
Smooth Interpretation ∗

Swarat Chaudhuri
Pennsylvania State University

swarat@cse.psu.edu

Armando Solar-Lezama
MIT

asolar@csail.mit.edu

Abstract
We presentsmooth interpretation, a method for systematic approx-
imation of programs by smooth mathematical functions. Programs
from many application domains make frequent use of discontin-
uous control flow constructs, and consequently, encode functions
with highly discontinuous and irregular landscapes. Smooth in-
terpretation algorithmically attenuates such irregular features. By
doing so, the method facilitates the use of numerical optimization
techniques in the analysis and synthesis of programs.

Smooth interpretation extends to programs the notion ofGaus-
sian smoothing, a popular signal-processing technique that filters
out noise and discontinuities from a signal by taking its convolu-
tion with a Gaussian function. In our setting, Gaussian smooth-
ing executes a programP according to a probabilistic semantics.
Specifically, the execution ofP on an inputx after smoothing is as
follows: (1) Apply a Gaussian perturbation tox—the perturbed in-
put is a random variable following a normal distribution with mean
x. (2) Compute and return theexpected outputof P on this per-
turbed input. Computing the expectation explicitly would require
the execution ofP on all possible inputs, but smooth interpretation
bypasses this requirement by using a form of symbolic execution
to approximate the effect of Gaussian smoothing onP .

We apply smooth interpretation to the problem ofsynthesiz-
ing optimal control parametersin embedded control applications.
The problem is a classic optimization problem: the goal hereis to
find parameter values that minimize the error between the result-
ing program and a programmer-provided behavioral specification.
However, solving this problem by directly applying numerical opti-
mization techniques is often impractical due to discontinuities and
“plateaus” in the error function. By “smoothing out” these irregu-
lar features, smooth interpretation makes it possible to search the
parameter space efficiently by a local optimization method.Our
experiments demonstrate the value of this strategy in synthesizing
parameters for several challenging programs, including models of
an automated gear shift and a PID controller.

Categories and Subject Descriptors D.2.2 [Software Engineer-
ing]: Design Tools and Techniques; F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages; G.1.6 [Nu-

∗ The research in this paper was supported by the MIT CSAI Lab and the
National Science Foundation (CAREER Award #0953507).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’10, June 5–10, 2010, Toronto, Ontario, Canada.
Copyright c© 2010 ACM 978-1-4503-0019/10/06. . . $10.00

(a) (b)

(c) (d)

x1 x1

x2 x2

z z

Figure 1. (a) A crisp image. (b) Gaussian smoothing. (c)
Error : “z := 0; if (x1 > 0 ∧ x2 > 0) then z := z − 2”. (c)
Gaussian smoothing ofError .

merical Analysis]: Optimization; G.1.0 [Numerical Analysis]: Ap-
proximation.

General Terms Theory, Design, Verification

Keywords Program Smoothing, Continuity, Parameter Synthesis,
Abstract Interpretation, Operational Semantics

1. Introduction
It is accepted wisdom in software engineering that the dynamics
of software systems are inherently discontinuous, and thatthis
makes them fundamentally different from analog systems whose
dynamics are given by smooth mathematical functions. Twenty-
five years ago, Parnas [17] attributed the difficulty of engineering
reliable software to the fact that “the mathematical functions that
describe the behavior of [software] systems are not continuous.”
His argument for using logical methods in software analysiswas
grounded in the fact that logic, unlike classical analysis,can handle
discontinuous systems.

In the present paper, we show that while software systems may
indeed represent highly nonsmooth functions, theapproximationof
program semantics by smooth functions is plausible and of poten-
tial practical value. In particular, we show that such approximations
can facilitate the use of local numerical optimization in the analy-
sis and synthesis of programs. Local optimization is usually infea-
sible for these problems because the search spaces derived from
real-world programs are full of “plateaus” and discontinuities, two
bêtes noires of numerical search algorithms. However, we show
that these problems can be partially overcome if numerical search
is made to operate onsmooth approximationsof programs.

Gaussian smoothing Smooth approximations of programs can be
defined in many ways. Our definition is inspired by the literature

on computer vision and signal processing, where numerical opti-
mization is routinely used on noisy real-world signals, andoften
runs into problems as well. In signal processing, a standardso-
lution to these problems is to preprocess a signal usingGaussian
smoothing[19], an elementary technique for filtering out noise and
discontinuities from a signal by taking its convolution with a Gaus-
sian function. The result of Gaussian smoothing is a smooth,com-
paratively well-behaved signal—for example, applying Gaussian
smoothing to the image in Figure 1-(a) results in an image as in
Figure 1-(b). Local optimization is now applied more profitably to
this smoothed signal.

We show that a similar strategy can enable the use of numerical
search techniques in the analysis of programs. Our first contribution
is to introduce a notion of Gaussian smoothing for programs.In our
setting, a Gaussian smoothing transform is an interpreter that takes
a programP whose inputs range overRK , and executes it on an
inputx according to the following nontraditional semantics:

1. Perturbx using a Gaussian probability distribution with mean
0. The perturbed input is a random variable following a normal
distribution with meanx.

2. Execute the programP on this perturbed input. The output is
also a random variable—compute and return its expectation.

If [[P]] is the denotational semantics ofP , the semantics used by
Gaussian smoothing is captured by the following function[[P]]:

[[P]](x) =

∫

y∈RK

[[P]](y) fx,σ(y) dy. (1)

wherefx,σ is the density function of the random input obtained by
perturbingx.

Note that [[P]] is obtained by taking theconvolutionof [[P]]
with a Gaussian function. Thus, the above definition is consistent
with the standard definition of Gaussian smoothing for signals and
images. To see the effect of smoothing defined this way, letP be

z := 0; if (x1 > 0 ∧ x2 > 0) then z := z− 2

wherez is an output variable andx1 andx2 are input variables. The
semantics ofP is graphed in Figure 1-(c). SmoothingP attenuates
its discontinuities, resulting in a program with the semantic map
shown in Figure 1-(d).

Smooth interpretation The main challenge in program smooth-
ing is to algorithmically perform Gaussian smoothing on a program—
i.e., for a programP and an inputx, we want to compute the con-
volution integral in Equation 1. Unfortunately, solving this integral
exactlyis not possible in general:P can be a complex imperative
program, and its Gaussian convolution may not have a closed-form
representation. Consequently, we must seek approximate solutions.
One possibility is to discretize—or sample—the input spaceof P
and compute the convolution numerically. This approach, while
standard in signal processing, just does not work in our setting.
The problem is that there is no known way to sample the input
space ofP while guaranteeing coverage of the executions that
significantly influence the result of smoothing (a similar problem
afflicts approaches to program testing based on random sampling).
This means that approximations of[[P]](x) using discretization
will usually be hopelessly inaccurate. Consequently, we compute
the integral using approximate symbolic methods.

As our integral involves programs rather than closed-form math-
ematical functions, the symbolic methods we use to solve it come
from abstract interpretation and symbolic execution [5, 11, 14, 18,
20] rather than computer algebra. Our algorithm—calledsmooth
interpretation—uses symbolic execution to approximate the prob-
abilistic semantics defined earlier.

The symbolic states used by smooth interpretation are probabil-
ity distributions (more precisely, each such state is represented as
a Gaussian mixture distribution; see Section 3). Given an inputx,
the algorithm first generates a symbolic state representinga normal
distribution with meanx. Recall that this is the distribution of the
random variable capturing a Gaussian perturbation ofx. NowP is
symbolically executed on this distribution, and the expected value
of the resulting distribution is the result of smooth interpretation.

The approximations in smooth interpretation are required be-
cause what starts as a simple Gaussian distribution can turnarbi-
trarily complex through the execution of the program. For exam-
ple, conditional branches introduce conditional probabilities, as-
signments can lead to pathological distributions defined interms
of Dirac delta functions, and join points in the program require
us to compute themixtureof the distributions from each incoming
branch. All of these situations require smooth interpretation to ap-
proximate highly complex distributions with simple Gaussian mix-
ture distributions.

Despite these approximations, smooth interpretation effectively
smooths away the discontinuities of the original program. By tun-
ing the standard deviation of the input distribution, one can control
not just the extent of smoothing, but also the amount of information
lost by the approximations performed by smooth interpretation.

Parameter synthesis Finally, we show that smooth interpretation
can allow easier use of numerical optimization techniques in pro-
gram analysis and synthesis. The concrete problem that we con-
sider isoptimal parameter synthesis, where the goal is to automat-
ically instantiate unknown program parameters such that the resul-
tant program isas close as possibleto meeting a behavioral specifi-
cation. This problem is especially important for embedded control
programs (e.g., PID controllers). The dynamics of such programs
often depend crucially on certain numerical control parameters. At
the same time, “good” values of these parameters are often difficult
to determine from high-level insights.

Suppose we are given a control programP with unknown pa-
rameters, a model of the physical system that it controls, and a spec-
ification defining the desired trajectories of the system on various
initial conditions. The optimal parameter synthesis problem forP
is defined as follows. Let us define a functionError that maps each
instantiationx of the control parameters to a real value that captures
the deviation of the observed and specified trajectories of the sys-
tem on the test inputs. Our goal is to findx such thatError(x) is
minimized.

In theory, the above optimization problem can be solved by
a local, nonlinear search technique like the Nelder-Mead simplex
method [15]. The appeal of this method is that it is applicable in
principle to discontinuous objective functions. In practice, such
search fails in our context as the functionError can be not only
discontinuous butextremely discontinuous. Consider a program of
the form

for(i := 0; i < N; i := i+ 1){if (x < 0){. . . }}.

Here the branch inside the loop introduces a potential discontinuity;
sequential composition allows for the possibility of an exponential
number of discontinuous regions. On such highly discontinuous
functions, all numerical techniques fare poorly. Secondly, like any
other local search method, the Nelder-Mead method suffers from
“plateaus” and “troughs”, i.e., regions in the function’s landscape
consisting of suboptimal local minima. An example of such a
failure scenario is shown in Figure 1-(c). Here, if the localsearch
starts with a point that is slightly outside the quadrant(x1 >
0)∧(x2 > 0), it will be stuck in a region where the program output
is far from the desired global minimum. In more realistic examples,
Error will have many such suboptimal regions.

However, these difficulties can often be overcome if the search
runs on a smoothed version ofError . Such a function is shown in
Figure 1-(d). Note that the sharp discontinuities and flat plateaus of
Figure 1-(c) are now gone, and any point reasonably close to the
quadrant(x1 > 0) ∧ (x2 > 0) has a nonzero downhill gradient.
Hence, the search method is now able to converge to a value close
to the global minimum for a much larger range of initial points.

The above observation is exploited in an algorithm for param-
eter synthesis that combines Nelder-Mead search with smooth in-
terpretation. The algorithm tries to reconcile the conflicting goal of
smoothing away the hindrances to local optimization, whilealso
retaining the core features of the expression to be minimized. The
algorithm is empirically evaluated on a controller for a gear shift,
a thermostat controller, and a PID controller controlling awheel.
Our method can successfully synthesize parameters for these ap-
plications, while the Nelder-Mead method alone cannot.

Summary of contributions and Organization Now we list the
main contributions of this paper and the sections where theyappear:

• We introduce Gaussian smoothing of programs. (Section 2)

• We present an algorithm—smooth interpretation—that uses
symbolic execution to approximately compute the smoothed
version of a program. (Section 3)

• We demonstrate, via the concrete application of optimal param-
eter synthesis, that smooth interpretation facilitates the use of
numerical search techniques like Nelder-Mead search in pro-
gram analysis and synthesis. (Section 4)

• We experimentally demonstrate the value of our approach to
optimal paramater synthesis using three control applications.
(Section 5)

2. Gaussian smoothing of programs
In this section, we introduce Gaussian smoothing of programs.
We start by fixing, for the rest of the paper, a simple language
of imperative programs. Programs in our language maintain their
state inK real-valued variables namedx1 throughxK. Expressions
can be real or boolean-valued. LetE andB respectively be the
nonterminals for real and boolean expressions,op stand for real
addition or multiplication, andm be a real constant. We have:

E ::= xi | m | op(E1,E2)
B ::= E1 > E2 | B1 ∧ B2 | ¬B

ProgramsP are now given by:

P ::= skip | zi := E | P ; P | while B { P }

| if B then P else P .

2.1 Crisp semantics

Now we give a traditional denotational semantics to a program. To
distinguish this semantics from the “smoothed” semantics that we
will soon introduce, we refer to it as thecrispsemantics.

Let us first define astateof a programP in our language as
a vectorx ∈ R

K , wherex(i), the i-th component of the vector,
corresponds to the value of the variablexi. The crisp semantics
of each real-valued expressionE appearing inP is a map[[E]] :
R

K → R such that[[E]](x) is the value ofE at the statex.
The crisp semantics of a boolean expressionB is also a map
[[B]] : RK → R; we have[[B]](x) = 0 if B is false at the state
x, and 1 otherwise. Finally, form ∈ R, x[i 7→ m] denotes the state
x′ that satisfiesx′(i) = m, and agrees withx otherwise.

Using these definitions, we can now express the crisp seman-
tics of P . For simplicity, we assume thateach subprogram ofP
(includingP itself) terminates on all inputs.

Definition 1 (Crisp semantics). LetP ′ be an arbitrary subprogram
of P . The crisp semantics ofP ′ is a function[[P ′]] : RK → R

K

defined as follows:

• [[skip]](x) = x.
• [[xi := E]](x) = x[i 7→ [[E]](x)]

• [[P1;P2]](x) = [[P2]]([[P1]](x)).

•
[[if B then P1 else P2]](x) =

[[B]](x) · [[P1]](x) + [[¬B]](x) · [[P2]](x).
• LetP ′ = while B { P1 }. Then we have

[[P ′]](x) = x · [[¬B]](x) + [[B]](x) · [[P ′]]([[P1]](x)).

Note that[[P ′]](x) is well-defined asP ′ terminates on all inputs.

If [[P]](x) = x′, thenx′ is theoutputof P on theinputx.

2.2 Smoothed semantics and Gaussian smoothing

Let us now briefly review Gaussian (or normal) distributions. Re-
call, first, the probability density function for a random variableY
following a 1-D Gaussian distribution:

fµ,σ(y) = (1/(
√
2πσ)) e−(y−µ)2/2σ2

. (2)

Hereµ ∈ R is the mean andσ > 0 thestandard deviation.
A more general setting involves random variablesY ranging

over vectors of reals. This is the setting in which we are interested.
We assume thatY hasK components (i.e.,Y ranges over states
of P), and that these components are independent variables. In this
case, the joint density function ofY is aK-D Gaussian function

fµ,σ(y) =

K
∏

i=1

fµ(i),σ(i)(y(i)) (3)

Hereσ ∈ R
K > 0 is the standard deviation, andµ ∈ R

K is
the mean. Thesmoothed semanticsof P can now be defined as a
smooth approximation of[[P]] in terms offµ,σ .

Definition 2 (Smoothed semantics). Let β > 0, σ = (β, . . . , β),
and let the functionfx,σ be defined as in Equation (3). The
smoothed semanticsof P with respect toβ is the function[[P]]β :

R
K → R

K defined as follows:

[[P]]β(x) =

∫

y∈RK

[[P]](y) fx,σ(y) dy.

The function[[P]]β(x) is the convolutionof the function[[P]]
and aK-D Gaussian with mean0 and standard deviationσ =
(β, . . . , β). The constantβ is said to be thesmoothing parameter.
Whenβ is clear from the context, we often denote[[P]]β by [[P]].

Smoothed semantics is defined not only at the level of the
whole program, but also at the level of individual expressions. For
example, the smoothed semantics of a boolean expressionB is

[[B]]β(x) =

∫

y∈RK

[[B]](y)fx,σ(y) dy

whereσ = (β, . . . , β).
We use the phrase “Gaussian smoothingof P (with respect to

β)” to refer to the interpretation ofP according to the smoothed
semantics[[◦]]β . Note that Gaussian smoothing involves comput-
ing the convolution of[[P]] and a Gaussian function—thus, our
terminology is consistent with the standard definition of Gaussian
smoothing in image and signal processing. The following examples
shed light on the nature of Gaussian smoothing.

Figure 2. (a) A sigmoid. (b) A bump.

Example 1. Consider the boolean expressionB : (x0 − a) > 0,
wherea ∈ R. We have:

[[B]]β(x) =

∫ ∞

−∞
[[P]](y)fx,β(y) dy = 0 +

∫ ∞

a

fx,β(y) dy

=

∫ ∞

0

1√
2πβ

e−(y−x+a)2/2β2

dy =
1 + erf(x−a√

2β
)

2

wherex ranges over the reals, anderf is the Gauss error function.
Figure 2-(a) plots the crisp semantics[[B]] of B with a =

2, as well as[[B]]β for smoothing with Gaussians with standard
deviationsβ = 0.5 andβ = 3. While [[B]] has a discontinuous
“step,” [[B]]β is a smooth S-shaped curve, or asigmoid. As we

decreaseβ, the sigmoid[[B]]β becomes steeper and steeper, and
at the limit, approaches[[B]].

Along the same lines, consider the boolean expressionB ′ : a <
x0 < c, wherea, c ∈ R. We can show that

[[B ′]]β(x) =
erf(c−x√

2β
) + erf(x−a√

2β
)

2
.

The functions[[B ′]] and[[B ′]]β , with a = −5, c = 5, andβ = 0.5
and 2, are plotted in Figure 2-(b). Once again, discontinuities are
smoothed, and asβ decreases,[[B ′]] approaches[[B]].

Example 2. Let us now consider the following programP :

if x0 > 0 then skip else x0 := 0.

It can be shown that for allx ∈ R,

[[P]]β(x) = x
1 + erf(x√

2β
)

2
+

βe−x2/2β2

2
.

We note that the smoothed semantics of a programP can be for-
mulated as the composition of the smoothed semantics ofP with
respect to 1-D Gaussians. This follows directly from our assump-
tion of independence among the variables in the input distribution.
Specifically, we have:fx,σ = fx(1),β fx(2),β . . . fx(K),β , where
fx(i),β is a 1-D Gaussian with meanx(i) and standard deviationβ.

Let us denote by[[P]]i,β the smoothed semantics ofP with re-
spect to thei-th variable of the input state, while all other variables
are held constant. Formally, we have

[[P]]i,β(x) =

∫

y∈R

[[P]](x′) fx(i),β(x
′) dy

wheref is as in Equation 2, andx′ is such thatx′(i) = y, and for
all j 6= i, x′(j) = x(j). It is now easy to see that:

Theorem 1. [[P]]β(x) = ([[P]]1,β ◦ · · · ◦ [[P]]K,β)(x).

2.3 Smoothed semantics: a structural view

As mentioned earlier, Definition 2 matches the traditional signal-
processing definition of Gaussian smoothing. In signal process-
ing, however, signals are just data sets, and convolutions are easy
to compute numerically. The semantics of programs, on the other

hand, are defined structurally, so a structural definition ofsmooth-
ing is much more desirable. Our structural definition of Gaussian
smoothing is probabilistic, and forms the basis of our smooth inter-
pretation algorithm defined in Section 3.

In order to provide an inductive definition of[[P]]β , we view
the smoothed program as applying a transformation on random
variables. Specifically, the smoothed versionP of P performs the
following steps on an inputx ∈ R

K :

1. Construct the (vector-valued) random variableYx with density
functionfx,σ from Equation (3). Note thatYx has meanx and
standard deviationσ = (β, . . . , β). Intuitively, the variableYx

captures the result ofperturbing the statex using a Gaussian
distribution with mean0 and standard deviationσ.

2. Apply the transformationY′
x = [[P]](Yx). Note thatY′

x is
a random variable; intuitively, it captures the output of the
programP when executed on the inputYx. Observe, however,
thatY′

x is not required to be Gaussian.

3. Compute and return the expectation ofY′
x.

One can see that the smoothed semantics[[P]]β of P is the function
mappingx to the above output, and that this definition is consistent
with Definition 2. With this model in mind, we now define a proba-
bilistic semantics that lets us define[[P]]β structurally. The key idea
here is to define a semantic map[[P]]# that models the effect of
P on a random variable. For example, in the above discussion, we
haveY′

x = [[P]]#(Yx). The semantics is very similar to Kozen’s
probabilistic semantics of programs [13]. Our smooth interpreta-
tion algorithm implements an approximation of this semantics.

Preliminaries For the rest of the section, we will letY be a
random vector overRK . If the probability density function ofY
is hY, we writeY ∼ hY. In an abuse of notation, we will define
the probabilistic semantics of a boolean expressionB as a map
[[B]]# : RK → [0, 1]:

[[B]]#(Y) = ProbY[[[B]](Y) = 1]. (4)

Assignments Modeling assignments is a challenge because as-
signments can introduce dependencies between variables, which
can often lead to very pathological distribution functions. For ex-
ample, consider a program with two variablesx0 andx1, and con-
sider the semantics of the assignmentx0 := x1.

[[x0 := x1]]
#(Y) = Y

′

After the assignment, the probability densityhY′(x0, x1) of Y′

will have some peculiar properties. Specifically,h′
Y (x0, x1) = 0

for anyx0 6= x1, yet it’s integral over allx must equal one. The
only way to satisfy this property is to define the new probability
density in terms of the Diracδ function. The Diracδ is defined
formally as a function which satisfiesδ(x) = 0 for all x 6= 0, and
with the property that

∫∞
−∞ δ(x)f(x) dx = f(0); informally, it can

be thought of as a Gaussian with an infinitesimally smallσ.
Now we define the semantics of assignment as follows:

[[xi := E]]#(Y) = Y
′ ∼ hY′ (5)

wherehY′ is defined by the following integral.

hY′(x′) =

∫

x∈RK

D(E, i,x,x′) · hY(x)dx

Here,hY is the density ofY, and the functionD(E, i,x,x′) above
is a product of deltasδ(x(0) − x′(0)) · . . . · δ([[E]](x) − x′(i)) ·
. . . · δ(x(K − 1)− x′(K − 1)), which captures the condition that
all variables must have their old values, except for theith variable,
which must now be equal to[[E]](x).

From this definition, we can see that the probability densityfor
Y′ = [[x0 := x1]]

#(Y) will equalhY′(x′)

=

∫

x0∈R

∫

x1∈R

δ(x(1)− x
′(0)) · δ(x(1)− x

′(1)) · hY(x)dx

=

∫

x0∈R

δ(x(0)′ − x
′(1)) · hY(x(0),x′(0))dx(0)

= δ(x(0)′ − x
′(1)) ·

∫

x0∈R

hY(x(0),x′(0))dx(0)

It is easy to see from the properties of the Dirac delta that the
solution above has exactly the properties we want.

Conditionals Defining the semantics of conditionals and loops
will require us to work with conditional probabilities. Specifically,
let B be a boolean expression. We use the notation(Y | B) to
denote the random variable with probability distribution

hY|B(x) =

{

hY(x)

[[B]]#
if [[B]](x) = 1

0 otherwise.
(6)

Intuitively, the distribution of(Y | B) is obtained by restricting
the domain of the distribution ofY to the points where the boolean
condition B is satisfied. Thus,(Y | B) is a random variable
following a truncated distribution. For example, ifY follows a 1-
D normal distribution and[[B]] equals(x > 0), then the density
function of (Y | B) is a half-Gaussianwhich has the shape of a
Gaussian forx > 0, and equals 0 elsewhere. Note that the density
function of(Y | B) is normalized so that its integral still equals 1.

Conditionals also require us to define the notion ofmixtureof
random variables to model the joining of information about the
behavior of the program on two different branches. Considertwo
vector-valued random variablesY1 andY2 such thatY1 ∼ h1

andY2 ∼ h2. We define themixtureof Y1 andY2 with respect
to a constantv ≥ 0 to be a random variableY1 ⊔v Y2 with the
following density function:

h(x) = v · h1(x) + (1− v) · h2(x). (7)

By combining all of the above concepts, we can now give a concise
definition of the probabilistic semantics of programs.

Definition 3 (Probabilistic semantics of programs). Let P ′ be an
arbitrary subprogram ofP (including, possibly,P itself), and letY
be a random vector overRK .

The probabilistic semantics ofP ′ is a partial function[[P ′]]#

defined by the following rules:[[P ′]]# is as follows:

• [[skip]]#(Y) = Y.

• [[xi := E]]#(Y) = Y′ defined by Equation (5).

• [[P1;P2]]
#(Y) = [[P2]]

#([[P1]]
#(Y)).

•

[[if B then P1 else P2]]
#(Y) =

let v = [[B]]#(Y) in
([[P1]]

#(Y | B)) ⊔v ([[P2]]
#(Y | ¬B)).

• LetP ′ = while B { P1 }; let us also set

Y1 = [[P1]]
#(Y | B).

For all j ≥ 0, let us define a map:

[[P ′]]#j (Y) =







Y if j = 0
let v = [[B]]#(Y) in

([[P ′]]#j−1(Y1)) ⊔v Y otherwise.

Now we define:[[P ′]]#(Y) = limj→∞[[P ′]]#j .

Of particular interest in the above are the rules for branches and
loops. SupposeP ′ equals “if B then P1 else P2,” and suppose

[[P ′]]#(Y) ∼ h′. Now consider anyx ∈ R
K . We note that an out-

put ofP ′ in the neighborhood ofx could have arisen from either the
true or the false branch ofP ′. These two “sources” are described
by the distribution functions of the variables[[P1]]

#(Y | B) and
[[P2]]

#(Y | ¬B). The valueh(x) is then the sum of these two
“sources,” weighted by their respective probabilities. This intuition
directly leads to the expression in the rule for branches.

The semantics of loops is more challenging. LetP ′ now equal
while B { P1 }. While each approximation[[P ′]]#j (Y) is com-
putable, the limit[[P ′]]#(Y) is not guaranteed to exist. While it
is possible to give sufficient conditions onP ′ under which the
above limit exists, developing these results properly willrequire a
more rigorous, measure-theoretic treatment of probabilistic seman-
tics than what this paper offers. Fortunately, our smooth interpreta-
tion algorithm does not depend on the existence of this limit, and
only uses the approximations[[P ′]]#j (Y). Therefore, in this paper,
we simplyassumethe existence of the above limit for allP ′ and
Y. In other words,[[P ′]]# is always a total function.

Smoothed semantics The smoothed semantics ofP is now easily
defined in terms of the probabilistic semantics:

Definition 4 (Smoothed semantics). Let β > 0, x ∈ R
K , and let

Y ∼ fx,σ , whereσ = (β, . . . , β) andfx,σ is as in Definition 2.
Further, suppose that for all subprogramsP ′ of the programP ,
[[P ′]]# is a total function. The smoothed semantics of the program
P is defined as

[[P]]β(x) = Exp[[[P]]#(Y)].

2.4 Properties of smoothed semantics

Before finishing this section, let us relate our smoothed semantics
of programs to the traditional, crisp semantics. We note that asβ
becomes smaller,[[P]]β approaches[[P]]. The one exception to the
above behavior involves “isolated” features of[[P]] defined over
measure-0 subsets of the input space. For example, supposeP
represents the function “if x = 0 then 1 else 0”—here, theP
outputs 1 only within a measure-0 subset ofR. In this case,[[P]]β
evaluates to 0 on all inputs, for every value ofβ.

Observe, however, that in this case, the set of inputsx for which
[[P]]β(x) and [[P]](x) disagree has measure 0. This property can
be generalized as follows. For functionsf : R

K → R
K and

g : RK → R
K , let us say thatf andg agreealmost everywhere,

and writef ≈ g, if the set of inputsx for which f(x) 6= g(x) has
measure 0. We can prove the following “limit theorem”:

Theorem 2. limβ→0 [[P]]β ≈ [[P]].

The same property can be restated in terms of the probabilistic
semantics. To do so, we will have to relate our probabilisticse-
mantics with our crisp semantics. This can be done by studying the
behavior of the probabilistic semantics when the input distribution
has all its mass concentrated around a pointx0. Such a random
variable can be modeled by a Dirac delta, leading to the following
theorem.

Theorem 3. LetY be a random vector with a distribution:

h(x) = δ(x− x0)

Then the variable[[P]]#(Y) follows the distribution

h′(x) = δ(x− [[P]](x0))

Informally speaking, the random vectorY is “equivalent” to the
(non-random) vectorx0. The above theorem states that[[P]]#(Y)
is also “equivalent,” in the same sense, to the output[[P]](x0).
Theorem 2 can now be obtained using the relationship betweenour
probabilistic and smoothed semantics.

3. Smooth interpretation
The last section defined Gaussian smoothing in terms of a prob-
abilistic semantics based on transformations of random variables.
The semantics of Definition 3, however, do not lend themselves to
algorithmic implementation. The immediate problem is thatmany
of the evaluation rules require complex manipulations on arbitrary
probability density functions. More abstractly, the smoothed se-
mantics of Definition 3 essentially encodes the precise behavior of
the program on all possible inputs, a losing proposition from the
point of view of a practical algorithm. This section describes four
approximations that form the basis of our practical smooth inter-
pretation algorithm. The approximations focus on four operations
that introduce significant complexity in the representation of den-
sity functions. These approximations are guided by our choice of
representation for the probability density functions; arguably the
most important design decision in our algorithm.

• Conditional probabilities: The use of conditional probabilities
allows the probability density functions to encode the path
constraints leading to a particular point in the execution.Path
constraints can be arbitrarily complex, so having to encode
them precisely as part of the representation of the state poses
a challenge for any practical algorithm.

• Mixture: The mixture procedure combines the state of two
different paths in the program without any loss of information.
This poses a problem because it means that by the end of the
execution, the probability density function encodes the behavior
of the program on all possible paths.

• Update:The semantics of update involve complex integrals and
Dirac deltas; a practical smoothing algorithm needs a simple
update procedure.

• Loop approximation: The probabilistic semantics defines the
behavior of loops as the limit of an infinite sequence of opera-
tions. In order to make smooth interpretation practical, wemust
be able to efficiently approximate this limit.

3.1 Random variables as Gaussian mixtures

The first important design decision in the smooth interpretation al-
gorithm is that each random variable is approximated by a random
variable following aGaussian mixture distribution. The density
functionhY of a variable following a Gaussian mixture distribu-
tion has the following form:

hY =
∑

i=0..M

wi ·
∏

j=0..K

fµi(j),βi(j) =
∑

i=0..M

wi · fµi,βi
(8)

where fµi,βi
is the density function of a Gaussian with mean

µi ∈ FK and standard deviationβi ∈ R
K .

The above equation represents a distribution withM distinct
components, where each component is a weighted Gaussian inK
independent variables. The weightswi must add up to1 to ensure
that the function above is a legal probability density function.

By assuming that all density functions have the form above, our
system can represent a random variable very compactly as a list of
triples of the form

hY = [(w0, µ0, β0), . . . , (wM , µM , βM)]

whereµi, βi ∈ R
K for all i.

Conditional probabilities The probabilistic semantics makes ex-
tensive use of conditional probabilities. Unfortunately,if a ran-
dom variableY has a density function of the form defined in
Equation (8), the variableY|B for some Boolean expressionB
is most likely not going to have that form. Our solution is to find
an approximation ofY|B that matches our canonical form. Let

hY = [m0, m1, . . .mN] wheremi = (wi, µi, βi) is a Gaus-
sian component. Our goal is to find a density functionhY|B =
[m′

0,m
′
1, . . .m

′
N] that best approximates the probability density of

Y|B. To simplify the problem, we require thatm′
i = (ti, µi, βi).

With a bit of calculus, it is easy to see that the solution is tolet

ti = wi · [[B]]#(Yi)

[[B]]#(Y)
,

whereYi follows the Gaussian distribution with meanµi and
standard deviationβi. This definition still requires us to compute
[[B]]#(Yi), but it is easy to do so approximately at runtime. Exam-
ple 1 showed how to compute this exactly for the case whenB is
of the form(xi < a) or (a < xi < c). Other cases can be handled
heuristically by rules such as

[[B1 ∧B2]]
#(Yi) = [[B1]]

#(Yi) · [[B2]]
#(Yi).

[[¬B]]#(Yi) = 1− [[B]]#(Yi).

As for computing[[B]]#(Y), it turns out we do not have to. If
we observe the rules in Definition 3, we see that every time we
useY|B, the resulting density function gets multiplied by a factor
[[B]]#(Y). Therefore, we can perform a few simple adjustments to
the evaluation rules of Definition 3 to avoid having to renormal-
ize the representation of the distribution after every step. Skipping
normalization has other benefits besides efficiency. Specifically, the
total weight of the un-normalized representation of the distribution
gives us a good estimate of the probability that the execution will
reach a particular program point. This becomes useful when deal-
ing with loop termination, as we will see further ahead.

Mixture The mixture operation is easy to implement accurately
on our chosen representation. Given two random variablesX ∼
hX andY ∼ hY with

hX = [(wX
0 , µX

0 , βX
0), . . . , (wX

M , µX
M , βX

M)]

hY = [(wY
0 , µY

0 , βY
0), . . . , (wY

N , µY
N , βY

N)],

the mixtureX⊔v Y has the probability density function shown be-
low. It simply contains the components of both of the initialdistri-
butions weighted by the appropriate factor. Note that the result be-
low assumes normalized representations forhX andhY, if they are
unnormalized, the scaling factor is already implicit in theweights,
and all we have to do is concatenate the two lists.

[(v·wX
0 , µX

0 , βX
0), ..., (v·wX

M , µX
M , βX

M), ((1−v)·wY
0 , µY

0 , βY
0), ...]

One drawback of this representation is that it can grow signif-
icantly in the process of applying mixtures. Every time we mix a
random variable with a representation of sizeM with one of size
N , the result is a random variable with a representation of size
M+N . Performing mixtures in the process of evaluating the prob-
abilistic semantics leads to an explosion in the number of compo-
nents; by the end of the program, the total number of components
will be equal to the number of possible paths through the program,
an enormous number even for modestly sized programs.

To prevent this explosion, our interpreter establishes a bound
N , so if a mixture causes the number of components to exceed
N , the result is approximated with a representation of sizeN .
The approximation is performed according to the pseudocodein
Algorithm 1.

In this algorithm, themerge operation takes two components
in the distributionhX and replaces them with a single component
computed according to the following function.

Algorithm 1 Restrict(hX, N)

Input: Density function

hX = [(wX
0 , µX

0 , βX
0), . . . , (wX

M , µX
M , βX

M)]

of sizeM needs to be reduced to sizeN < M .

1: while Size(hX) > N do
2: find pair (wX

i , µX
i , βX

i), (wX
j , µX

j , βX
j) ∈ hX that

minimizescost((wX
i , µX

i , βX
i), (wX

j , µX
j , βX

j))

3: hX := replace componentsi and j in hX with
merge((wX

i , µX
i , βX

i), (wX
j , µX

j , βX
j))

4: end while
5: return hX

merge((wa, µa, βa), (wb, µb, βb)) = (w′, µ′, β′)

where
w′ = wa +wb

µ′ = (µa · wa + µb · wb)/(wa +wb)

β′ = wa·(βa+2‖µa−µ′‖2)+wb·(βb+2‖µb−µ′‖2)
wa+wb

The mean is computed as one would expect, as the weighted
average of the two components to be merged; the new variance will
grow in proportion to how far the old means were from the mean
of the merged component. The definition of merge is optimal: it
produces the best possible approximation of the two components.

The algorithm merges in a greedy fashion, always trying to
merge components that will cause the smallest possible change to
the distributionhX. The cost of a merge is computed according to
the following function.

cost((wa, µa, βa), (wb, µb, βb))

= wa‖µa − µ′‖+ wb‖µb − µ′‖
whereµ′ = (µa ·wa+µb ·wb)/(wa+wb). The cost is an estimate
of how much information will be lost when the two components
are merged into one. The algorithm as stated is quite inefficient
in that it does a lot of repeated work, but it is simple to stateand
implement, and for the values ofN we used for our experiments, it
was reasonably efficient.

As we have stated before, each component in the density func-
tion hX carries information of the behavior of the program on a
particular path. TheRestrict operation has the effect of summariz-
ing the behavior of multiple paths in a single component. Theresult
is an algorithm with very selective path sensitivity; pathswith very
high probability, or whose behavior is very different from the oth-
ers are analyzed very accurately, while paths with similar behaviors
are merged into a single summary component. The price paid for
this selective path sensitivity is a small amount of discontinuity in
the smooth semantics. This is because a small change in one com-
ponent can cause components to merge differently. In Section 5, we
will explore this effect in the context of one of our benchmarks.

Update Our interpreter implements assignments according to
the following rule: If X ∼ hX = [q0, q1, . . . qN] whereqi =
(wi, µi, βi), then

[[xj = E]]#(X) = X
′

whereX′ = [q′0, q
′
1, . . . q

′
N], andq′i = (wi, µi[j 7→ [[E]](µi)], βi).

From the rule for assignments in our probabilistic semantics, it
is possible to determine that the above definition is optimalunder
the constraint thatβi remain unchanged. We could have gotten a
more accurate definition if we allowedβi to change, but the added
accuracy would have been at the expense of greater complexity.

Loop approximation A final approximation has to do with loop
termination. Consider a programP of form while B { . . . }, and
recall the approximations[[P]]#j defined in Definition 3. Our inter-
preter uses[[P]]#j (Y), for a sufficiently highj, as an approximation
to the idealized output[[P]]#(Y). An advantage of this approach is
that [[P]]#j (Y) is defined for allj, even when the limit in the defi-
nition of [[P]]#(Y) does not exist.

To select a suitable value ofj, we apply a simple heuristic. Sup-
poseY′ is the unnormalized random variable obtained by execut-
ing the body of the loopj times on the input random variableY.
Our system monitors the weight ofY′. Because our representations
are unnormalized, the weight ofY′ is an estimate of how much
an execution withj iterations will contribute to the end solution.
Further, as weights get multiplied along paths, an execution with
j′ > j loop iterations will contribute strictly less thanY′. When
the weights associated withY′ become sufficiently small (less than
10−8 in our implementation), we determine that an execution with
j or more iterations has nothing to contribute to the output ofthe
smooth interpreter, and take[[P]]#j as an approximation of[[P]]#.

The above strategy essentially amounts to a dynamic versionof
loop unrolling, where the amount of unrolling is based on theprob-
ability that the loop will iterate a certain number of iterations. Once
that probability falls below threshold, the unrolling is terminated.

Example 3. Let us consider the following programP , previously
seen in Example 2:

if x0 > 0 then skip else x0 := 0

We sketch the smooth interpretation ofP on the input0.5 and
β = 1. Here, the input random variableY has the representation
hY = [(1, 0.5, 1)]. To propagate it throughP , we must first
compute[[x0 > 0)]]#(Y). This is done following Example 1—the
result is approximately0.69. Thus, the random variablesY1 and
Y2 propagated into the true and the false branch ofP respectively
have densitieshY1 = [(0.69, 0.5, 1)] andhY2 = [(0.31, 0.5, 1)].

Now we have[[skip]]#(Y1) = Y1 and [[x0 := 0]]#(Y2) =
[(0.31, 0, 1)]. The estimation ofY2 = [[P]]#(Y) thus has the
representationhY2 = [(0.69, 0.5, 1), (0.31, 0, 1)], and the output
of the smooth interpretation is0.69 × 0.5 = 0.345.

Now, let P ′ equal if x0 > 5 then skip else x0 := x0 + 5

and consider the programP ;P ′. To do smooth interpretation of
this program, we must propagatehY2 throughP ′. The resulting
distributionhY3 will equal:
[(0.69, 0.5, 1), (0.31, 0, 1), (2.3 · 10−6, 5.5, 1), (9.8 · 10−8, 5, 1)],
Now, if our limit of components equals3, then theRestrict opera-
tion will merge the last two components, which together havesuch
a small weight that the effect of the merge on the accuracy of the
solution will be negligible.

4. Parameter synthesis
In this section, we introduce theoptimal parameter synthesisprob-
lem for embedded control programs as a concrete applicationof
smooth interpretation.

4.1 Problem definition

Motivating example: Thermostat Let us consider a simple con-
trol application: a thermostat that controls the temperature of a
room by switching on or off a heater. The code for the program
is shown in Figure 3-(a). The program repeatedly reads in thetem-
perature of the room using a routinereadTemp. If this temperature
is above a certain thresholdtOff, the heater is switched off; if it is
below a thresholdtOn, the heater is switched on. We assume that
the time gap between two successive temperature readings equals a
known constantdt. Also, the differential equations that govern the

(a) Source code of controller:

tOff := ??; tOn := ??;

repeat every dt {

temp := readTemp();

if (isOn() and temp > tOff)

switchHeater (Off);

else if (not isOn() and temp < tOn)

switchHeater (On); }

(b) Temperature variation in warming phase:

d

dt
temp = −k · temp + h

(c) Temperature variation in cooling phase:
d

dt
temp = −k · temp

Figure 3. Parameter synthesis in a thermostat

change of room temperature during the warming or cooling phase
are known from the laws of physics and the characteristics ofthe
heater. These are as in Figure 3-(b) and Figure 3-(c).

What we do not know are the values of the thresholdstOn and
tOff. These thresholds are thecontrol parametersof the thermo-
stat. For the room’s temperature to be controlled desirably, these
parameters must be instantiated properly. At the same time,“good”
values of these parameters do not easily follow from high-level pro-
gramming insights. Consequently, we aim tosynthesizethese val-
ues automatically.

The inputs to this synthesis problem include the thermostat
program and the given model of temperature variation, as well as a
specification. Let a trajectoryof the program be a finite sequence
of temperature values. AspecificationSpec for this setting consists
of a finite set of trajectories (known as thereference trajectories).
Intuitively, the i-th value τ [i] in a reference trajectoryτ is the
desiredtemperature of the room during thei-th loop iteration.

Let us now fix an instantiation of the parameterstOn andtOff
with real values. Now consider any reference trajectoryτ ; the first
value inτ corresponds to theinitial condition of τ and is denoted
by Init(τ). Now let us consider an execution of the system from a
point where the room is at temperatureInit(τ) (note that this ex-
ecution is deterministic). LetτObs be the sequence of temperature
readings returned by the firstN = |τ | calls toreadTemp. This se-
quence captures the observable behavior of the system underthe
present instantiation of the control parameters and the same ini-
tial condition asτ , and is known as theobserved trajectoryof the
system. We refer to the distance (defined for this example as the
L2-distance) betweenτ andτObs as theτ -error between the pro-
gram andSpec. Theerror between the system andSpec is the sum
of τ -errors over allτ ∈ Spec (note that this error is a function of
tOn andtOff). The goal of optimal parameter synthesis is to find
values for the control parameters such that the error between the
program andSpec is minimized.

Observe that we do not aim to match the observed and reference
trajectories of the program exactly. This is because in our setting,
where parameters range over real domains, a problem may often
lack exact solutions but have good approximate ones. When this
happens, a good synthesis technique should find the best approxi-
mate answer rather than report that the program could not be made
to match the specification.

Optimal parameter synthesis as function minimization More
generally, we could define an instance of the optimal parameter
synthesis problem for an embedded control system as consisting
of a physical systemP1 with known characteristics, a programP2

float singleTrajError (float tOn, float tOff,

trajectory τ) {

float temp := Init(τ);
float Err := 0;

bool isOn = false;

for (i := 0; i < N; i := i + 1) {

Err := Err + (temp− τ [i])2;
if(isOn){ temp := temp + dt * K * (h ­ temp); }

else{ temp := temp * (1 ­ K * dt); }

if (isOn and temp > tOff)

isOn := false;

else if (not isOn and temp < tOn)

isOn := true;

}

return
√
Err; }

Figure 4. Parameter synthesis in a thermostat (contd.)

with uninitialized parameters that controlsP1, and a specification
Spec consisting of a set of reference trajectories ofP2. The goal
of optimal parameter synthesis would be to minimize the distance
between the reference and observed trajectories.

Instead of defining the problem this way, we formulate it as
an equivalent function minimization problem. This formulation is
achieved by constructing a programError whose inputs are the
missing parameters inP2, whose transitions capture the combined
dynamics ofP1 andP2, and whose output is the error betweenP2

andSpec. The goal now is to find inputs toError that minimize its
output.

For example, consider the proceduresingleTrajError in Fig-
ure 4. This procedure is obtained by “weaving” the dynamics of the
room’s temperature into the code for the controller, and recording
theL2-distance between the observed and reference trajectoriesin
a special variableErr. The input variables of the routine aretOn
andtOff—the control parameters that we want to synthesize. Now
let Error be a function returing the sum of the return values of
singleTrajError for τ ∈ Spec (tOn andtOff are fixed), and con-
sider the problem of finding an assignment to the inputs ofError
such that the value it returns is minimized. An optimal solution to
this problem is also an optimal solution to the parameter synthesis
problem for our control system.

In general, letP be any program with a single real-valued output
variable out. The output minimization problemfor P is to find
an inputq to P such that the value of the outputq′ (we have
q′ = [[P]](q)) is minimized. This is the problem that we solve using
smooth interpretation. By solving this problem, we also solve the
optimal parameter synthesis problem for control programs.

4.2 Algorithm

Algorithm 2 SMOOTHED-NELDER-MEAD(F , η, ǫ)

1: repeat
2: Randomly select starting pointp ∈ R

K

3: Select largeβ > 0.
4: repeat
5: p := NELDER-MEAD(SMOOTH(F , β),p, η, ǫ)
6: β := new value smaller than old value ofβ.
7: until β < ǫ
8: if F(p) < F(bestp) then bestp := p
9: until timeout

10: return bestp

Our approach to the output minimization problem (and hence,
optimal parameter synthesis) is based on local optimization. Specif-

ically, we useNelder-Mead simplex search[15], a derivative-free
local optimization technique that is implemented in the GNUSci-
entific Library (GSL) [10]. Let us say we want to minimize a func-
tionF : RK → R. To do so using Nelder-Mead search, we issue a
call NELDER-MEAD(F ,p, η, ǫ), wherep ∈ R

K is aninitial point,
η > 0 is a step size, andǫ > 0 is a stopping threshold. On this
call, the search algorithm starts by constructing asimplexaround
the pointp (the maximum distance of the points in this simplex
from p is a defined byη). This simplex is now iteratively shifted
through the search landscape. More precisely, in each iteration, the
algorithm uses a simple geometrical transformation to update the
simplex so thatF has “better” values at the extrema of the sim-
plex. After each iteration, the value ofF at the “best” vertex of
the simplex is recorded. The search terminates when we reachan
approximate fixpoint—i.e., when the best value ofF between two
iterations differs by less thanǫ. At this point the simplex is con-
tracted into one point, which is returned as a local minimum of F .

Naive and smoothing-based algorithms A simple way to solve
parameter synthesis using Nelder-Mead search would be to gener-
ate the functionError , then call NELDER-MEAD(Error,pin, η, ǫ)
with suitableη andǫ; the function could even be called repeatedly
from a number of different starting pointspin to increase the like-
lihood of hitting a global minima. Unfortunately,Error is only
available as an imperative program, and in most cases of interest to
us, proves to be too ill-behaved to be minimized using Nelder-Mead
search.

For example, consider again our thermostat, whereError is a
function of tOn and tOff. In Figure 5-(a), we plot the value of
Error astOn andtOff vary—this plot is the “search landscape”
that the search algorithm navigates. In Figure 5-(b), we plot the
magnitude of the gradient ofError vs tOn and tOff. The plots
are “thermal” plots, where lighter colors indicate a high value.
Now note the highly irregular nature of the search landscape. In
particular, note the black squares in the bottom left cornerof the
gradient plot: these represent “plateaus” where the gradient is 0 but
the value ofError is far from minimal. It is therefore not a surprise
that empirically, Nelder-Mead search fails to solve the parameter
synthesis problem even in this simple-looking example.

The problem of plateaus and discontinuities can be partially
overcome using smoothing. Consider the algorithm forsmoothed
Nelder-Mead searchshown in Algorithm 2. This time, local search
operates on the smoothed version ofError—we start with a highly
smooth search landscape, then progressively reduce the value of
the smoothing parameterβ to increase the accuracy of the analysis.
Of course, the accuracy of smoothing and the tradeoffs of accu-
racy and scalability also depend on the path-sensitivity ofsmooth
interpretation. We do not believe that there is a single policy of
path-sensitivity that will be successful for all applications. There-
fore, we allow the user to play with various strategies in different
benchmark applications.

Now consider the thermostat application again. LetK = 1.0,
h = 150.0, and dt = 0.5. Also, let us use a partially path-
sensitive smooth interpretation where we track only up to 2 paths
simultaneously—i.e., an abstract state has at most 2 components.
Figures 5-(c)-(h) depict the values ofError and its gradient un-
der this smooth interpretation, for various values ofβ. Note how
the gradient smooths out into a uniform slope asβ increases—
empirically, this causes the search to converge rapidly.

5. Evaluation
In this section, we describe a series of experiments that we per-
formed to evaluate the benefits of smoothed Nelder-Mead search
in parameter synthesis. We used an implementation of numerical
search available in the GNU Scientific Library (GSL). Our evalu-

(a)

(e) (d)

(b) (c)

(f)

(g) (h)

Figure 5. (a) Error vs. (tOn, tOff): no smoothing. (b) Magni-
tude of gradient ofError : no smoothing. (c)Error : β2 = 0.5. (d)
Gradient plot:β2 = 0.5. (e)Error : β2 = 5. (f) Gradient plot:
β2 = 5. (g)Error : β2 = 50. (h) Gradient plot:β2 = 50.

while(t < T) {

if (gear > 0)

v := v + dt*(α(gear, v) * v + 5.0);

else v := v ­ dt*(v * v * drag);

if (gear = 1 and v ≥ s1) {

gear := 0; nxt := 2; w := 0.8; }

if (gear = 2 and v ≥ s2) {

gear := 0, nxt := 3, w := 0.8; }

if (gear = 3 and v ≥ s3) {

gear := 0; nxt := 4; w := 0.8; }

if (gear = 4 and v ≥ s4) {

gear := 0, nxt := 5, w := 0.8; }

if (w < 0.0 and gear = 0)

gear := nxt;

t := t + dt;

w := w ­ dt; }

Figure 6. The gearbox benchmark (s1, s2, s3, and s4 are the
control parameters)

ation centers on three questions that are central to the viability of
our approach:

1. Do typical control applications actually exhibit discontinuities
that would be significant enough to require smoothing?

2. If discontinuities do exist, are they eliminated by smooth inter-
pretation? We are particularly interested in how the approxima-
tions made by our algorithm affect the quality of smoothing.

3. Does smoothing actually make a difference for parameter syn-
thesis?

To answer these questions, we analyzed three applications:the
thermostat controller introduced in Section 4, a gearbox controller,
and a PID controller with brakes. We have already discussed the
thermostat application in some detail; also, it is less “real-world”
than the other two applications. Consequently, in this section we
focus on the gearbox and the PID controller.

5.1 Gearbox

The gearbox benchmark models the gearbox of a car. Here we
have five gears, thei-th of which (1 ≤ i ≤ 5) has an associated
efficiency curve of the form

α(i, v) :=
1

1 + (v − pi)2/25
.

Herev represents the current velocity of the car, and〈p1, . . . , p5〉 =
〈5, 15, 25, 40, 60〉 are known parameters. Note that at geari, the
gearbox achieves maximum efficiency atv = pi. At gear i, the
velocity of the car changes according to the equation

dv/dt = v · α(i, v) + u.

whereu is a known constant. When the gearbox is disengaged, the
velocity of the car follows the equation

dv/dt = −(v2 · drag)
wheredrag is a known constant. We assume thatu = 5.0 and
drag = 0.0005.

The controller for the gearbox decides when to shift from
one gear to the next. The system only allows consecutive gear
transitions—i.e., from geari, we can only shift to gear(i + 1).
For i = 1 to 4, we have a control parametersi whose value is the
velocity at which geari is released and gear(i + 1) is engaged.
There is a second complicating factor: gear changes are not instan-
taneous. In our model, each shift takes0.8 seconds—thus, for 0.8
seconds after geari is released, the gearbox stays disengaged.

We define a trajectory of the system to be the sequence of val-
ues of the velocityv at the beginning of loop iterations. We want
to make the system reach a target velocityvtarget as soon as pos-
sible; accordingly, we use a single reference trajectory ofthe form
〈0, vtarget, vtarget, . . . 〉. Our goal is to synthesize values for the
control parameterss1-s4 such that theL2-distance between the ob-
served and reference trajectories is minimized. As in the thermostat
example, we write a program that folds the dynamics of the phys-
ical component (car) into the source code of the controller—it is
this program that we analyze. The main loop of this benchmarkis
shown in Figure 6 (we have omitted the lines computing the error).

Smooth interpretation in this application requires us to run the
program on Gaussian distributions corresponding to the variables
s1-s4. This proves to be highly challenging. First, the number of
paths in the system isΩ(2T/dt), making completely path-sensitive
smooth interpretation infeasible. At the same time, indiscriminate
merging of distributions propagated along different pathswill lead
to inaccurate smoothing, causing the minima of the smoothedpro-
gram to become meaningless. In particular, the delay in the shifting
of gears makes a certain level of path-sensitivity essential. If the
system loses track of the concrete values of variablesnxt or w, it
risks losing track of how much time has elapsed since the geargot
disengaged, or of what gear should be engaged next. Thus, theval-
ues of these variables must be tracked precisely across iterations.

We studied this benchmark using our implementation of smoothed
Nelder-Mead search (based on thegsl library). We assumed that
dt = 0.1 andT = 20.0. We limited the number of distinct com-
ponents of the distribution to80, a very small number compared to
the astronomical number of paths in the program.

For our first experiment, we ran Nelder-Mead search with a
number of initial values for thesi, and with various degrees of
smoothing. Since one of our goals was to understand the effect
of β on Nelder-Mead search, all the experiments were run keep-
ing β constant, rather than progressively reducing it as we did
in Algorithm 2. The results are summarized in the plots in Fig-
ure 8. The lines in each figure show how the solution evolves with
each iteration of Nelder-Mead search; the solid region at the bot-
tom of the graph shows how the error value changes with each

iteration. Each row in the figure corresponds to a different ini-
tial value s1 = s2 = s3 = s4 = sini. The first column, with
β = 0.0001, corresponds to the case where there is virtually no
smoothing; the second column involves moderate smoothing,and
the last column involves a huge amount of smoothing. The correct
settings ares1 = 14, s2 = 24, s3 = 40, s4 = 65.

The first two rows show clearly the effect of smoothing on the
ability of Nelder-Mead search to find a solution. Without smooth-
ing, the solver is stuck in a plateau where the error remains constant
after every try. By contrast, the smoothed version of the problem
quickly finds a good, if not necessarily optimal, solution. Note that
from some starting points, the method is able to find a correctso-
lution even in the absence of smoothing. In fact, in the thirdrow
of Figure 8, the solution found without smoothing is actually better
than the solution found with smoothing.

To understand these effects better, we ran a series of experi-
ments to help us visualize the error as a function of the differentsi.
The results are shown in Figure 7. Illustrating a function ofa four
dimensional parameter space is tricky; for these plots, we held all
the parameters constant at their optimal value and we plotted the
error as a function of one of the parameters. For example, in Fig-
ure 7(a), we helds2, s3 ands4 constant and plotted the error as a
function ofs1 for different values ofβ.

The unsmoothed functions all have a very smooth region close
to the middle, with big plateaus and discontinuities closerto the
edges. This explains why for some cases, the unsmoothed function
was able to converge to a correct solution, but for others it was
completely lost. If the Nelder-Mead search starts in the smooth re-
gion, it easily converges to the correct solution, but if it starts in a
plateau, it is unable to find a solution. When we do apply smooth-
ing, the results are dramatic; even small degrees of smoothing com-
pletely eliminate the discontinuities and cause the plateaus to have a
small amount of slope. This helps the Nelder-Mead search method
to “see” the deep valleys at the end of the plateau.

A final observation from these plots is that while smoothing
eliminates discontinuities and plateaus, the smoothed function can
still have sub-optimal local minima. Additionally, smoothing can
change the position of the actual minima, so the minima of the
smoothed function may be different from the minima of the original
function. This explains why in Figure 8 with starting value 30, the
unsmoothed function produced a better solution than the smoothed
version. The solution to this problem is to start with a very smooth
function and then progressively reduce the degree of smoothing so
that the most accurate solution can be found.

5.2 PID Controller with a brake

In this problem, we want to synthesize parameters for a Proportional-
Integral-Derivative (PID) controller for a wheel. To make the prob-
lem more interesting, we have considered a version of the problem
where the wheel has brakes. The brake allows for a much finer con-
trol of the motion, and consequently a more effective controller. At
the same time, they lead to a significant increase in the size of
the parameter space and the number of control-flow paths to be
considered, making parameter synthesis much more difficult.

The code for the benchmark, obtained by combining the dy-
namics of the wheel with the code for the controller, is shownin
Figure 9. The parameters we want to synthesize ares1, s2, ands3
(the coefficients of the proportional, derivative, and integral com-
ponents of the controller), andb1-b8 (parameters in the Boolean
expression deciding when to apply the brake). Known constants in-
cludedt = 0.1, target = π, inertia = 10.0, anddecay = 0.9.

As for the specification, we want to ensure that after exactlyT
seconds, the wheel reaches its target position oftarget = π. The

beta= 7

beta= 5

beta= 3

beta= 1.5

beta= 0.00005

0 20 40 60 80

E
rr

o
r

value of s1

variable s1

s2=24, s3=40, s4=65

150

160

170

180

190

200

210

220

230

240

250

0 20 40 60 80
E

rr
o

r

value of s2

variable s2

s1=14, s3=40, s4=65

beta= 7

beta= 5

beta= 3

beta= 1.5

beta= 0.00005

150

160

170

180

190

200

210

220

230

240

0 20 40 60 80

E
rr

o
r

value of s3

variable s3

s1=14, s2=24, s4=65

beta= 7

beta= 5

beta= 3

beta= 1.5

beta= 0.00005

150

170

190

210

230

250

270

290

0 20 40 60 80

E
rr

o
r

value of s4

variable s4

s1=14, s2=24, s3=40

beta= 7

beta= 5

beta= 3

beta= 1.5

beta= 0.00005

(a) (b) (c) (d)

Figure 7. Error in the gearbox benchmark as a function of (a)s1, (b) s2, (c) s3, (d) s4

Initial value β = 0.005 β = 1.5 β = 5

sini = 50
150

200

250

300

350

400

450

500

-40

-20

0

20

40

60

80

0 10 20 30 40 50 60

v
a
lu

e
 o

f
s

Iteration of numerical search

beta = 0.005

error

s1

s2

s3

s4

150

200

250

300

350

400

450

500

-90

-40

10

60

110

160

0 10 20 30 40 50 60 70

v
a
lu

e
 o

f
s

Iteration of numerical search

beta = 1.5

error

s1

s2

s3

s4

150

200

250

300

350

400

450

500

-40

-20

0

20

40

60

80

100

0 10 20 30 40 50 60 70

v
a
lu

e
 o

f
c
o

n
tr

o
l

Iteration of numerical search

beta = 5

error

s1

s2

s3

s4

sini = 40
150

200

250

300

350

400

450

500

-40

-20

0

20

40

60

80

0 10 20 30 40 50 60 70

v
a
lu

e
 o

f
s

Iteration of numerical search

beta = 0.005

error

s1

s2

s3

s4

150

200

250

300

350

400

450

500

-40

-20

0

20

40

60

80

0 10 20 30 40 50 60 70

v
a
lu

e
 o

f
s

Iteration of numerical search

beta = 1.5

error

s1

s2

s3

s4

150

200

250

300

350

400

450

500

-40

-20

0

20

40

60

80

100

0 10 20 30 40 50 60 70

V
a
lu

e
 o

f
c
o

n
tr

o
l

Iteration of numerical search

beta = 5

error

s1

s2

s3

s4

sini = 30
150

200

250

300

350

400

450

500

-40

-20

0

20

40

60

80

0 10 20 30 40 50 60 70

v
a
lu

e
 o

f
s

Iteration of numerical search

beta = 0.005

error

s1

s2

s3

s4

150

200

250

300

350

400

450

500

-40

-20

0

20

40

60

80

0 10 20 30 40 50 60 70

v
a
lu

e
 o

f
s

Iteration of numerical search

beta = 1.5

error

s1

s2

s3

s4

150

200

250

300

350

400

450

500

-40

-20

0

20

40

60

80

100

0 10 20 30 40 50 60 70

V
a
lu

e
 o

f
c
o

n
tr

o
l

Iteration of numerical search

beta = 5

error

s1

s2

s3

s4

Figure 8. Effect of Nelder-Mead search on the control parameters of gearbox

precise error function is defined as follows:

Error(s1, s2, s3, b1, . . . , b8) =
if (target− ǫ < ang < target+ ǫ) then 0 else 10,

whereǫ = 0.00001 for all our experiments. A notion of trajectories
corresponding to this error function is easily defined—we skip the
details.

This functionError is highly discontinuous. Within a small
subset of the input space, it evaluates to 0—everywhere else, it
evaluates to10. Such functions lead to the worst-case scenario for a
Nelder-Mead search algorithm as the latter is stuck in a plateau. On
the other hand, smooth execution really shines in this is example.
Smoothing creates a gradient that Nelder-Mead search can follow,

and allows the algorithm to find optimal parameters from a variety
of starting points.

To illustrate the effect of smoothing, consider Figure 10(a),
which showsError as a function ofs3 with all other controls held
constant. Once again, the effect of smoothing is dramatic. Whenβ
is very small, the error function only has two deep groves, and it
is zero everywhere else. As we increase the value ofβ, the deep
groves turn into gentle slopes.

Two interesting features are worth pointing out in Figure 10(a).
First, as in the previous benchmark, smoothing has the effect of
shifting the minima slightly. In fact, in this case, we see a new local
minimum appear around−0.1. If this appears strange, remember
that the plot is only showing a slice of a multi-dimensional plot.

4

5

6

7

8

9

10

11

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

E
rr

o
r

value of s3

Error as a function of s3, s1=0, s2=0

Beta = 0.3

Beta = 0.2

Beta = 0.1

Beta = 0.05

Beta = 0.01

Beta = 0.001 6.5

7

7.5

8

8.5

9

9.5

10

10.5

-0.1 0 0.1 0.2 0.3 0.4

E
rr

o
r

Value of S3

Effect of N on the quality of the smoothing for beta = 0.2

N=30

N=60

N=90

N=150

(a) (b)

Figure 10. (a) Error function for PID controller as a function ofs3 for different values ofβ. (b) Error function as a function ofs3 for different
extents of path-sensitivity (N is the maximum number of components per symbolic state)

while(t < T) {

if(b1 * d + b2 > 0 and b3 * v + b4 > 0 or

b5 * d + b6 > 0 and b7 * v + b8 > 0) {

if(v > 0)

brakev := ­1;

else brakev := 1;

}

else brakev := 0;

d := dist(ang, target);

torq := s0 * d + s1 * v + s2 * id + brakev;

id := id * decay + d; // id: integral of distance

oldv := v;

// velocity v: derivative of distance

v := v + (torq / inertia) * dt;

ang := ang + (v + oldv)/2 * dt;

if (ang > 2 * π)
ang := ang ­ 2 * π;

else if (ang < 0)

ang := ang + 2 * π;
}

Figure 9. PID controller with a brake

What is happening is that smoothing is allowing us to observea
local minimum in a different dimension.

The second feature is the “noise” to the right of the plot, par-
ticularly for the most-smoothed curve (β = 0.3). This noise, it
turns out, is an artifact of the approximation that we make with the
Restrict operation to limit the number of components in our rep-
resentation of the distribution (see Section 3). These plots were all
generated by setting the maximum number of components of a dis-
tribution toN = 90. As we mentioned in Section 3, thisRestrict
operation is the only approximation we make that is capable of in-
troducing discontinuities.

In the plot in Figure 10, we can observe the effect of setting
N to higher or lower values. In this plot,N is the number of
states maintained by the analysis. Notice that in most of thegraph,
the value ofN doesn’t really matter; the plot is very smooth
regardless. Whens3 starts becoming more positive, however, the
system starts to become unstable, so path sensitivity begins to
matter more and more. Notice that forN = 30, the loss of
information due to merging of paths causes major discontinuities
in the function. IncreasingN up to 150 virtually eliminates these
effects, since now the system can maintain enough path information
to avoid building up approximation errors. Of course, higher values
of N come at the cost of scalability.

Finally, Figure 11 shows the effect that smoothing has on our
final goal of synthesizing parameters. The plots show the behavior
of the solution found by Nelder-Mead search after90 iterations,
with and without smoothing. The solution found without smoothing
is essentially useless; in this solution, the wheel starts with an angle

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.985

1.99

1.995

2

2.005

-2 0 2 4 6 8 10 12

a
n

g
le

 i
n

 r
a

d
ia

n
s

time

beta = 0.001 start = 0.1

ang

BREAK

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-1.86

-0.86

0.14

1.14

2.14

3.14

4.14

5.14

6.14

7.14

-2 0 2 4 6 8 10 12

a
n

g
le

 i
n

 r
a

d
ia

n
s

time

beta = 0.01 start = 0.1

ang

BREAK

Goal

Figure 11. Execution of the PID controller with the best parame-
ters found withβ=0.01 and 0.0001

of 2 radians, and drifts slowly without much direction. The blue
line in the chart shows the brake, which in this solution is engaged
the whole time. In other words, without smoothing, Nelder-Mead
search was completely unable to find an acceptable solution.By
contrast, when we applied smoothing withβ = 0.01 (which is
actually fairly large, given that the unit here is a radian),the system
was able to find a very good solution. The wheel starts at two
radians, and rotates in a very controlled manner towards itsgoal
of π radians. Also, the brake (blue line) is mostly disengaged until
around 6 time units, when the brake suddenly becomes engaged,
helping the wheel reach the desired position exactly at the desired
time.

Overall, we can see that for these benchmarks, discontinuities
are a real obstacle to solving the parameter synthesis problem with
numerical optimization techniques. Smoothing is able to eliminate
these discontinuities, making parameter synthesis possible. Addi-
tionally, the most significant effect of our approximationsare the
small discontinuities introduced by theRestrict operation.

6. Related work
So far as we know, the present paper is the first to develop a notion
of smoothing for programs. While the idea of modeling software
by smooth mathematical functions was previously considered by
DeMillo and Lipton [6] in a brief note, their only technical result
was a simple proof that every discrete transition system canbe

captured by a smooth function. Neither did DeMillo and Lipton
identify an application of this view of program semantics.

However, Gaussian smoothing is ubiquitous in signal and image
processing [19], and smooth approximations of boolean functions
is a well-studied topic in theoretical computer science [16]. The
idea of using smooth approximations to improve the performance
of numerical methods like gradient descent is well-known inthe
domain of neural networks [3]. The basic unit of a neural network
is a perceptron which has several real-valued inputs, and outputs
1 if and only if a weighted sum of these inputs is above a certain
threshold. In multilayer perceptrons, comparison of the weighted
sum with a threshold is replaced with the application of a sigmoid
function, making learning more efficient. At a high level, our strat-
egy is similar, as we also replace conditionals with sigmoids. The
difference is that in our setting, smoothing is tied to a specific prob-
abilistic semantics of programs, and the extent of smoothing at dif-
ferent points in the program are globally related by this semantics.

As for smooth interpretation, it is related to a line of recent work
on probabilistic abstract and operational semantics [11, 14, 18] that
builds on classic work on abstract interpretation [5] and proba-
bilistic semantics [13]. In particular, our work is relatedto Smith’s
work [20] on abstract interpretation using truncated normal distri-
butions. There are several important differences between Smith’s
approach and ours—in particular, not being interested in verifica-
tion of probabilistic safety properties, we do not use a collecting
semantics or offer a notion of probabilistic soundness.

The problem of tuning real-valued system parameters is a clas-
sic problem in systems theory. In particular, the hybrid systems
community has studied the problem [7, 9, 12] in the context of
embedded control applications such as ours. In their approach
to the problem, a cyber-physical system is typically modeled
as a hybrid automaton [1]; analysis approaches include simula-
tion, symbolic reachability analysis, and counterexample-guided
abstraction-refinement. To the best of our knowledge, none of this
prior work frames parameter synthesis as a problem in numerical
optimization, or uses smoothing or path-insensitivity.

Related efforts on program synthesis includes the Sketch sys-
tem for combinatorial program sketching [21, 22], the ALispsys-
tem [2], and the Autobayes system [8] for synthesis of Bayesian
classifiers. Like our approach to parameter synthesis, these ap-
proaches aim to produce a program satisfying a specificationgiven
a partial program conveying the high-level insight of a solution.
However, none of these systems use a notion of program approxi-
mation akin to Gaussian smoothing.

7. Conclusion
In this paper, we have introduced a notion of Gaussian smoothing
of programs, and presented an implementation of the smoothing
transform based on symbolic execution. Using the concrete prob-
lem of optimal parameter synthesis and three embedded control ap-
plications, we have demonstrated that smoothing facilitates the use
of numerical search techniques in the analysis of embedded control
programs.

The development of probabilistic and smoothed semantics in
this paper was fairly informal. We leave a rigorous study of the
mathematical properties of smoothed semantics, as well as the
benefits of program smoothing to numerical methods, for future
work. A second thread of future work will study the interplayof
program smoothing with static analysis. Approximations obtained
from smoothing are more accurate if smoothing is applied only
on regions of the input space where the program behaves in a
discontinuous manner. It may be possible to use recent results
on continuity analysisof programs [4] to statically identify these
regions. Finally, we plan to expand our technique for parameter
synthesis into a method that can synthesize discrete as wellas

real-valued program parameters and expressions. Such an approach
will integrate the present approach with the sketching approach to
program synthesis [21, 22].

References
[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger,P.-H. Ho,

X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic
analysis of hybrid systems.Theor. Comput. Sci., 138(1):3–34, 1995.

[2] D. Andre and S. Russell. State abstraction for programmable rein-
forcement learning agents. InAAAI/IAAI, pages 119–125, 2002.

[3] C. Bishop.Neural Networks for Pattern Recognition. 1995.

[4] S. Chaudhuri, S. Gulwani, and R. Lublinerman. Continuity analysis
of programs. InPOPL, 2010.

[5] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approxima-
tion of fixpoints. InPOPL, 1977.

[6] R. DeMillo and R. Lipton. Defining software by continuous, smooth
functions. IEEE Transactions on Software Engineering, 17(4):383–
384, 1991.

[7] A. Donzé, B. Krogh, and A. Rajhans. Parameter synthesis for hybrid
systems with an application to Simulink models. InHSCC, 2009.

[8] B. Fischer and J. Schumann. AutoBayes: A system for generating
data analysis programs from statistical models.Journal of Functional
Programming, 13(03):483–508, 2003.

[9] G. Frehse, S. Jha, and B. Krogh. A counterexample-guidedapproach
to parameter synthesis for linear hybrid automata. InHSCC, pages
187–200, 2008.

[10] B. Gough. GNU Scientific Library Reference Manual. 2009.

[11] S. Gulwani and G. Necula. Discovering affine equalitiesusing random
interpretation. InPOPL, 2003.

[12] T. Henzinger and H. Wong-Toi. Using HyTech to synthesize control
parameters for a steam boiler. InFormal Methods for Industrial
Applications, pages 265–282, 1995.

[13] D. Kozen. Semantics of probabilistic programs.J. Comput. Syst. Sci.,
22(3):328–350, 1981.

[14] D. Monniaux. Abstract interpretation of probabilistic semantics. In
SAS, pages 322–339, 2000.

[15] J.A. Nelder and R. Mead. A simplex method for function minimiza-
tion. The computer journal, 7(4):308–313, 1965.

[16] N. Nisan and M. Szegedy. On the degree of Boolean functions as real
polynomials.Computational Complexity, 4(4):301–313, 1994.

[17] D. Parnas. Software aspects of strategic defense systems. Communi-
cations of the ACM, 28(12):1326–1335, 1985.

[18] A. Di Pierro and H. Wiklicky. Probabilistic abstract interpretation and
statistical testing. InPAPM-PROBMIV, pages 211–212, 2002.

[19] J. Russ.The image processing handbook. CRC Press, 2007.

[20] M. Smith. Probabilistic abstract interpretation of imperative programs
using truncated normal distributions.Electron. Notes Theor. Comput.
Sci., 220(3):43–59, 2008.

[21] A. Solar-Lezama, R. M. Rabbah, R. Bodík, and K. Ebcioglu. Pro-
gramming by sketching for bit-streaming programs. InPLDI, pages
281–294, 2005.

[22] A. Solar-Lezama, L. Tancau, R. Bodik, V. Saraswat, and S. Seshia.
Combinatorial sketching for finite programs. InASPLOS ’06, 2006.

