correctness properties for pruning purposes3.

For checking local assertions, a naive and yet correct abstraction
is that the unobserved code may assign all variables to arbitrary val-
ues. That is, the phantom edge is labeled with guard(¬c) and the
set{v ← ∗ | v ∈ V } of assignments, whereV is the set of all pro-
gram variables. The set of assignments may set any variable to an
arbitrary value, and therefore can over-approximate any statement

in the program. More formally, any state transitions
t
−→ s′ can be

simulateds
{v←∗ | v∈V }
−→ s′.

However, this abstraction is too coarse to be practically useful.
We improve over the naive approach by using a conservative static
analysis of the program, conducteda priori, to identify, for each
unobserved branch, the setWV ⊆ V of write-variables(variables
that may be modified). In this new abstraction, the phantom edge
assigns theWV -variables to arbitrary values. If an assertion is
embedded in the untaken branch, we consider that it may fail and
therefore add a special variable calledassert_fail to WV .

Merging point. For each threadTj in a structured program, we
assume the existence of a partial functionM : Locj → Locj

such that, for each eventt=(l, assume(c), l′), there isM(l) =
l′′ which, intuitively, is the merging point of the two branchesin
if(c)-else. In control flow analysis literature, such merging
points are calledimmediate post-dominators. More formally, l′′

strictly post-dominatesl in a graph iff l 6= l′′ and all paths from
l to the exit point goes throughl′′. And l′′ is the immediate post-
dominator ofl iff it is the closest strict post-dominator ofl.

In our implementation, we instrument all branching statements
of a C program to make available at runtime the merging pointsand
write-variables of untaken branches (computeda priori). This code
instrumentation is illustrated in Fig. 4. First, we insert recording
routines to signal the start and end of every branch—they mark the
branch heads and their immediate post-dominators. Second,in both
branches ofif-else statement, we insert

• rec-var-WR-in-other-branch(WV), whereWV is the
set of write-variables inthe otherbranch.

3For instance, for detecting data races, a practical abstraction [21]
uses amay-setof shared variables that are accessed in the branch
and the correspondingmust-setof locks protecting the accesses.

21: b=x;
rec-branch-begin();

22: if (b==0) {
23: y=1;
24: b=y+1;
25: y=b;

rec-var-WR-in-other-branch({y});
26: } else {
27: y=-1;

rec-var-WR-in-other-branch({y,b});
28: }

rec-branch-end();

Figure 4: Instrumenting an if-else statement.

b← ∗

t5 : assert(x 6= y);
JOIN

t0 : x=0,y=0;

t11: a=y;

t12:(a = 0)

t13 : x=1;

t14 : a=x+1;

t21: b=x;

t27 : y=0;

t26:(b 6= 0)

T2
T1

t1

t2

t3

t4

t15 : x=a;

t18

t28

T0

FORK

tph1:(a 6= 0)
x← ∗

tph2:(b = 0)
y ← ∗

Figure 5: Concurrent trace program abstraction.

In this example, when theelse-branch is executed, the record-
ing routine will tell us thatWV = {y, b} in the untakenif-
branch; similarly, when theif-branch is executed, we will know
thatWV = {y} in theelse-branch.

Phantom action label. For t = (l, assume(c), l′) at a branch
head inρ, we define aphantom action label(assume(¬c), {v ←
∗ | v ∈ WV }), where¬c is the condition andWV is the set of
write-variables of the untaken branch. Now we define the concur-
rent trace abstraction.

DEFINITION 5. The concurrent trace abstraction (CTA), denoted
CTP+

ρ , is obtained by takingCTPρ and adding a phantom edge
tph=(l, a, l′′) for each untaken conditional branch, wherel′′ =
M(l) anda is the phantom action label.

Fig. 5 shows theCTP+
ρ for the traceρ in Fig. 2. Here solid

edges denote events inρ, and dotted edges denote phantom edges.
In this graph, there is one phantom edge in each thread. In particu-
lar, tph2 models the untaken brancht22-t25; and its phantom action
label isaph2 = (assume(b = 0), {y ← ∗, b← ∗}).

To understand whytph2 is an over-approximation of the untaken
branch, consider replacingt22-t25 in Fig. 4 with t22′ -t25′ below:
since the set of write-variables remains the same, the CTA remains
the same.

22’: if (b==0) {
23’: b=1;
24’: while(b++ < 100)
25’: y += b;

Recall that no two events inρ are the same. Consequently, the
graph representation of CTA is always acyclic. Suppose thatthe
entire code in Fig. 4 is embedded in a loop, then each time the loop
body is executed, a new sequence of non-phantom edgest′26t

′
27 will

occur aftert26t27 (assuming theelse-branch is taken), together
with a new phantom edget′ph2.

5.2 Semantics of Phantom Edges
The semantics of a phantom edge is different from executing a

non-phantom edge. Lettph = (l, aph, l′′) be the phantom edge,
whereaph = (assume(¬c), {v ← ∗ | v ∈ WV }). The effect of
executingtph is captured by the following regular expression:

assume(¬c) {v ← ∗ | v ∈WV }∗

That is, when condition¬c is true atl, the assignments may be exe-
cuted for an arbitrary but finite number of times, before the control
goes tol′′.

Using the semantics defined above, one can prove that the phan-
tom edgetph overapproximates the untaken branch guarded by¬c:
all possible event sequences of the untaken branch are included in
the above regular expression. The proof is sketched as follows:
First, any eventt of the untaken branch can be overapproximated
by executing{v ← ∗ | v ∈ WV } once. Second, any finite
event sequence of the untaken branch can be overapproximated by
{v ← ∗ | v ∈ WV }∗. For a concrete example, refer to Fig. 4.
Any of the eventst23-t25 or t23′ -t25′ can be overapproximated by
the phantom edgetph2:assume(b = 0){y ← ∗, b ← ∗}. Con-
sequently, the representation of each thread inCTP+

ρ overapprox-
imate the behavior of the thread in programP . This leads to the
following observation.

OBSERVATION 1. The concurrent trace abstractionCTP+
ρ over-

approximates the behavior of programP . That is, ifρ′ is an execu-
tion trace ofP , thenρ′ is a feasible linearization ofCTP+

ρ .

Bounded Semantics. The phantom edge also hasbounded seman-
tics when it is restricted to a particularCTP+

ρ . The reason is that,
for a phantom assignmentv ← ∗ (wherev ∈ WV) to have any
impact, the value defined forv needs to beusedby other edges
in CTP+

ρ . Only non-phantom edges canusea variable—when
the variable appears in conditions or the right-hand side ofassign-
ments. (The guard of a phantom edge does not count because it
uses the same versions of variables as its non-phantom counter-
part.) SinceCTP+

ρ has a fixed number of non-phantom edges, the
aforementioned regular expression for is reduced as follows:

• For each edget that usesvariablev ∈ WV , create a fresh
copy vt as part of the CSSA construction. LetWV cssa be
the set of all these fresh variables.

• The set{v ← ∗ | v ∈ WV } is reduced to{vt ← ∗ | vt ∈
WV cssa}, where the size ofWV cssa is fixed.

• The effect of executingtph is modeled by executing each in-
dividual assignmentvt ← ∗ (wherevt ∈ WV cssa) exactly
once, but in all possible orders.

5.3 Symbolically Encoding Φ
CTP

+
ρ

The symbolic encoding for CTA closely resembles the encoding
in Section 4.1. Below we highlight only the modifications.

Adding φ-functions. Due to phantom edges, a thread in CTA may
have multiple control paths. Therefore,φ-functions are needed
when we construct the CSSA form. Section 4 presents the rules

for adding and encodingφ-functions. As an example, the CSSA of
the CTA in Fig. 5 is as follows:

t0 : x0 = 0;
y0 = 0;

t1 :
t2 :

t11 : w1 ← π(y0, y1, y3) t21 : w2 ← π(x0, x1, x2, x3)
a1 := w1; b1 := w2;

t12 : assume(a1 = 1) tph2 : assume(b1 = 1)
t13 : x1 = 1; y1 ← ∗
t14 : w3 ← π(x1) y2 ← ∗

a2 := w3 + 1; b2 ← ∗
t15 : x2 = a2;
tph1 : assume(a1 6= 1) t26 : assume(b1 6= 1)

x3 ← ∗ t27 : y3 = 0;
x4 ← ∗

t18 : a3 ← φ(a1, a2) t28 : b3 ← φ(b1, b2)
t3 :
t4 :
t5 : w4 ← π(x2, x4)

w5 ← π(y2, y3)
assert(w4 6= w5);

We addφ(a1, a2) andφ(b1, b2) at t18 andt28, to denote the most
recent definitions ofa and b. In tph2, variabley has two fresh
copies because the definition is used int11 and t5 (not because
there are actually two definitions in the untaken brancht23-t25).
Similarly, tph1 defines two copies ofx since botht21 andt5 use it.

Encoding Phantom Edges. Let {vt ← ∗ | vt ∈WV cssa} be the
set of assignments in the phantom edgetph. We create an execution
time variable, denotedOt(tph), for each assignmentvt ← ∗.

• Program Order: In Rule 1 of Section 4.1, we add con-
straints to ensure that assignments in the phantom edge must
happen after the predecessor edget′, and before the succes-
sor edget′′. That is,

HB(t′, tph) :=
∧
∀t . vt∈WV cssa

O(t′) < Ot(tph)
HB(tph, t′′) :=

∧
∀t . vt∈WVcssa

Ot(tph) < O(t′′)

• π-Functions: In Rule 3 of Section 4.1, when encodingw←
π(v1, . . . , vk), if vi (1 ≤ i ≤ k) is defined by phantom
edgetph and is used by edget, we defineOt(tph) as the
execution time of assignmentvt ← ∗. The HB-constraints
are as follows:

HB(tph, t) := Ot(tph) < O(t)
HB(tj , tph) := O(tj) < Ot(tph)

Note that there is no need to encode the phantom assignments be-
cause(v = ∗) always equalstrue. Furthermore, in our encoding,
phantom assignments from the sametph are not ordered with re-
spect to each other; all possible linearizations of them areallowed,
in order to conservatively model behavior of the untaken branch.

Our encoding follows the bounded semantics of phantom edges
defined in the previous subsection. Consequently, by Observa-
tion 1, formula Φ

CTP
+
ρ

captures all possible execution traces of

the programP (precisely for some and conservatively for others).
We again use symbolic analysis to check for property violations in
CTP+

ρ . In this case, solutions to the SAT formula corresponds to
linearizations of the CTA. If the formula is unsatisfiable, all lin-
earizations of the CTA are error-free, since the CTA is an over-
approximation. This implies that the entire program is proved to be
error-free. In practice, it is rare thatCTP+

ρ would be error-free by
itself, however, when its linearizations are constrained to prefixes
of ρ, the searchsubspaceis more likely to be error-free. We exploit
this to provide pruning in our enumerative search.

5.4 Using CTP+
ρ for Pruning

The pseudo code of the pruning algorithm is presented in Fig.3,
which starts from the last step of the current traceρ, and for each
i = n − 1, . . . , 1, analyzes the prefixpfx of ρ up to thei-th step.
For eachpfx, it builds formulaΦpfx, which constrains the firsti
steps to be the same aspfx. FormulaΦpfx is constructed as follows:
First, we initializeΦpfx := true for the first event inpfx. For each
remaining eventt ∈ ρ,

• If t is in pfx andt′ immediately precedest in pfx, letΦpfx :=
Φpfx ∧HB(t′, t);

• If t 6∈ pfx, andt′ is the last event inpfx, let Φpfx := Φpfx ∧
HB(t′, t);

THEOREM 3. Let si be the program state after executingpfx.
If formula(Φ

CTP
+
ρ
∧Φpfx) is unsatisfiable, the backtrack points in

si.backtrack can be removed.

The theorem follows from the construction ofΦ
CTP

+
ρ

andΦpfx,
the conjunction of which captures all the buggy execution traces of
W(pfx). Recall thatW(pfx), defined in Section 5, consists of all
program traces sharing the same prefixpfx. Therefore, if formula
(Φ

CTP
+
ρ
∧ Φpfx) is unsatisfiable, then the property holds on all

execution traces inW(pfx) (the reverse need not be true).

Example. Consider the running example, and regardρ in Fig. 2
as the current trace in the enumerative search. Without our sym-
bolic checking and pruning, the DPOR algorithm as in [6] would
backtrack to the state beforet15 and executet21, leading to the
new execution traceρ′ = t0t1t2t11t12t13t14t21t26t27 . . . Partial
order reduction cannot removeρ′ because it is not (Mazurkiewicz)
equivalent toρ and therefore is not deemed as redundant. How-
ever, in our method,CTPρ′ = CTPρ and thereforeρ′ has al-
ready been checked by CTP-CHECK-PROPERTY. Consequently,
our symbolic pruning will remove this backtrack set: forpfx =
t0 . . . t14, formula (Φ

CTP
+
ρ
∧ Φpfx) is unsatisfiable. As a result,

we skip the traceρ′, backtrack, and directly generate the new trace
ρ′′ = t0t1t2t11t12t21 SinceCTPρ′′ 6= CTPρ, and our subse-
quent call to symbolic checking would report that a linearization of
CTPρ′′ fails the assertion att5.

In practice, our pruning happens only when the SAT solver proves
that(ΦCTP+ ∧ Φpfx) is unsatisfiable; any other possible outcome
in practice (satisfiable, timeout, undecided, etc.) means no pruning.
This provides crucial flexibility in practical settings to make trade-
offs. For instance, a timeout may be imposed on the SAT solver, to
control the time allowed for the pruning computation.

Thus far, we have assumed that the program is structured and
the phantom action label (merging points and write-variables) can
be efficiently computeda priori. In real-world programs, these
assumptions may not hold. We use a safebailout strategy to deal
with abnormals where our assumptions do not hold. When code
in a branch haveassert(c) statements, non-structured statements
(goto, long-jump, etc.), or otherwise complex statements that
are difficult for static analysis, we resort to using a phantom edge
labeled withassert(false). It is implemented by adding variable
assert_fail to WV . If this phantom edge is encountered during
a search on aCTP+

ρ , an error will be raised, forcing the algorithm
to take the backtrack rather than prune it away.

6. EXPERIMENTS
We have implemented the symbolic pruning algorithms in the

setting of dynamic model checking. Our tool, calledFusion, is
capable of handling C programs using the LinuxPThreadslibrary.

Figure 6: Experimental results on the indexer examples

Our enumerative algorithm builds onInspect[23], a stateless model
checker with dynamic POR. We also use it for our baseline com-
parison4. We useCIL [17] for parsing the C code, collecting write-
variables, and code instrumentation. We use theYicesSMT solver [5]
to decide the formulas for checking and pruning.

We have comparedFusionwith the popular DPOR algorithm [6]
implemented inInspect. DPOR uses the enumerative algorithm
with state-of-the-art POR techniques, but does not have symbolic
checking and pruning. Two sets of benchmarks were used. The first
set consists of parameterized C programs, constructed in-house,
with intense shared variable accesses. The LOCs (line of code)
of these programs after slicing range from 100 to 200. However,
they have a large number of (irredundant) shared variable accesses
and therefore are hard concurrency problems. Common C language
features (pointers, structures, loops, and recursion) canbe found in
these programs. The second set consists of theindexerexamples
from [6], where they were used to showcase the power of DPOR.
These are multithreaded programs where each thread inserts4 mes-
sages into a shared hash table. In all examples, the correctness
properties are numerical assertions over the shared variables. All
benchmarks are accompanied by test cases to facilitate the concrete
execution. The experiments were conducted on a PC with 1.6 GHz
Intel Core Duo processor and 2GB memory running Fedora 8.

Table 1 shows the results on the first set of benchmarks. The
first four columns show the statistics of the test cases, including
the name, the number of threads, and the number of visible events
(accesses to shared variables), and whether the assertion holds.
Columns 5-10 compare the two methods in terms of the number of
execution traces generated, the number of executed events,and the
total runtime in seconds. Both methods exhaustively explore the
search space unless a property violation is found. A reduction in
the number of traces demonstrates Fusion’s pruning capability. In
almost all cases, Fusion explores the search space more efficiently
by checking only a few traces/CTPs and pruning away the remain-
ing ones. In contrast, DPOR, without any property specific prun-
ing, has to enumerate a large number of trace equivalence classes
(in pBch4okall the equivalence classes). Fusion found the buggy
executions in thefa02examples by SAT and the ones inpBch4and
dynRecby dynamic execution.

Figure 6 shows the results on theindexerexamples. In this fig-
ure, thex-axis is the number of threads and they-axis is the runtime
in seconds to find the bug. The correctness property is an assertion
starting that a particular hash entry cannot be over-written. When
the number threads is from 1 to 11, there is no hash table colli-
sion; but from 12 to 20, there are many collisions among threads

4At present, we handle C/C++ programs on the Linux/PThreads
platform. Therefore, a direct comparison is difficult to perform
against CHESS [16], another stateless model checker, that targets
programs on the Windows platform.

(however, these collisions cannot be predicted with sufficient accu-
racy by a static analysis). For brevity, we present the data only in
the range 10-20. The results showed that the symbolic pruning in
Fusion has significantly reduced the search space.

We believe that our implementation can be further improved by
adding light-weight static analysis to simplify the CTPs before sub-
jecting them to SAT-based algorithms. We are also in the process
of implementing context-bounding [16] (a powerful unsoundre-
duction orthogonal to ours) upon our symbolic encoding. Never-
theless, Table 1 shows that, even with a preliminary implementa-
tion, the overhead of symbolic analysis is well compensatedby the
savings over pruned traces.

7. RELATED WORK
Among the stateless model checkers that target the same prob-

lem as ours, VeriSoft [8], CHESS [16], and Inspect [23] are the
closest related ones. However, as we pointed out earlier, all of them
are based on the purely enumerative algorithms. None of themhas
property specific search space pruning. In a previous work [22], we
have used the notion of property driven pruning for data racede-
tection. However, the method was also purely enumerative. To our
knowledge, the notions of CTP, CTP-equivalent traces, and sym-
bolic pruning have not appeared in existing work in the literature.

For our method to prove bug-freedom, the program must be ter-
minating with respect to the input (no liveness cycle). Thisrequire-
ment is also shared by all existing algorithms based on stateless
model checking [8, 16, 23, 24]. In practice, this is not a significant
limitation, because most concurrent programs are in fact terminat-
ing or can be made so using a testing harness during verification.
For nonterminating programs, our method can be used as a bounded
analysis tool dedicated for bug-finding, by bounding the execution
depths like in CHESS [16].

Our symbolic encoding is related to, but is different from, the
SSA-based SAT encoding [3, 13], which is popular for sequen-
tial programs. We usedifference logicto directly capture the par-
tial order. This differs from CheckFence [1], which explicitly en-
codes ordering between all pairs of events in pure Boolean logic.
TCBMC [18] and the work in [11, 22, 7, 12] are also closely re-
lated, but they do not use CSSA; we believe that CSSA facilitates a
more succinct SAT encoding. Furthermore, all the aforementioned
methods were applied to whole programs and not to trace programs,
and symbolic pruning was not used by any of them.

Our goal of checking alternative interleavings of a concrete trace
is related to various predictive testing techniques [19, 2]. Predictive
testing aims at detecting concurrency errors during runtime from
observing the good (non-error) execution traces of concurrent pro-
grams. However, predictive testing does not use the notion of CTP
and does not (intend to) cover all feasible linearizations of a CTP. In
contrast, it often inspects only a small subset of these linearizations
that conform to a happens-before causality model. In our case, we
not only check all feasible linearizations of a CTP (derivedfrom
the given trace), but also exhaustively explore the space ofCTPs.

8. CONCLUSIONS
We have presented new symbolic reduction methods for pruning

the property specific redundant execution traces of concurrent pro-
grams. Our method uses an enumerative algorithm to explore the
space of CTPs, and uses SAT-based symbolic algorithms to verify
each individual CTP. We also use a conservative analysis to iden-
tify redundant CTPs with respect to the property and prune them
away during the enumerative exploration. Our preliminary exper-
imental results show that symbolic reduction can be significantly
more effective than classic POR in pruning the search space.

Table 1: Comparing the performance of Fusion and DPOR
Test Program Fusion (in C3) DPOR (in Inspect)

name # threads global-ops property traces transitions time (s) traces transitions time (s)

fa02-1 2 21 false 1 32 0.2 34 545 6.6
fa02-5 2 73 false 1 84 0.8 190 8349 47.5
fa02-10 2 138 false 1 149 1.4 390 29904 108.6
pBch4-5 2 28 false 2 59 0.5 64 472 13.8
pBch4-10 2 48 false 2 89 0.6 274 2082 55.9
pBch4-20 2 88 false 2 149 1.3 1144 10842 248.7
pBch4ok-1 2 12 true 4 49 1.9 5 50 1.4
pBch4ok-3 2 28 true 11 211 6.9 152 1445 32.7
pBch4ok-4 2 36 true 18 385 19.6 1164 10779 255.8
pBch4ok-5 2 44 true 27 641 40.1 - - >3600
dynRec-0 2 18 false 1 16 3.1 3 32 1.1
dynRec-1 3 36 false 3 63 3.3 788 7852 534.0
dynRec-2 4 54 false 5 131 7.9 - - >3600
dynRec-3 5 72 false 7 219 17.2 - - >3600
dynRec-4 6 90 false 9 327 35.3 - - >3600
dynRec-5 7 108 false 11 455 71.5 - - >3600
dynRec-6 8 126 false 13 603 106.4 - - >3600

9. REFERENCES

[1] S. Burckhardt, R. Alur, and M. Martin. CheckFence:
checking consistency of concurrent data types on relaxed
memory models. InProgramming Language Design and
Implementation, pages 12–21. ACM, 2007.

[2] F. Chen and G. Rosu. Parametric and sliced causality. In
Computer Aided Verification, pages 240–253. 2007.

[3] E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking
ANSI-C programs. InTools and Algorithms for Construction
and Analysis of Systems, pages 168–176. Springer, 2004.

[4] B. Cook, D. Kroening, and N. Sharygina. Symbolic model
checking for asynchronous boolean programs. InSPIN
Workshop on Model Checking Software, pages 75–90.
Springer, 2005.

[5] B. Dutertre and L. de Moura. A fast linear-arithmetic solver
for dpll(t). In Computer Aided Verification, pages 81–94.
Springer, 2006.

[6] C. Flanagan and P. Godefroid. Dynamic partial-order
reduction for model checking software. InPrinciples of
programming languages, pages 110–121, 2005.

[7] M. Ganai and A. Gupta. Efficient modeling of concurrent
systems in BMC. InSPIN Workshop on Model Checking
Software, pages 114–133. Springer, 2008.

[8] P. Godefroid. Software model checking: The VeriSoft
approach.Formal Methods in System Design, 26(2):77–101,
2005.

[9] O. Grumberg, F. Lerda, O. Strichman, and M. Theobald.
Proof-guided underapproximation-widening for
multi-process systems. InPrinciples of programming
languages, pages 122–131, 2005.

[10] F. Ivaňcić, I. Shlyakhter, A. Gupta, M.K. Ganai, V. Kahlon,
C. Wang, and Z. Yang. Model checking C program using
F-Soft. InInternational Conference on Computer Design,
pages 297–308, October 2005.

[11] V. Kahlon, A. Gupta, and N. Sinha. Symbolic model
checking of concurrent programs using partial orders and
on-the-fly transactions. InComputer Aided Verification,
pages 286–299. Springer, 2006.

[12] V. Kahlon, C. Wang, and A. Gupta. Monotonic partial order
reduction: An optimal symbolic partial order reduction
technique. InComputer Aided Verification, pages 398–413,
2009.

[13] S. Lahiri and S. Qadeer. Back to the future: revisiting precise
program verification using SMT solvers. InPrinciples of
Programming Languages, pages 171–182. ACM, 2008.

[14] J. Lee, D. Padua, and S. Midkiff. Basic compiler algorithms
for parallel programs. InPrinciples and Practice of Parallel
Programming, pages 1–12, 1999.

[15] A. W. Mazurkiewicz. Trace theory. InAdvances in Petri
Nets, pages 279–324. Springer, 1986.

[16] M. Musuvathi and S. Qadeer. CHESS: Systematic stress
testing of concurrent software. InLogic-Based Program
Synthesis and Transformation, pages 15–16. Springer, 2006.

[17] G. Necula, S. McPeak, S. Rahul, and W. Weimer. CIL:
Intermediate language and tools for analysis and
transformation of c programs. InInternational Conference
on Compiler Construction, pages 213–228. Springer, 2002.

[18] I. Rabinovitz and O. Grumberg. Bounded model checking of
concurrent programs. InComputer Aided Verification, pages
82–97. Springer, 2005.

[19] K. Sen, G. Rosu, and G. Agha. Detecting errors in
multithreaded programs by generalized predictive analysis of
executions. InFormal Methods for Open Object-Based
Distributed Systems, pages 211–226. Springer, 2005.

[20] J. P. M. Silva and K. A. Sakallah. Grasp—a new search
algorithm for satisfiability. InInternational Conference on
Computer-Aided Design, pages 220–227, November 1996.

[21] C. Wang, Y. Yang, A. Gupta, and G. Gopalakrishnan.
Dynamic model checking with property driven pruning to
detect race conditions. InAutomated Technology for
Verification and Analysis. Springer, 2008.

[22] C. Wang, Z. Yang, V. Kahlon, and A. Gupta. Peephole partial
order reduction. InTools and Algorithms for Construction
and Analysis of Systems, pages 382–396. Springer, 2008.

[23] Y. Yang, X. Chen, and G. Gopalakrishnan. Inspect: A
Runtime Model Checker for Multithreaded C Programs.
Technical Report UUCS-08-004, University of Utah, 2008.

[24] Y. Yang, X. Chen, G. Gopalakrishnan, and C. Wang.
Automatic discovery of transition symmetry in multithreaded
programs using dynamic analysis. InSPIN workshop on
Software Model Checking, 2009.

