Symbolic Pruning of Concurrent Program Executions

Chao Wang
NEC Laboratories America

chaowang@nec-labs.com

Aarti Gupta
NEC Laboratories America
agupta@nec-labs.com

ABSTRACT

We propose a new algorithm for verifying concurrent progsam
which uses concrete executions to partition the prograosiset of
lean partitions called concurrent trace programs (CTR&) sgm-
bolically verifies each CTP using a satisfiability solver. AR
derived from a concrete execution trace, implicitly capsuall per-
mutations of the trace that also respect the control flow eftto-

Swarat Chaudhuri
Pennsylvania State University

swarat@cse.psu.edu

Yu Yang
University of Utah

yuyang@cs.utah.edu

in this context to prune away redundant thread interlea#nfpr
each (Mazurkiewicz) trace equivalence class of interlegsji if a
representative has been checked, the remaining ones areledg
as redundant. However, DPOR only removes redundant iaterle
ings within each equivalence class, it does not help whemaiv-e
alence class itself is redundant, e.g., with respect to gectess
property. In such cases, a property specific reduction isired, to

gram. We show that a CTP, viewed as a coarser equivalence clas Prune away the redundant equivalence classes.

than the popular (Mazurkiewicz) trace equivalence in phxi-
der reduction (POR) literature, leads to more effectivenprgy of
the search space during model checking. While classic P@R ca
prune away redundant interleavings within each trace atprice
class, the pruning in POR is not property driven. We use syimbo
methods to achieve property-driven pruning. The effort)qfle-
ration is distributed between a symbolic component (veiion of

a particular CTP) and an enumerative component (exploratfo
the space of CTPs). We show that the proposed method féedlita
more powerful pruning of the search space during the endinera
exploration.

Categories and Subject Descriptors: D.2.4 [Software/ program
Verification]: Model checking

General Terms. Verification

Keywords: Concurrency, Partial order reduction, Pruning, SAT

1. INTRODUCTION

Dynamic model checking as in [8, 16, 23] has the advantage o
directly verifying concurrent programs written in full-figed pro-

gramming languages such as C and Java, by systematically exe

cuting a program in its target environment under differémead
schedules (interleavings). Since they concretely exettigero-
gram itself rather than a model, these methods do not prdoloice
gus errors when verifying safety properties, such as lossémla
tions. For verifying terminating programs, unless corfeotinding
is imposed [16], these methods are also complete (do notaniss
real error). However, explicitly enumerating thread itgavings is
expensive since the number of interleavings may be astrimadyn
large. Dynamic partial order reduction (DPOR) [6] has besadu

Permission to make digital or hard copies of all or part o§ twork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ESEC-FSE’'09August 23-28, 2009, Amsterdam, The Netherlands.
Copyright 2009 ACM 978-1-60558-001-2/09/08 ...$5.00.

Property specific reduction can be achieved by symbolic meth
ods [9, 4, 18, 11, 1, 22] using an underlying satisfiabilitATSr
SMT) solvet. In symbolic methods, verification is often posed as
a satisfiability problem such that the SAT formula is satidéaff
there exists an interleaving execution of the program tiaates
the property. The reduction happens inside the SAT solveutih
the addition of learned clauses derived by conflict analj0§.
The pruning is potentially more powerful than POR becausérth
terleavings blocked by a learned clause may come from difter
trace equivalence classes. However, a disadvantage ob8#dd
symbolic analysis is that it does not scale well to the enii@
gram, because the cost of checking all possible progranuézes
is often too high.

In this paper, we propose a new framework in which concrete
execution and symbolic analysis are used side-by-siderite st
balance between efficiency and scalability. More specificale
use an enumerative algorithm to systematically generaeution
traces of the program. For each trace, we derive a leanipartt
the program called a concurrent trace program (CTP), whieh i

f plicitly captures all possible permutations of the tracat tiespect

the control flow of the program. Our symbolic analysis inesd

1. Check: First, we check each CTP symbolically for property
violations. If an error is found in the CTP, it is guaranteed t
be a real error, and we are done.

2. Prune: Otherwise, we use a conservative analysis of the CTP
to identify redundant CTPs in future search, i.e., CTPs whos
error-freedom is implied by the current one.

Pruning is realized inside the enumerative algorithm, bppEkg
traces that may lead to the redundant CTPs.

In our method, exploration is distributed between the sylimbo
component which verifies a particular CTP and the enumerativ
component which explores the space of CTPs. The CTP partitio
ing is effective for pruning the search space because ofotla-
ing reasons. First, a CTP partition has significantly fewiezrieav-
ings than the whole program, making it more amenable to s}imbo
analysis. Second, for terminating programs (w.r.t. antjpie set

LIn this paper,SAT formuladenotes a formula either in Boolean
logic or in a quantifier-free first-order logiSAT solverdenotes a
decision procedure of SAT formulas.

of CTPs is finite. Third, decomposing the verification probl@to

subproblems over the CTPs does not negatively affect partiar

reduction. By definition, if one interleaving is in the CTReh so
are all its trace-equivalent interleavings. In other wovds need to
consider no more than the interleavings within a CTP to gefuh

benefit of POR. For symbolic POR techniques [11, 22], restidc
the set of executions to each CTP significantly lowers theding

overhead.

While this language is simple, by defining expressions blyitand
using source-to-source transformations, we can modeltatié-s
ments in multi-threaded C. We omit the details on modelirg th
C language constructs such as pointers and structureg, tiag
are not directly related to concurrency; for more inforroatiefer
to recent efforts in [3, 10, 13].

The guarded assignment acti¢assume(c), asgn) may have
the following variants: (1) when = true, it can represent normal

Our method also uses SAT-based symbolic analysis to provide assignments; (2) when the assignment set is empgyme(c) it-

crucial pruning capability to the enumerative exploratitie use
pruning to meet two objectives. First, we want to ensure shiat-
bolic analysis inCheck works on distinct CTPs to avoid duplicated
work. Second, when a CTP is proved to be error-free, if it iegl
that some other CTPs in future search are error-free as well,
want to avoid generating these CTPs. We propose a conservati
analysis of the observed CTPs to identify these two typesof r
dundant CTPs. Note that pruning redundant CTPs is orthdgona
applying POR to each individual CTP.

self can represent thehen-branch of an f (c) - el se statement,
while assume(—c) can represent thel se-branch; and (3) with
both guard and assignments, it can represent an amitk-and-
set which is the foundation of all kinds of synchronizationmr
tives. In particular, we precisely capture the semanticallofyn-
chronization primitives in the standalRT hreaddibrary. For exam-
ple, acquiring lockk in threadT; is modeled agassume(lk =
0),{lk := i}), wherei is the thread id; and acquiring the count-
ing semaphorae is modeled agassume(se > 0), {se := se —

We have implemented the proposed techniques and conductedl}). Actions fork and join represent thread creation and ter-

experiments on some multithreaded C programs written ukiag
POSIX threadsRThreads library. Our preliminary results show
that the symbolic reduction is significantly more effectiian dy-
namic POR [6] in pruning the search space.

The remainder of this paper is organized as follows. In Sec-

tion 2, we formally define programs, traces, and CTPs. In Sec-

tion 3, we present the enumerative algorithm that produgesie
tion traces, In Section 4, we present the SAT-based algorfdr
checking property violations in a CTP, followed by the symibo
pruning algorithm in Section 5. We present our experimergal
sults in Section 6, review related work in Section 7, and give-
clusions in Section 8.

2. CONCURRENT TRACE PROGRAMS

In this section, we introduce a simple but general conctiteen
guage; we also define traces and concurrent trace programs.

2.1 Programs

A programin our language consists of a sV of shared vari-
ablesand a finite set ahreadsTy, . . ., 7. LetTid = {0, 1,...,k}
be the set of thread indices aifigl be the main thread. Each thread
T; consists of a set afontrol locationsLoc;, a set oflocal vari-
ables LV ;, and a set obperations. EachLoc; contains unique
entry and exit locationslentry, lexi Of the thread, as well as two
imaginary locationsL, T: threadT; is in L before its creation and
isin T after termination. We define operatigras a triple(l, a, '),
wherel, !’ € Loc; anda is anaction label Note that by definition,
each operatiory belongs to only one thread. L& = SV U LV;
be the set of variables accessible to thréad

Each action label in T; has one of the following forms:

e guarded assignmefitssume(c), asgn), wherec is a condi-
tion overV;, andasgn = {lval := exp} is a set of parallel
assignments, whereal € V; andexp is an expression over
Vi. Intuitively, the assignments proceed iff conditionis
true.

e fork(j), wherej € Tid andj # 1, starts the execution of
child threadT;.

e join(j), wherej € Tid andj # 4, waits for child thread’;
to terminate.

e assert(c), wherec is a condition oveW;, asserts.

mination, respectively. IPThreadslibrary, they correspond to
pt hread_creat e andpt hread_j oi n. Action assert(c) speci-
fies the correctness property, and it corresponds to thetiasse
function in the standard C library.

2.2 Execution Traces

We have defined operatiopn= (i1, a,l2), wherel1,l2 € Loc;,
as the instance of a statement in tkté thread. This is needed be-
cause a statement in the textual representation of a nrekitled C
program may be executed by multiple threads. Furthermoree s
each operatiory may be executed more than once within a thread,
e.g., when it is in a loop, we defirevent t = (I¥,a,1%), where
k € N, to denote thé:-th instance ofy in an execution trace.

We define the semantics of a program usirgteeled transition
systemlLetV = SV UJ, LV be the set of variables in the pro-
gram. LetVal be a set of values for variables in. Val contains
a special symboll 77, denoting the uninitialized value. We also
assume that when thredd is in locations_L or T, all local vari-
ables inSV; have the valuel ;. A stateof the program is a tuple
s = (ov, PC), whereov : V — Val assigns a value to each
variable, andPC' is a function mapping each threadide T'id
to its current control locatioh € Loc;. For convenience, we may
uses[v] ands[exp] to denote the values af andexp in states.

Transitions have the form —— s, wheres = (o, PC) and
s’ = (o, PC") are states, antis an event. Intuitively, the exis-
tence of such a transition means: the program state chargas f
s to s’ when we executé. More formally, lett = (I, a,l") be an
event of thread’;; there exists atransition —— s’ iff PC(i) =1,
PC'(i) =1’, and one of the following conditions holds:

e a = (assume(c),asgn), s[c] = true; for eachlval := exp
in asgn, s'[lval] = s[ezp]; and states, s” agree otherwise.

e a = fork(j), PC(5) = L, PC'(j) = lentry, Wher€lepry €
Loc; is the entry off;; and states, s’ agree otherwise.

o a = join(j), PC(j) = lewit, PC'(j) = T, wherelegi: €
Loc; is the exit ofT}; and states, s’ agree otherwise.

e a = assert(c), s[c] = true; and states, s’ agree otherwise.
Note that ifs[c] = false, an error will be raised.

Based on the above semantics, we define the execution traces.

DEFINITION 1. LetP be a program and be the initial state.
Letp = ¢1...t, be an event sequence. The tufle, p) defines

To T Ts
intx=0; foo() { bar() {
inty =0; inta; intb;
pthread_t t1, t2; t11 a=y; tor b=x;
main() { tiz if(@==0){ oo if (b==0){
t1 pthread_create(t1,foo); tis x=1; t23 y=1;
to pthread_create(t2,bar); tia a=x+1; toa b=y+1;
ts pthread_join(t2); tis x=a; tas y=b;
ta pthread_join(t1); tig Jelse tog Jelse
ts assert(x I=y); ti7 x=0; ta7 y=0;
1 tig} tag }
(below is the trace)
ThreadT): ThreadT’ ThreadT>
to: x=0,y=0;
tq1: fork(1)
to: fork(2)
> ty1: @y
t12: assume(a=0)
t13: x=1;
t14: @=x+1;
t15: X=a;
ti1g:
> toq: b=X;
toe: assume(b-0)
to7: y=0;
< tog:
ts: join(2)
t4: join(1)

ts: assertg # y);

Figure1l: A C program and one of its execution trace.

an execution trace iff there is a state sequesge. . s,, such that,
there exist transitions; 1 Ly sifore=1,...,n.

By definition all events in an execution trace are unique. hia t
sequel, we shall assume that progr&as a unique initial state;
therefore, we may usg instead of(so, p) when referring to an
execution trace.

Example. Fig. 1 shows an example of a multithreaded C program
with two shared variables andy (which can be translated into our
language). The main thred creates’; and 7> (which in turn
start runningf oo andbar , respectively), waits for them to termi-
nate, and assert{s: # y). From the initial statec = y = 0, there
exists an execution traqe = t1t2{tll—t15}t18t21t26t27t28{t3—
ts}. The events irp are shown in Fig. 1, from top to bottom, in
their execution order. Herg hr ead_cr eat e andpt hr ead_j oi n
are routines ifP Threaddibrary, directly corresponding timrk/join

in our model. Due to fork/join, the thread routirfeso andbar run
concurrently with each other. The assertiontzatiefines the cor-
rectness property, which holds in some, but not in all, etieou
traces of the program. In particular, the assertion holgs in

2.3 Concurrent Trace Programs

Let p be an execution trace affd= {¢ | t is an event irp}. We
view p as atotal order of the elements iff".

DEFINITION 2. Theconcurrent trace progra®iT P, is a par-
tially ordered set(7',C), whereT' = {t¢ | ¢ is an eventirp}, and
C is the partial order such that, for two arbitrary evernitst; € T,
we have; C t; iff ¢ = j, or one of the following conditions holds:

1. tid(t;) = tid(t;) andi < jin p,

2. tid(t;) # tid(t;) and there exist,t; € T such thatt; T
te, t1 C ty, and

e eithert, has actionfork(tid(t:)),
e ort; has actionjoin(tid(t)).

Intuitively, the first condition captures the constrairattevents in
the same thread are ordered by their execution order The sec-
ond condition says that events of a child thread happen fafitler

but beforgjoin of the parent thread. Since the partial order is con-
structed fromp, which represents a concrete program execution,
fork of a thread always comes beforejin.

Not all linearizations ofCT P, may correspond to execution
traces of the program®. Letp’ =t ..., be alinearization (total
order) of CT P,; we say thap’ is afeasible linearizatioriff o’ is an
execution trace. By definition, all feasible linearizasaf C'T P,
model the real behavior of prograf. Therefore, any error found
in CT P, is guaranteed to be a real error.

According to the definition, ifp, o’ are execution traces of the
same program and they have the same set of events_théy and
CTP, are the same. Therefore, we can regard two tracgsas
CTP-equivaleniff they have the same set of events. Now we com-
pare CTP-equivalence with the popular Mazurkiewicz-tregeiv-
alence [15]. In the POR literature, two evenist, areindepen-
dentif (1) executing one does not enable/disable another, and (2
they do not have data conflict, i.e., there does not existta sta
where botht1, t2 are enabled, access the same variable, and at least
one of them is a write. Two traces are (Mazurkiewieguivalent
iff one trace can be transformed into another by repeategips
ping adjacent independent events. Therefore, two (Magwikiz)
equivalent traces have the same set of events.

THEOREM 1. Letp1, p2 be two execution traces of prograf
If p1, p2 are (Mazurkiewicz) equivalent, theé'l’'P,, = CTP,,.

The seemingly trivial theorem has significant implicatioRecall
that classic POR relies on trace equivalence. For each (fdiazvicz)
trace equivalence class, if a representative interleakiay been
checked, the remaining interleavings are regarded as dedtiand
therefore are pruned away. Theorem 1 shows that, in ordgply a
POR, we need to consider no more than the interleavingsmwithi
a CTP, because the CTP always contains (Mazurkiewicz) agquiv
lence classes in their entirety. This allows us to take fathdfit

of the POR reduction, while focusing on smaller partitio83 P)
rather than whole programs. The overhead of symbolic engodi
of POR is also reduced.

Example. Fig. 2 illustrates the”T' P, derived from the trace
in Fig. 1. In the graph representation, nodes denote cotarol
cations and edges denote events. We Ais® indicate the start
of fork (denotedny,-1), andV to indicate the end ofoin (de-
notedn;oin). According to their semanticsfork results in si-
multaneously executing all outgoing edgesrgf,. ., while join
results in simultaneously executing all incoming edges 0f; ..
The three vertical paths in this figure, from left to rightpresents
the control flow paths i, Ty, T2, respectively. Sinc&'T P,
defines a partial order, interleavings different frenare also al-
lowed. For instance, althoughs appeared beforé,; in p, in-
sideCTP,, it is allowed to be executed aftes;. However, not
all linearizations ofC'T' P, are feasible. Consider the trapé =
t1t2t21t26t27t28{t11-t15}t1s{t3-t5}; it is not a feasible lineariza-
tion becausess :assume(b#£0) is violated. In contrast, the trace
pm = t1t2{t11-t14}t21t26t27t28t15t18{t3-t5} is a feasible lin-
earization. In Section 4, we discuss a SAT-based encodinghwh
explores only feasible linearizations 6f7'P,. Finally, note that
p""" andp are not Mazurkiewicz equivalent (and yet they are CTP-
equivalent).

Ty
ty : x=0,y=0;

FORK

2t azy;(f
tioi(a :‘0)}

tiz 1 x=1;

tiy o a—x+1T
<

tis X:?D t3 f2s
-

N

s t
JOIN
t5 : assert(x%/y);

Figure2: Theconcurrent trace program for pin Fig. 1.

3. ENUMERATIVE SEARCH

In our framework, the execution traces of a program are pro-
duced by arenumerativalgorithm that systematically explores the
concurrent program. For each execution traceve deriveC'T P,
and symbolically checlall its feasible linearizations for property
violations. If we find a bug ilCT P, it is guaranteed to be a real
bug in the program. If we do not find any bug@i’ P,, the enu-
merative algorithm moves on to the next execution trgce

In this section, we first review the baseline enumeratiom-alg
rithm, and then highlight and motivate our modifications.

3.1 Baseline Search Algorithm

The baseline enumerative algorithm is similar to dynamicleho
checking [8, 16, 23]. The algorithm is implemented in a sleda
schedulerprocess, running concurrently with the program under
verification (a separate process). Our scheduler conthelexe-
cution order of the program’s statements and records theuére
trace in a stacl§. Itis important to note that our scheduler records
only the event sequence. . . ¢;, not the concrete states represented
as variable valuations—due to the large state space, suelefus
approach often runs into scalability problems in practsstings.
We adopt the stateless model checking approach, where &deh s
s; € S is represente@mplicitly by the event sequence. . . ¢; that
leads to state; (from the initial stateso).

During the enumerative search, in eackk S, we maintain the
following data structures:

e The sets.enabled consists of all tevents that can be executed
from s; that is, it containg iff s — s’ exists for some’.

e The sets.done C s.enabled consists of all the events that
have been executed frogin some previous runs.

e The sets.backtrack C Tid consists of the enabled threads
(ids) that remains to be explored frosin future runs.

The pseudo code of our algorithm is shown in Fig. 3 (ignore
lines 4-6 and the subroutines in lines 20-41 for now). Praooed
FusION-SEARCH starts from state, and keeps executing the pro-
gram till it terminates, where termination is signaledsbynabled =
(). Each execution step is a (recursive) call tosFON-SEARCH. At
each step, a previously unexplored enabled evésmpicked from
s.enabled such thatid(t) is also in the backtrack setacktrack.

[En

. Initially: S is empty; letsp be the initial state; BSION-
SEARCH(S, so0)

: FUSION-SEARCH(S, s) {
if (s.enabled = @) {

if (CTP-CHECK-PROPERTY(S)) /I check
1
CTP-RUNE-BACKTRACKSETS(S); I/l prune

}

2
3
4
5: return bug-found;
6
7
8. dsef{

9

S.pushé);
s.backtrack «— {tid(t) | t € s.enabled};
11: s.done «— &,
12: while (3t € s.enabled: tid(t) € s.backtrack, andt ¢

s.done) {

13: s.done «— s.done U {t};

14: execute, and lets’ be a state such that> s’
15: FUSION-SEARCH(S, 5);

16: }

17: S.pop();

18:

19: }

20: CTP-GHECK-PROPERTY(S){

21: letp be the completed execution trace storedin

22: letCT P, be the concurrent trace program derived from
23: if (®crp, is satisfiable)

24 return true;
25: else

26: return false;
27: }

28: CTP-RRUNE-BACKTRACKSETS(S) {

29: letp be the completed execution trace storedin
30: IetC’TP,)+ be the concurrent trace abstraction from
31: letnbethelengthop =t ...tx;

32 for i=n—1,...,1){

33: lets be the state it beforet; € p was executed,
34: letpfx = ¢1 ...t be the prefix ofp up to thei-th step;
35: let®,s, be order constraint imposed pyx;

36: if ((‘I’CTP; A ®pi) is unsatisfiable)

37: s.backtrack — @;

38: else

39: return;

40: }

41: }

Figure3: The FUSION algorithm for symbolic pruning

Once the termination state is reached (line 3), a completewex
tion tracep can be derived from the search sta8k To move
on to the next trace, ’SION-SEARCH returns to a previous step,
picks another enabled evettsuch thattid(t) € s.backtrack,
and continues the execution. The algorithm stops whegsi&N-
SEARCH(S, so) returns.

The sets.backtrack is crucially important in affecting the search
performance. In the baseline algorithm, sinckucktrack con-
tains all threads that are enabledsatvhen the algorithm stops, all
possible interleavings of the program have been explorbdreTis
a scalability problem in the baseline algorithm, since thber of
interleavings of a nontrivial concurrent program is oftstranom-
ically large [16].

3.2 The Goal of Pruning

The goal of our symbolic analysis is to solve the aforemeetib
interleaving explosion problem. Our analysis consistswofpthases,

DEFINITION 4. A w-function, for a shared variable at the
node before its use, has the formtv:,...,vx), where eachw;
(1 <i < k) is either the most recent definition in the same thread

i.e.,checkandprune corresponding to lines 4-6 of the pseudo code (as the use), or a definition in another concurrent thread.

in Fig. 3. Recall that once the algorithm reaches line 3, Hréiqu-
lar run of the program has completed, and the execution fraee
be retrieved from the search stagk First, we call CTP-GECK-
PROPERTYto derive CT P, and check its feasible linearizations
for property violations. If we find an error i6'T P, it is a real
error and the algorithm stops. If we cannot find any errar'ifiP,,,
we call CTP-RUNE-BACKTRACK SETStO prune the future search

space. Since the enumerative search is conducted in a DFS or-

der, pruning can be realized by removing some backtracktpoin
(in s.backtrack) that correspond to the redundant CTPs.

In CTP-PRRUNE-BACKTRACKSETS, there are two challenging
problems that need to be solved. First, how to prune the treatkt
points so that, among the produced execution tragegs, . . .,
we haveCTP,, # CTP,, foralli # j. It ensures that CTP-
CHECK-PROPERTYalways works on distinct CTPs to avoid du-
plicated work. Second, how to prune the backtrack point$ab t
whenCTP,, # CTP,,, if the currentCTP,, being error-free
implies that the futur@Z’Tij is error-free as well, the redundant
tracep; will not be generated in the first place. It is important to

We construct the CSSA form of a program as follows:
1. Create unique names for local variables in their defingtio
2. Create unique names for shared variables in their defirsiti

3. Add a¢-function for each local variable at the thread-local
merging node of two branches, create a unique natrend
add definitionw «— ¢(v1,...,vx).

4. For each use of a local variable, replace the use with tle mo
recent (unique) definition.

5. For each use of a shared variab)éhe most recent definition
may not be unique (depending on the interleaving).

e Add ar-function immediately before the use, create a
unigue namev, and add definitiomw «— 7 (v1,...,vg);

e Replace the use with the newly defined

note thatwe do not (intend to) solve these two problems precisely Example. The CSSA form of the CTP in Fig. 2 is as follows:

i.e. some CTPs we check may be redundant. The main idea of our

pruning effort is to use a fast and conservative analysis;twtan

weed out many, but perhaps not all, redundant CTPs. In thie nex

two sections, we shall present symbolic algorithms for khmep
CT P, and for identifying redundant backtrack points.

4. SYMBOLICALLY CHECKING CTPS

Given CTP,, we symbolically check all its feasible lineariza-
tions for property violations. We express this verificatmoblem
as a SAT formula®crp, such that it is satisfiable iff a feasible
linearization violates the correctness property.

Although our symbolic encoding is applicable to any loopefr
concurrent program, in this section we shall present therithgn
by tailoring it to CTPs only. In the next section, we will emteit
to handle the more general case.

4.1 Constructing the CSSA Form

Our SAT encoding is based on transforming a loop-free pragra
(e.g., a CTP) into a concurrent static single assignmenS&S
form [14]. This CSSA form has the property that each variable
defined exactly once. Alefinition of variablewv is an event that
modifiesv, and auseis an event whem appears in an expression
(condition or right-hand-side of an assignment).

The transformation consists of (1) renaming variables tlase
more than one definition, (2) addingfunctions at the merging
points of if-else statements to represent the confluenceutifpie
definitions in thread-local branches, and (3) addirfginctions be-
fore shared variable uses to represent the confluence oipleult
definitions in different threads. Whilgé-functions exist in stan-

dard SSA form,r-functions are unique to concurrent programs.

Since each thread in a CTP has a single thread-local patlowtith
branchesg-functions are not needed in a CTP

DEFINITION 3. A¢-function, for alocal variable at the merg-

to: xo:= 0
Yo := 0;
ty
to :
t11 : w1 — 7(Yo, Y1) toyr : wo — w(xo, 1, T2)
ay 1= wi; by 1= wa;
ti2 : assume(a; = 0) toe : assume(by # 0)
tiz rx1 =1 tor 1 y1 1= 05
tig @ wy — 7w(x1) tog :
az = w3 + 1;
tis 1 T2 1= az;
t1g8 ¢
t3 :
tg :
ts 1 wyg — mw(x2)

ws — m(y1)
assert(ws # ws);

We createw; < 7(yo,y1) atti1 to denote the most recent def-
inition of the shared variablg. This may be either, defined in
to, or y1 defined int27. We create the othep-variables in a sim-
ilar way. Note that ther-functions forws, w4, ws have only one
parameter because their most recent definitions can beadhatie-
termined. In particular, for atts, we can statically determine that
definitionszo, 1 must happen before, due to the semantics of
fork/join—therefore they cannot be the most recent definition.

4.2 From CSSA to ¢crp,

The CSSA form in [14] was designed for compiler optimizasion
whereg¢, 7 functions are treated a®ndeterministic choicesThe
interpretation is too conservative for verification. Wesimiret them
precisely in our SAT encoding described below.

Execution time. We start by assigning each evera fresh integer
variable O(t) denoting its execution time. We udéB(t,t') to
express the constraint thiais executed beforg. In the SAT/SMT
formula, H B(t, ") is implemented as difference logicconstraint:
O(t) < O(t"), or simplyO(t) — O(t') < —1.

ing node of multiple branches of the same thread, has the form Path conditions. For all eventg in CT P, we define the path con-

¢(v1,...,vk), where eachy; (1 < i < k)is the definition ofv in
thei-th incoming branch.

2We will use¢-functions inCTPp+ (Sectionb).

dition g(t) such thatt is executed iffg(¢) is true. Consider the
graph representation of a CTP (e.g., Fig. 2); pnedecessoof an
eventt is the edge immediately preceding the graph. We define
the path condition as follows:

e If ¢ is the first event in the CTP (at the entry of main thread), 5. PRUNING REDUNDANT CTPS

letg(t) := true. The pruning problem in Section 3 can be formulated into a SAT
problem similar todcrp,. However, pruning requires an over-
5 approximation of the behavior of the program, wheré€&sp, is

9(t) = Nizy 9(t0)- an underapproximation. Detailed explanation is given devis.

Letp = t1...t, be the current trace anifx = ¢, .. .t;, where
1 <4 < n be a prefix ofp. Let W(pfx) be the set of trace§’}
such thatpfx matches a prefix op’. Assume that executingfx
leads to state. The pruning problem, i.e., whethermacktrack

e If tis ajoin, andty,...,t, are the predecessors tf let

e Otherwise, lety, ..., t; be the predecessorsiofandg;,, :=
V¥, g(t:): if t has the actiorussume(c), theng(t) :=
¢ A gin; Otherwiseg(t) := gin.

We constructbcrp as follows (crp = true initially) can be pruned away, is deciding whether the correctnesiyop
holds on all traces iWW(pfx). If the answer is yes, we do not
1. Program Order: For each event € CT P, need to generate these traces. Howegér,P, may not capture
o i) . all traces inW(pfx). Consider the CTP in Fig. 2 as an example:
o if tis the first event in the CTP, do nothing; assume thatfx = tot1tato1; continuingpfx by executingl’ leads
e otherwise, for each predecessbof ¢ in the CTP, let to the execution ofz2, which is not captured i€ P,.
dorp = Borp A HB(H). Therefore, we need to derive frgpranconcurrent trace abstrac-

tion (CTA)which models all the events in, and also (conserva-
This rule captures the program order specified in Definition 2 tively) models the untaken branches in all threads.

2. Actions: For each evente CTP, 5.1 Concurrent Trace Abstraction (CTA)

. To model both branches in ari (c) - el se statement, we add a
o if haslval := eap, letecrp == ®ore A (ol = phantom edgéor the untaken branch guarded byc). A precise
exp); modeling of the code in the untaken branch is undesirabletalue
e if t hasassert(c),let®crp := Porp A= (g(t) — c); scalability concerns. Instead, we consider appropriasgrattions
depending on the correctness properties for pruning peghos
This rule captures the standard semantics of assignmethts an For checking local assertions, a naive and yet correctatigin

assertions. The correctness prop€tyt) — c) states that is that the unobserved code may assign all variables taanpital-
must hold if¢ is executed. We negate the property to look for yes. That is, the phantom edge is labeled with gawg and the
bugs. set{v < * | v € V'} of assignments, wheré€ is the set of all pro-

gram variables. The set of assignments may set any varialale t
arbitrary value, and therefore can over-approximate aaigstent

in the program. More formally, any state transition— s’ can be

3. m-Functions: For eachw «— 7 (v1,...,vx), defined int, let
t; be the event that defines, let ®crp, =

dorp, AV, (w=vi) Ag(ts) A HB(ti, t)A simulateds 3V .
/\?zlyj#i(HB(t,‘, t;) V HB(t,t;)) However, this abstraction is too coarse to be practicalgfuls

. k o We improve over the naive approach by using a conservati st
Intuitively, the w-function evaluates te; iff it chooses the analysis of the program, conductedpriori, to identify, for each

i-th definition in ther-set. Having chosen;, all other defi- unobserved branch, the sétl C V of write-variables(variables
nitions j 7 ¢ must occur either before, or after this use of thatmay be modified In this new abstraction, the phantom edge
vi In't. assigns thelVV-variables to arbitrary values. If an assertion is

embedded in the untaken branch, we consider that it maydil a

4. ¢-Functions: For eachw « ¢(u1, ..., v), defined irt, let therefore add a special variable caltessert _fail to WV.

t; be the predecessor ofsuch thatt; is in the branch that

definesu;. Merging point. For each thread’ in a structured program, we
& assume the existence of a partial functidh : Loc; — Loc;
Scrp, == Perp, A \/(¢ = ;) A g(ts) such that, for each event(l, assume(c),l’), there isM(l) =
i1 1" which, intuitively, is the merging point of the two branchies
. . .) if(c)-else. In control flow analysis literature, such merging
That is, theg-function evaluates to; iff the branch oft; is points are calledmmediate post-dominatarsMore formally, I
executed. If no brapchlng exists in any thread, as is the Casesrictly post-dominates in a graph iffl # I and all paths from
for CTF,, this rule is not needed. [to the exit point goes througl{. And !” is the immediate post-
) L) . dominator ofl iff it is the closest strict post-dominator &f
THEOREM 2. Formula ®crp, is satisfiable iff there exists a In our implementation, we instrument all branching statetsie

feasible linearization of®T' P, violating the correctness property. of a C program to make available at runtime the merging paints

write-variables of untaken branches (compuaettiori). This code
instrumentation is illustrated in Fig. 4. First, we inseztording
routines to signal the start and end of every branch—thex tinar
branch heads and theirimmediate post-dominators. Seiroboth
branches of f - el se statement, we insert

The symbolic encoding of formul@crp directly follows the se-
mantics of CTP as defined in Section 2. Therefore, the theorem
holds by construction. Note that solutions (variable assignts)

to ®crp correspond to linearizations 6fT P.

Itis important to point out that the encoding allows inteximgs
between threads to take place, subject only to the HB-cainssr e rec-var-\WR-in-other-branch(WYV), wherelWV is the
added in rules 1 and 3. Since CTP has a finite size, the formula set of write-variables ithe otherbranch.
®crp can be expressed in a quantifier-free first-order logic. M ou 3gqr instance, for detecting data races, a practical abismef@1]

implementation, the formula is decided by an off-the-siseifisfi- uses amay-setof shared variables that are accessed in the branch
ability Modulo Theory (SMT) solver [5]. and the correspondingust-sebf locks protecting the accesses.

21: b=x;
rec- branch- begin();

22: if (b==0) {
23: y=1;
24; b=y+1;
25: y=b;

rec-var-WR-i n-ot her-branch({y});
26: } else {
27: y=-1;

rec-var-\WR-i n-ot her-branch({y, b});
28:

rec-branch-end();

Figure4: Instrumentinganii f - el se statement.

| " tai(b=0)
e X=L e £ 0)) @) e
T {7 y=0; /v,,,&*
tiy :a_x+1§f) S
@)
tis 5Xm t3 f2s

t5 : assert(x/y);

Figure5: Concurrent trace program abstraction.

In this example, when thel se-branch is executed, the record-
ing routine will tell us thatiWV = {y,b} in the untakeni f -
branch; similarly, when thef -branch is executed, we will know
thatWWV = {y} in theel se-branch.

Phantom action label. Fort = (I, assume(c),l’) at a branch
head inp, we define gphantom action labe(assume(—c), {v «—
x| v € WV}), where—c is the condition and¥ V' is the set of
write-variables of the untaken branch. Now we define the eonc
rent trace abstraction.

DEFINITION 5. The concurrent trace abstraction (CTA), denoted

CT P}, is obtained by taking’T' P, and adding a phantom edge
tpr=(l,a,l") for each untaken conditional branch, whefé =
M (1) anda is the phantom action label.

Fig. 5 shows th@TPp+ for the tracep in Fig. 2. Here solid
edges denote events inand dotted edges denote phantom edges.
In this graph, there is one phantom edge in each thread. ticpar
lar, t,n2 models the untaken branek-t2s; and its phantom action
label isapne = (assume(b = 0), {y « *,b — *}).

To understand why,.,2 is an over-approximation of the untaken
branch, consider replacings-tss in Fig. 4 with too/-to5 below:

since the set of write-variables remains the same, the Cifaires
the same.

22 if (b==0) {

23 : b=1;

24’ : whi | e(b++ < 100)
25 : y += b;

Recall that no two events in are the same. Consequently, the
graph representation of CTA is always acyclic. Suppose ttieat
entire code in Fig. 4 is embedded in a loop, then each timeothe |
body is executed, a new sequence of non-phantom eéggs will
occur aftertastar (assuming theel se-branch is taken), together
with a new phantom edgsg,,..

5.2 Semantics of Phantom Edges

The semantics of a phantom edge is different from executing a
non-phantom edge. Lét, = (I, apn,!"”) be the phantom edge,
wherea,r, = (assume(—c),{v <« = |v € WV}). The effect of
executingt, is captured by the following regular expression:

assume(—c) {v — x |ve WV}*

That is, when conditionc is true at/, the assignments may be exe-
cuted for an arbitrary but finite number of times, before thetwl
goes ta”.

Using the semantics defined above, one can prove that the phan
tom edge,,;, overapproximates the untaken branch guardeddy
all possible event sequences of the untaken branch arelettin
the above regular expression. The proof is sketched asngillo
First, any event of the untaken branch can be overapproximated
by executing{v < x| v € WV} once. Second, any finite
event sequence of the untaken branch can be overapproxitmate
{v « x| v € WV}*. For a concrete example, refer to Fig. 4.
Any of the eventsas-tos OF tos/ -tos Can be overapproximated by
the phantom edgeg,n2:assume(b = 0){y «— *,b «— *}. Con-
sequently, the representation of each threadTiP,” overapprox-
imate the behavior of the thread in progrdMm This leads to the
following observation.

OBSERVATION 1. The concurrent trace abstractigiil P, over-
approximates the behavior of prograf That is, ifp’ is an execu-
tion trace of P, theny' is a feasible linearization otE’TP,j.

Bounded Semantics. The phantom edge also hasunded seman-
ticswhen it is restricted to a particulaﬂ’TP,j. The reason is that,
for a phantom assignment « * (wherev € WV) to have any

impact, the value defined far needs to baisedby other edges
in CTP;. Only non-phantom edges carsea variable—when
the variable appears in conditions or the right-hand sidessfgn-

ments. (The guard of a phantom edge does not count because it
uses the same versions of variables as its non-phantomereunt
part.) SinceOTPj has a fixed number of non-phantom edges, the
aforementioned regular expression for is reduced as fetlow

e For each edge thatusesvariablev € WV, create a fresh
copy v as part of the CSSA construction. LBV .55, be
the set of all these fresh variables.

e The set{v «— x| v € WV} isreduced t{vy — | v; €
WYV cssa }, Where the size oV .44 is fixed.

e The effect of executing,;, is modeled by executing each in-
dividual assignment; < * (wherev; € WV .ss4) €Xactly
once, but in all possible orders.

5.3 Symbolically Encoding ¢,

The symbolic encoding for CTA closely resembles the enapdin
in Section 4.1. Below we highlight only the modifications.

Adding ¢-functions. Due to phantom edges, a thread in CTA may
have multiple control paths. Therefore;functions are needed
when we construct the CSSA form. Section 4 presents the rules

for adding and encoding-functions. As an example, the CSSA of
the CTA in Fig. 5 is as follows:

to: o =0;
yo = 0;
t1 H
t2 H
t11 :wi — (Yo, Y1, Y3) tar :wz — w(xo,x1, T2, T3)
al = wi; by 1= wa;
tio :assume(ar = 1) tpno : assume(by = 1)
tis 1x1 =1 Y1 — *
t1a :wg — w(x1) Yo — *
az = w3 + 1; by «— *
tis X2 = ag;
tpni @ assume(ay # 1) tog :assume(by # 1)
T3 — * tar 1 ys =0;
Ty — *
tig :az «— ¢(a1,az) tag bz — ¢(b1,b2)
t3
t4 .
ts 1 wy — w(x2, T4)

ws «— (Y2, Y3)
assert(ws # ws);

We adde(a1, az) and¢(bi, b2) attis andtes, to denote the most
recent definitions ok andb. In tpn2, variabley has two fresh
copies because the definition is usedtin andt¢s (not because
there are actually two definitions in the untaken branghitas).
Similarly, t,,1 defines two copies of since bothis; andts use it.

Encoding Phantom Edges. Let{v; « x| v: € WV cssq } be the
set of assignments in the phantom edgge We create an execution
time variable, denote®; (¢,), for each assignment «— x.

e Program Order: In Rule 1 of Section 4.1, we add con-

5.4 Using crp; for Pruning

The pseudo code of the pruning algorithm is presented inFig.
which starts from the last step of the current tracend for each
i =n—1,...,1, analyzes the prefigfx of p up to thei-th step.
For eachpfx, it builds formula®,, which constrains the first
steps to be the same pis. Formula® s is constructed as follows:
First, we initialize®, := true for the first event irpfx. For each
remaining event € p,

e If tisinpfx andt’ immediately precedesin pfx, let @y :=
Do N HB(H,1);

o If t & pfx, andt’ is the last event ipfx, let ®pp 1= Pppc A
HB(t',t);

THEOREM 3. Lets; be the program state after executipéx.
If formula(CDCTP+ A ®y) is unsatisfiable, the backtrack points in
P

si.backtrack can be removed.

The theorem follows from the construction éfCTP+ and s,
P

the conjunction of which captures all the buggy executiands of
W(pfx). Recall thatW(pfx), defined in Section 5, consists of all
program traces sharing the same prefix. Therefore, if formula
(CDCTP; A ®u) is unsatisfiable, then the property holds on all

execution traces iV (pfx) (the reverse need not be true).

Example. Consider the running example, and regarih Fig. 2
as the current trace in the enumerative search. Withoutyur s
bolic checking and pruning, the DPOR algorithm as in [6] vabul
backtrack to the state befores and execute-;, leading to the

straints to ensure that assignments in the phantom edge musnew execution trace’ = tot1tatiitiatistiatortastar . .. Partial

happen after the predecessor edgend before the succes-
sor edget”. That s,

HB(t', tple) =Nt vewve.., O) < Ot(tph,),
HB(tph, t") == Nyt . v,ewv,.., Otltpn) < O(t")

e 7-Functions: In Rule 3 of Section 4.1, when encoding«—
m(vi,...,05), if v; (1 < ¢ < k)is defined by phantom
edget,, and is used by edgg we defineO:(t,,) as the
execution time of assignment «— *. The HB-constraints
are as follows:

HB(tyn, 1) = Oult,n) < O(1)
HB(tj, tpn) == O(t;) < Oc(tpn)

order reduction cannot remoy# because it is not (Mazurkiewicz)
equivalent top and therefore is not deemed as redundant. How-
ever, in our methodCTP,, = CTP, and thereforep’ has al-
ready been checked by CTPHECK-PROPERTY. Consequently,
our symbolic pruning will remove this backtrack set: fafix =
to...t14, formula (CDCTP; A @5) is unsatisfiable. As a result,

we skip the trace’, backtrack, and directly generate the new trace
p" = totatatirtiator SinceCT P, # CTP,, and our subse-
quent call to symbolic checking would report that a lineatian of

CT P, fails the assertion dt.

In practice, our pruning happens only when the SAT solvergso
that (P, p+ A Ppsc) is unsatisfiableany other possible outcome
in practice (satisfiable, timeout, undecided, etc.) meanzaning.
This provides crucial flexibility in practical settings tcake trade-
offs. For instance, a timeout may be imposed on the SAT sdiver

Note that there is no need to encode the phantom assignmeents b control the time allowed for the pruning computation.

cause(v = %) always equalsrue. Furthermore, in our encoding,
phantom assignments from the satpg are not ordered with re-
spect to each other; all possible linearizations of themafogved,
in order to conservatively model behavior of the untakemba

Thus far, we have assumed that the program is structured and
the phantom action label (merging points and write-vaggaptan
be efficiently computed priori. In real-world programs, these
assumptions may not hold. We use a dadéout strategy to deal

Our encoding follows the bounded semantics of phantom edgesWith abnormals where our assumptions do not hold. When code

defined in the previous subsection.

We again use symbolic analysis to check for property viotetiin

CTP;". In this case, solutions to the SAT formula corresponds to

linearizations of the CTA. If the formula is unsatisfiabld, la-

earizations of the CTA are error-free, since the CTA is anr-ove

approximation. This implies that the entire program is pibto be
error-free. In practice, it is rare thatT'P,” would be error-free by
itself, however, when its linearizations are constrainegrefixes
of p, the searclsubspacés more likely to be error-free. We exploit
this to provide pruning in our enumerative search.

Consequently, by Oaserv
tion 1, formula @, .+ captures all possible execution traces of
P

the programP (precisely for some and conservatively for others)

in a branch havessert(c) statements, non-structured statements
(got o, | ong-junp, etc.), or otherwise complex statements that
are difficult for static analysis, we resort to using a phemtege
labeled withasser t (false) . It is implemented by adding variable
assert_fail to WV. Ifthis phantom edge is encountered during
a search on é'TP,j, an error will be raised, forcing the algorithm
to take the backtrack rather than prune it away.

6. EXPERIMENTS

We have implemented the symbolic pruning algorithms in the
setting of dynamic model checking. Our tool, callEdsion, is
capable of handling C programs using the LiRikhreaddibrary.

10000

~4—DPOR
- Fusion

1000

100

Figure6: Experimental resultson the indexer examples

Our enumerative algorithm builds emspect23], a stateless model
checker with dynamic POR. We also use it for our baseline com-
parisort. We useCIL [17] for parsing the C code, collecting write-
variables, and code instrumentation. We uséevibesSMT solver [5]

to decide the formulas for checking and pruning.

We have compareBusionwith the popular DPOR algorithm [6]
implemented ininspect DPOR uses the enumerative algorithm
with state-of-the-art POR techniques, but does not havebsiim
checking and pruning. Two sets of benchmarks were used. fBe fi
set consists of parameterized C programs, constructeduseh
with intense shared variable accesses. The LOCs (line of)cod
of these programs after slicing range from 100 to 200. Howeve
they have a large number of (irredundant) shared varialtiesases
and therefore are hard concurrency problems. Common Céaegu
features (pointers, structures, loops, and recursionpedound in
these programs. The second set consists ofrttiexerexamples
from [6], where they were used to showcase the power of DPOR.
These are multithreaded programs where each thread idgegs-
sages into a shared hash table. In all examples, the coessctn
properties are numerical assertions over the shared lesialll
benchmarks are accompanied by test cases to facilitatetiveate
execution. The experiments were conducted on a PC with 16 GH
Intel Core Duo processor and 2GB memory running Fedora 8.

(however, these collisions cannot be predicted with sefficaccu-
racy by a static analysis). For brevity, we present the dahaio
the range 10-20. The results showed that the symbolic pguinin
Fusion has significantly reduced the search space.

We believe that our implementation can be further improwed b
adding light-weight static analysis to simplify the CTP#dve sub-
jecting them to SAT-based algorithms. We are also in thege®c
of implementing context-bounding [16] (a powerful unsouwed
duction orthogonal to ours) upon our symbolic encoding. édev
theless, Table 1 shows that, even with a preliminary implame
tion, the overhead of symbolic analysis is well compenshtetthe
savings over pruned traces.

7. RELATED WORK

Among the stateless model checkers that target the same prob
lem as ours, VeriSoft [8], CHESS [16], and Inspect [23] are th
closest related ones. However, as we pointed out earlief, thlem
are based on the purely enumerative algorithms. None of tream
property specific search space pruning. In a previous wa@k j2e
have used the notion of property driven pruning for data dee
tection. However, the method was also purely enumerativeuf
knowledge, the notions of CTP, CTP-equivalent traces, gna s
bolic pruning have not appeared in existing work in the tare.

For our method to prove bug-freedom, the program must be ter-
minating with respect to the input (no liveness cycle). Thiguire-
ment is also shared by all existing algorithms based onletze
model checking [8, 16, 23, 24]. In practice, this is not a gigant
limitation, because most concurrent programs are in faotitet-
ing or can be made so using a testing harness during verdficati
For nonterminating programs, our method can be used as aédun
analysis tool dedicated for bug-finding, by bounding thecexien
depths like in CHESS [16].

Our symbolic encoding is related to, but is different fromme t
SSA-based SAT encoding [3, 13], which is popular for sequen-
tial programs. We usdifference logicto directly capture the par-
tial order. This differs from CheckFence [1], which expligien-
codes ordering between all pairs of events in pure Boolegit.lo

Table 1 shows the results on the first set of benchmarks. The TCBMC [18] and the work in [11, 22, 7, 12] are also closely re-

first four columns show the statistics of the test casesudiay
the name, the number of threads, and the number of visiblg®ve
(accesses to shared variables), and whether the assedids h

lated, but they do not use CSSA; we believe that CSSA famshta
more succinct SAT encoding. Furthermore, all the aforerorat
methods were applied to whole programs and not to trace @nugr

Columns 5-10 compare the two methods in terms of the number of and symbolic pruning was not used by any of them.

execution traces generated, the number of executed eagwtshe
total runtime in seconds. Both methods exhaustively exptbe
search space unless a property violation is found. A redidti
the number of traces demonstrates Fusion’s pruning catyabi
almost all cases, Fusion explores the search space moiiergffic
by checking only a few traces/CTPs and pruning away the remai
ing ones. In contrast, DPOR, without any property specifimpr
ing, has to enumerate a large number of trace equivalenssesla
(in pBch4okall the equivalence classes). Fusion found the buggy
executions in théa02examples by SAT and the onesgBch4and
dynRedyy dynamic execution.

Figure 6 shows the results on thelexerexamples. In this fig-
ure, thex-axis is the number of threads and ghexis is the runtime
in seconds to find the bug. The correctness property is antiasse
starting that a particular hash entry cannot be over-writi&hen
the number threads is from 1 to 11, there is no hash table colli
sion; but from 12 to 20, there are many collisions among tisea

At present, we handle C/C++ programs on the Linux/PThreads
platform. Therefore, a direct comparison is difficult to foem
against CHESS [16], another stateless model checker, atgsts
programs on the Windows platform.

Our goal of checking alternative interleavings of a coreteice
is related to various predictive testing techniques [19P2¢dictive
testing aims at detecting concurrency errors during rustiram
observing the good (non-error) execution traces of coeotiro-
grams. However, predictive testing does not use the nofi@T®
and does not (intend to) cover all feasible linearizatidres@TP. In
contrast, it often inspects only a small subset of thesatinations
that conform to a happens-before causality model. In ou,cae
not only check all feasible linearizations of a CTP (derifiesm
the given trace), but also exhaustively explore the spa€eTéfs.

8. CONCLUSIONS

We have presented new symbolic reduction methods for pgunin
the property specific redundant execution traces of coantipro-
grams. Our method uses an enumerative algorithm to exghere t
space of CTPs, and uses SAT-based symbolic algorithms ify ver
each individual CTP. We also use a conservative analysideio-i
tify redundant CTPs with respect to the property and prueenth
away during the enumerative exploration. Our preliminaqyes-
imental results show that symbolic reduction can be signifiy
more effective than classic POR in pruning the search space.

9.
(1]

(2]
(3]

[4]

[5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

Table 1. Comparing the performance of Fusion and DPOR

Test Program Fusion (in C3) DPOR (in Inspect)
name # threads| global-ops| property || traces| transitions| time(s)| traces| transitions| time (s)
fa02-1 2 21 false 1 32 0.2 34 545 6.6
fa02-5 2 73 false 1 84 0.8 190 8349 47.5
fa02-10 2 138 false 1 149 1.4 390 29904 108.6
pBch4-5 2 28 false 2 59 0.5 64 472 13.8
pBch4-10 2 48 false 2 89 0.6 274 2082 55.9
pBch4-20 2 88 false 2 149 1.3 1144 10842 248.7
pBch4ok-1 2 12 true 4 49 19 5 50 14
pBch4ok-3 2 28 true 11 211 6.9 152 1445 32.7
pBch4ok-4 2 36 true 18 385 19.6 1164 10779 255.8
pBch4ok-5 2 44 true 27 641 40.1 - - >3600
dynRec-0 2 18 false 1 16 3.1 3 32 1.1
dynRec-1 3 36 false 3 63 3.3 788 7852 534.0
dynRec-2 4 54 false 5 131 7.9 - - >3600
dynRec-3 5 72 false 7 219 17.2 - - >3600
dynRec-4 6 90 false 9 327 35.3 - - >3600
dynRec-5 7 108 false 11 455 715 - - >3600
dynRec-6 8 126 false 13 603 106.4 - - >3600
REFERENCES [13] S. Lahiriand S. Qadeer. Back to the future: revisitinggise

S. Burckhardt, R. Alur, and M. Martin. CheckFence:
checking consistency of concurrent data types on relaxed
memory models. liProgramming Language Design and
Implementationpages 12—-21. ACM, 2007.

F. Chen and G. Rosu. Parametric and sliced causality. In
Computer Aided Verificatigrpages 240—253. 2007.

E. M. Clarke, D. Kroening, and F. Lerda. A tool for checgin
ANSI-C programs. Infools and Algorithms for Construction
and Analysis of Systensages 168-176. Springer, 2004.
B. Cook, D. Kroening, and N. Sharygina. Symbolic model
checking for asynchronous boolean programsShiN
Workshop on Model Checking Softwapages 75-90.
Springer, 2005.

B. Dutertre and L. de Moura. A fast linear-arithmetic\sai
for dpli(t). In Computer Aided Verificatigrpages 81-94.
Springer, 2006.

C. Flanagan and P. Godefroid. Dynamic partial-order
reduction for model checking software. Rrinciples of
programming languagegages 110-121, 2005.

M. Ganai and A. Gupta. Efficient modeling of concurrent
systems in BMC. IrSPIN Workshop on Model Checking
Software pages 114-133. Springer, 2008.

P. Godefroid. Software model checking: The VeriSoft
approachFormal Methods in System Desidt6(2):77-101,
2005.

O. Grumberg, F. Lerda, O. Strichman, and M. Theobald.
Proof-guided underapproximation-widening for
multi-process systems. Principles of programming
languagespages 122-131, 2005.

F. Ivartic, I. Shlyakhter, A. Gupta, M.K. Ganai, V. Kahlon,
C. Wang, and Z. Yang. Model checking C program using
F-Soft. Ininternational Conference on Computer Design
pages 297-308, October 2005.

V. Kahlon, A. Gupta, and N. Sinha. Symbolic model
checking of concurrent programs using partial orders and
on-the-fly transactions. IGomputer Aided Verificatiogn
pages 286-299. Springer, 2006.

V. Kahlon, C. Wang, and A. Gupta. Monotonic partial arde
reduction: An optimal symbolic partial order reduction
technique. IfComputer Aided Verificatigrpages 398-413,
20009.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

program verification using SMT solvers. Rrinciples of
Programming Languagepages 171-182. ACM, 2008.

J. Lee, D. Padua, and S. Midkiff. Basic compiler algamits
for parallel programs. IRrinciples and Practice of Parallel
Programming pages 1-12, 1999.

A. W. Mazurkiewicz. Trace theory. IAdvances in Petri

Nets pages 279-324. Springer, 1986.

M. Musuvathi and S. Qadeer. CHESS: Systematic stress
testing of concurrent software. lrogic-Based Program
Synthesis and Transformatiopages 15-16. Springer, 2006.
G. Necula, S. McPeak, S. Rahul, and W. Weimer. CIL:
Intermediate language and tools for analysis and
transformation of ¢ programs. International Conference
on Compiler Constructiarpages 213—-228. Springer, 2002.
|. Rabinovitz and O. Grumberg. Bounded model checkihg o
concurrent programs. I8omputer Aided Verificatiorpages
82-97. Springer, 2005.

K. Sen, G. Rosu, and G. Agha. Detecting errors in
multithreaded programs by generalized predictive anslysi
executions. IFormal Methods for Open Object-Based
Distributed System@ages 211-226. Springer, 2005.

J. P. M. Silva and K. A. Sakallah. Grasp—a new search
algorithm for satisfiability. Innternational Conference on
Computer-Aided Desigmpages 220-227, November 1996.
C. Wang, Y. Yang, A. Gupta, and G. Gopalakrishnan.
Dynamic model checking with property driven pruning to
detect race conditions. lautomated Technology for
Verification and AnalysisSpringer, 2008.

C. Wang, Z. Yang, V. Kahlon, and A. Gupta. Peephole pérti
order reduction. ITools and Algorithms for Construction
and Analysis of Systensages 382—-396. Springer, 2008.

Y. Yang, X. Chen, and G. Gopalakrishnan. Inspect: A
Runtime Model Checker for Multithreaded C Programs.
Technical Report UUCS-08-004, University of Utah, 2008.
Y. Yang, X. Chen, G. Gopalakrishnan, and C. Wang.
Automatic discovery of transition symmetry in multithreaid
programs using dynamic analysis.3RIN workshop on
Software Model Checkin@009.

