Smooth Interpretation *

Swarat Chaudhuri

Pennsylvania State University
swarat@cse.psu.edu

Abstract

We presensmooth interpretationa method for systematic approx-
imation of programs by smooth mathematical functions. Rnog
from many application domains make frequent use of disnenti
uous control flow constructs, and consequently, encodetiinsc
with highly discontinuous and irregular landscapes. Simaot
terpretation algorithmically attenuates such irreguéatdires. By
doing so, the method facilitates the use of numerical ogtition
techniques in the analysis and synthesis of programs.

Smooth interpretation extends to programs the notioBadis-
sian smoothinga popular signal-processing technique that filters
out noise and discontinuities from a signal by taking itsvobn-
tion with a Gaussian function. In our setting, Gaussian gtmoo
ing executes a progratR according to a probabilistic semantics.
Specifically, the execution dP on an inputx after smoothing is as
follows: (1) Apply a Gaussian perturbationse—the perturbed in-
put is a random variable following a normal distributionhvihean
x. (2) Compute and return thexpected outpudf P on this per-
turbed input. Computing the expectation explicitly woudjuire
the execution ofP on all possible inputs, but smooth interpretation
bypasses this requirement by using a form of symbolic ei@tut
to approximate the effect of Gaussian smoothing?on

We apply smooth interpretation to the problem syihthesiz-
ing optimal control parametersn embedded control applications.
The problem is a classic optimization problem: the goal liete
find parameter values that minimize the error between thdtres
ing program and a programmer-provided behavioral spetiita
However, solving this problem by directly applying numatiopti-
mization techniques is often impractical due to discoritiesi and
“plateaus” in the error function. By “smoothing out” theseegu-
lar features, smooth interpretation makes it possible &mcbethe
parameter space efficiently by a local optimization metHodr
experiments demonstrate the value of this strategy in sgizing
parameters for several challenging programs, includingetsoof
an automated gear shift and a PID controller.

Categories and Subject Descriptors D.2.2 [Software Engineer-
ing]: Design Tools and Techniques; F.3[2ofics and Meanings
of Program$§. Semantics of Programming Languages; G.N6{

* The research in this paper was supported by the MIT CSAI Labtlaa
National Science Foundation (CAREER Award #0953507).

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’'10, June 5-10, 2010, Toronto, Ontario, Canada.
Copyright(© 2010 ACM 978-1-4503-0019/10/06. . . $10.00

Armando Solar-Lezama

MIT
asolar@csail.mit.edu

(b)

: .

Figure 1. (@) A crisp image. (b) Gaussian smoothing.
Error: “z := 0; if (x1 > 0 Ax2 > 0)thenz := z — 2". (C)
Gaussian smoothing dfrror.

(©

merical Analysif Optimization; G.1.0Numerical Analysis Ap-
proximation.

General Terms Theory, Design, Verification

Keywords Program Smoothing, Continuity, Parameter Synthesis,
Abstract Interpretation, Operational Semantics

1. Introduction

It is accepted wisdom in software engineering that the dyoam
of software systems are inherently discontinuous, and tiiat
makes them fundamentally different from analog systemss&ho
dynamics are given by smooth mathematical functions. Tyvent
five years ago, Parnas [17] attributed the difficulty of eegiiing
reliable software to the fact that “the mathematical fumasi that
describe the behavior of [software] systems are not coaotisti
His argument for using logical methods in software analyss
grounded in the fact that logic, unlike classical analysi handle
discontinuous systems.

In the present paper, we show that while software systems may
indeed represent highly nonsmooth functions approximationof
program semantics by smooth functions is plausible and @&ipo
tial practical value. In particular, we show that such apprations
can facilitate the use of local numerical optimization ie #maly-
sis and synthesis of programs. Local optimization is uguafea-
sible for these problems because the search spaces demrad f
real-world programs are full of “plateaus” and disconttias, two
bétes noires of numerical search algorithms. However, vegvsh
that these problems can be partially overcome if numerieatch
is made to operate smooth approximationsf programs.

Gaussian smoothing Smooth approximations of programs can be
defined in many ways. Our definition is inspired by the literat

on computer vision and signal processing, where numerijol o
mization is routinely used on noisy real-world signals, afign
runs into problems as well. In signal processing, a standard
lution to these problems is to preprocess a signal uSiagssian
smoothind19], an elementary technique for filtering out noise and
discontinuities from a signal by taking its convolution véa Gaus-
sian function. The result of Gaussian smoothing is a smaatim-
paratively well-behaved signal—for example, applying &aan
smoothing to the image in Figure 1-(a) results in an imagenas i
Figure 1-(b). Local optimization is now applied more prdiliato
this smoothed signal.

We show that a similar strategy can enable the use of nunherica
search techniques in the analysis of programs. Ouir firstibotion
is to introduce a notion of Gaussian smoothing for programsur
setting, a Gaussian smoothing transform is an interpreatitakes
a programP whose inputs range ov@&’, and executes it on an
inputx according to the following nontraditional semantics:

1. Perturbx using a Gaussian probability distribution with mean
0. The perturbed input is a random variable following a normal
distribution with mearx.

2. Execute the progran® on this perturbed input. The output is
also a random variable—compute and return its expectation.

If [P] is the denotational semantics £ the semantics used by
Gaussian smoothing is captured by the following funcfi&:
P10 = [IPIO) fer(y) ®
yERK
where fx is the density function of the random input obtained by
perturbingx.
Note that[P] is obtained by taking theonvolutionof [P]
with a Gaussian function. Thus, the above definition is iast

with the standard definition of Gaussian smoothing for digaad
images. To see the effect of smoothing defined this way? leée

z:=0; if (xt >0Ax2 > 0)thenz:=z—2

wherez is an output variable angh andx, are input variables. The
semantics of? is graphed in Figure 1-(c). Smoothidgattenuates
its discontinuities, resulting in a program with the serr@antap
shown in Figure 1-(d).

Smooth interpretation The main challenge in program smooth-
ing is to algorithmically perform Gaussian smoothing ona@gpam—
i.e., for a programP and an inputx, we want to compute the con-
volution integral in Equation 1. Unfortunately, solvingdfintegral
exactlyis not possible in general? can be a complex imperative
program, and its Gaussian convolution may not have a clsed-
representation. Consequently, we must seek approximktbosts.
One possibility is to discretize—or sample—the input spafc®

and compute the convolution numerically. This approachilevh
standard in signal processing, just does not work in ouinggtt
The problem is that there is no known way to sample the input
space of P while guaranteeing coverage of the executions that
significantly influence the result of smoothing (a similaolgem
afflicts approaches to program testing based on random saghpl
This means that approximations §f](x) using discretization
will usually be hopelessly inaccurate. Consequently, wamate

the integral using approximate symbolic methods.

As our integral involves programs rather than closed-forahm
ematical functions, the symbolic methods we use to solveriie
from abstract interpretation and symbolic execution [5,14, 18,
20] rather than computer algebra. Our algorithm—caletboth
interpretation—uses symbolic execution to approximate the prob-
abilistic semantics defined earlier.

The symbolic states used by smooth interpretation are pilbba
ity distributions (more precisely, each such state is regmeed as
a Gaussian mixture distributigreee Section 3). Given an inpxf
the algorithm first generates a symbolic state represeatimgmal
distribution with mearx. Recall that this is the distribution of the
random variable capturing a Gaussian perturbatiox. ow P is
symbolically executed on this distribution, and the expdatalue
of the resulting distribution is the result of smooth intetation.

The approximations in smooth interpretation are required b
cause what starts as a simple Gaussian distribution caratbin
trarily complex through the execution of the program. Faarax
ple, conditional branches introduce conditional probtaéd, as-
signments can lead to pathological distributions defineteims
of Dirac delta functions, and join points in the program liegu
us to compute thenixtureof the distributions from each incoming
branch. All of these situations require smooth interpretato ap-
proximate highly complex distributions with simple Gaassmix-
ture distributions.

Despite these approximations, smooth interpretatiorciffay
smooths away the discontinuities of the original program tus-
ing the standard deviation of the input distribution, one cantrol
not just the extent of smoothing, but also the amount of mfation
lost by the approximations performed by smooth interpi@tat

Parameter synthesis Finally, we show that smooth interpretation
can allow easier use of numerical optimization techniquesro-
gram analysis and synthesis. The concrete problem that we co
sider isoptimal parameter synthesighere the goal is to automat-
ically instantiate unknown program parameters such tteatehbul-
tant program igs close as possibte meeting a behavioral specifi-
cation. This problem is especially important for embeddectiol
programs (e.g., PID controllers). The dynamics of such ranog
often depend crucially on certain numerical control paranse At
the same time, “good” values of these parameters are oftiécutti

to determine from high-level insights.

Suppose we are given a control progré&hwith unknown pa-
rameters, a model of the physical system that it control$ aespec-
ification defining the desired trajectories of the system anmous
initial conditions. The optimal parameter synthesis peabfor P
is defined as follows. Let us define a functi&ror that maps each
instantiationx of the control parameters to a real value that captures
the deviation of the observed and specified trajectorieh@bys-
tem on the test inputs. Our goal is to firndsuch thatError(x) is
minimized.

In theory, the above optimization problem can be solved by
a local, nonlinear search technique like the Nelder-Meatpkx
method [15]. The appeal of this method is that it is applieahl
principle to discontinuous objective functions. In praeti such
search fails in our context as the functiémror can be not only
discontinuous bugxtremely discontinuou€onsider a program of
the form

for(i :=0;i <N;i:=i+ 1){if (x <0){...}}.

Here the branch inside the loop introduces a potential digwaity;
sequential composition allows for the possibility of an @xential
number of discontinuous regions. On such highly discomtiisu
functions, all numerical techniques fare poorly. Seconiktg any
other local search method, the Nelder-Mead method suffers f
“plateaus” and “troughs”, i.e., regions in the functioremtiscape
consisting of suboptimal local minima. An example of such a
failure scenario is shown in Figure 1-(c). Here, if the losahrch
starts with a point that is slightly outside the quadrgwnt >

0) A (x2 > 0), it will be stuck in a region where the program output
is far from the desired global minimum. In more realisticrexdes,
Error will have many such suboptimal regions.

However, these difficulties can often be overcome if thedear
runs on a smoothed version Bfror. Such a function is shown in
Figure 1-(d). Note that the sharp discontinuities and flatqaus of
Figure 1-(c) are now gone, and any point reasonably closketo t
quadrant(x; > 0) A (x2 > 0) has a nonzero downhill gradient.
Hence, the search method is now able to converge to a valse clo
to the global minimum for a much larger range of initial psint

The above observation is exploited in an algorithm for param
eter synthesis that combines Nelder-Mead search with $mipet
terpretation. The algorithm tries to reconcile the confiigtgoal of
smoothing away the hindrances to local optimization, whiko
retaining the core features of the expression to be minignizee
algorithm is empirically evaluated on a controller for a gshift,

a thermostat controller, and a PID controller controlling/lzeel.
Our method can successfully synthesize parameters foe tes
plications, while the Nelder-Mead method alone cannot.

Summary of contributions and Organization Now we list the
main contributions of this paper and the sections wheredppgar:

¢ We introduce Gaussian smoothing of programs. (Section 2)

Definition 1 (Crisp semantics)Let P’ be an arbitrary subprogram
of P. The crisp semantics d? is a function[P’] : R¥ — R¥
defined as follows:

e [skip](x) = x.
¢ [xi := E](x) = x[i = [E](x)]
o [P P2](x) = [PR]([P1] (%))
[if B then P; else P2](x) =
[B](x) - [P](x) + [-B](x) - [P2](*).
e Let P’ = while B { P }. Then we have

[P1(x) =x - [B](x) + [B](x) - [P'I([P](x))-

Note that] P’](x) is well-defined ag”’ terminates on all inputs.

a

If [P](x) = x’, thenx is theoutputof P on theinput x.

2.2 Smoothed semantics and Gaussian smoothing

Let us now briefly review Gaussian (or normal) distributioRe-
call, first, the probability density function for a randonriedle Y

e We present an algorithm—smooth interpretation—that uses following a 1-D Gaussian distribution:

symbolic execution to approximately compute the smoothed
version of a program. (Section 3)

¢ We demonstrate, via the concrete application of optimadmar
eter synthesis, that smooth interpretation facilitatesube of
numerical search techniques like Nelder-Mead search in pro
gram analysis and synthesis. (Section 4)

e We experimentally demonstrate the value of our approach to

optimal paramater synthesis using three control apptinati
(Section 5)

2. Gaussian smoothing of programs

In this section, we introduce Gaussian smoothing of program
We start by fixing, for the rest of the paper, a simple language
of imperative programs. Programs in our language maintair t
state inK real-valued variables named throughxx. Expressions
can be real or boolean-valued. LBt and B respectively be the
nonterminals for real and boolean expressians,stand for real
addition or multiplication, anen be a real constant. We have:

E x: | m | op(Er, E2)
B E1>E2|B1/\Bz|ﬁB

ProgramsP are now given by:

P skip |zi:=E | P; P|while B{P}
| if B then P else P.

2.1 Crisp semantics

Now we give a traditional denotational semantics to a pnogfEo
distinguish this semantics from the “smoothed” semanties we
will soon introduce, we refer to it as thogisp semantics.

Let us first define astateof a programP in our language as
a vectorx € R¥, wherex(i), thei-th component of the vector,
corresponds to the value of the varialle The crisp semantics
of each real-valued expressidn appearing inP is a map[F] :
R¥ — R such that[E](x) is the value of E at the statex.
The crisp semantics of a boolean expressiris also a map
[B] : R® — R; we have[B](x) = 0 if B is false at the state
x, and 1 otherwise. Finally, for. € R, x[i — m] denotes the state
x’ that satisfies<' (i) = m, and agrees witlx otherwise.

Fuoly) = (1/(VZro)) e~ Wm7/20%,

Herep € R is the mean ane > 0 thestandard deviation

A more general setting involves random variab¥sranging
over vectors of reals. This is the setting in which we areragted.
We assume thaY has K components (i.eY ranges over states
of P), and that these components are independent variabldgsin t
case, the joint density function &f is a K-D Gaussian function

)

K
fuo(y) = H Futiy,o) (¥ (9)) 3)

Herec € R¥ > 0 is thestandard deviationandy € R¥ is
the mean The smoothed semantiad P can now be defined as a
smooth approximation dfP] in terms off,, ..

Definition 2 (Smoothed semantics)et3 > 0,0 = (5,...,5),
and let the functionfx,, be defined as in Equation (3). The

smoothed semantiad P with respect ta3 is the function[P]
R — R defined as follows:

Fsz/ [PI(y) fuo(y) dy. O

yERK

8 :

The functionmﬁ (x) is the convolutionof the function[P]
and aK-D Gaussian with meaf and standard deviatioa =
(8,...,5). The constang is said to be themoothing parameter
Wheng is clear from the context, we often dendte] , by [P].
Smoothed semantics is defined not only at the level of the
whole program, but also at the level of individual expressid-or

example, the smoothed semantics of a boolean expressisn
1,00 = [[BIO) ey dy
yERK

whereo = (8,...,08).

We use the phraseGaussian smoothingf P (with respect to
B)" to refer to the interpretation o according to the smoothed
semantics[o] ;. Note that Gaussian smoothing involves comput-
ing the convolution of[P] and a Gaussian function—thus, our
terminology is consistent with the standard definition oti€aan

Using these definitions, we can now express the crisp seman-smoothing in image and signal processing. The followingrgxas

tics of P. For simplicity, we assume thaach subprogram oP
(including P itself) terminates on all inputs

shed light on the nature of Gaussian smoothing.

— B=05
B=2
Crisp

19
os| s
os| — B=05 05
04 — B=3 04 -

YERN

T E] i 1o 15 e =~ S Y T

Figure 2. (a) A sigmoid. (b) A bump.

Example 1. Consider the boolean expressidn: (xo — a) > 0,
wherea € R. We have:

Bl = [[PI)esto)dy =0+ [feslo) dy
_ /°° L —weta?/26% 1+ erf(T55)
o V2rB 2

wherex ranges over the reals, and is the Gauss error function.

Figure 2-(a) plots the crisp semanti¢g] of B with a =
2, as well as[B], for smoothing with Gaussians with standard
deviationsg = 0.5 and 3 = 3. While [B] has a discontinuous
“step,” [B]; is a smooth S-shaped curve, orsgmoid As we

decrease3, the sigmoid[B] 3 becomes steeper and steeper, and
at the limit, approachefB].

Along the same lines, consider the boolean expresBiona <
%o < ¢, Wherea, ¢ € R. We can show that

erf (%) + erf(f/%;)

[B7;(x) = —2—

The functions[B’] and[B’] 5, witha = —5, ¢ = 5, and8 = 0.5
and 2, are plotted in Figure 2-(b). Once again, disconiiesiiare
smoothed, and g3 decreaseqd,B’] approache§B]. O

Example 2. Let us now consider the following prograft
if xo > 0 then skip else xo := 0.
It can be shown that for alt € R,

- 1+ erf(—2%) —a2 /282
V23 Be

P =

[]]ﬁ,(x) T 5 3

We note that the smoothed semantics of a progPacan be for-
mulated as the composition of the smoothed semantid? with
respect to 1-D Gaussians. This follows directly from oumags-
tion of independence among the variables in the input digtion.
Specifically, we havefx.o = fx1),s fx(2),8--- fx(x),8, Where
fx(i),5 18 @ 1-D Gaussian with meat(7) and standard deviatiqh

Let us denote by P], , the smoothed semantics Bfwith re-
spect to the-th variable of the input state, while all other variables
are held constant. Formally, we have

| IPI6) b s

wheref is as in Equation 2, and’ is such thatx’(i) = y, and for
all j #14,x'(j) = x(j). Itis now easy to see that:

Theorem 1. [P;(x) = ([P], 500 [Pl 5)(x).

a

[[P]]i,ﬁ(x) =

2.3 Smoothed semantics: a structural view

As mentioned earlier, Definition 2 matches the traditionghal-
processing definition of Gaussian smoothing. In signal gsec
ing, however, signals are just data sets, and convoluticneasy
to compute numerically. The semantics of programs, on therot

hand, are defined structurally, so a structural definitiosmfoth-
ing is much more desirable. Our structural definition of Géaaus
smoothing is probabilistic, and forms the basis of our sinauter-
pretation algorithm defined in Section 3.

In order to provide an inductive definition ¢f°],;, we view
the smoothed program as applying a transformation on random
variables. Specifically, the smoothed versiBrof P performs the
following steps on an input € RX:

1. Construct the (vector-valued) random varia¥le with density
function fx » from Equation (3). Note thd¥ x has mearx and
standard deviatioa = (3, ..., 8). Intuitively, the variableY «
captures the result gferturbingthe statex using a Gaussian
distribution with mear0 and standard deviation.

2. Apply the transformatioY,, = [P](Yx). Note thatY?% is
a random variable; intuitively, it captures the output oé th
programP when executed on the inp¥ix. Observe, however,
that' Y7 is not required to be Gaussian.

3. Compute and return the expectationof.

One can see that the smoothed semaiffifs, of P is the function
mappingx to the above output, and that this definition is consistent
with Definition 2. With this model in mind, we now define a preba

bilistic semantics that lets us defifif] ; structurally. The key idea

here is to define a semantic m§p]* that models the effect of
P on arandom variable. For example, in the above discussien, w
haveY’ = [P]#(Yx). The semantics is very similar to Kozen’s
probabilistic semantics of programs [13]. Our smooth imteta-
tion algorithm implements an approximation of this sentmiti

Preliminaries For the rest of the section, we will 1Y be a
random vector oveRX . If the probability density function o’

is hy, we writeY ~ hy. In an abuse of notation, we will define
the probabilistic semantics of a boolean expresdibias a map
[B]* : R® = [0,1]:

[B]*(Y) = Proby [[B](Y) = 1]. (4)

Assignments Modeling assignments is a challenge because as-
signments can introduce dependencies between variablesh w
can often lead to very pathological distribution functioRsr ex-
ample, consider a program with two variablesandx;, and con-
sider the semantics of the assignment= x;.

[x0 := Xl]]#(Y) =Y’

After the assignment, the probability density,: (zo,z1) of Y’
will have some peculiar properties. Specificali; (o, 1) = 0
for anyzo # x1, yetit's integral over allkk must equal one. The
only way to satisfy this property is to define the new prohigpbil
density in terms of the Diraé function. The Dirac is defined
formally as a function which satisfiégxz) = 0 for all # 0, and
with the property thaf > 6(x) f(x) dz = f(0); informally, it can
be thought of as a Gaussian with an infinitesimally small
Now we define the semantics of assignment as follows:

[xi == E]]#(Y) =Y ~ hys
whereh~ is defined by the following integral.

/ D(E,i,x,x") - hy (x)dx
xeRK

Here,hy is the density ofY’, and the functiorD(E, i, x, x") above
is a product of deltag(x(0) — x'(0)) - ... 6([E](x) — x'()) -

.- 0(x(K — 1) —x'(K — 1)), which captures the condition that
all variables must have their old values, except foritfievariable,
which must now be equal] (x).

©)

hy/ (X/) =

From this definition, we can see that the probability derfsity
Y/ = IIXQ = X1]]#(Y) W|“ equal hyl(X,)

= / / §(x(1) — x'(0)) - §(x(1) — x'(1)) - hy (x)dx
zoER Jz1ER

/ o 3(x(0)" = x'(1)) - by (x(0),x'(0))dx(0)

hy (x(0),x'(0))dx(0)

— a0 — (1) |
zo€ER
It is easy to see from the properties of the Dirac delta that th

solution above has exactly the properties we want.

Conditionals Defining the semantics of conditionals and loops
will require us to work with conditional probabilities. Spécally,

let B be a boolean expression. We use the notatign| B) to
denote the random variable with probability distribution

hy(x) x) =
hoy (%) :{ if [B](x) =1

[B]#
0 otherwise.

Intuitively, the distribution of Y | B) is obtained by restricting
the domain of the distribution & to the points where the boolean
condition B is satisfied. Thus(Y | B) is a random variable
following atruncated distributionFor example, ifY follows a 1-

D normal distribution and B] equals(z > 0), then the density
function of (Y | B) is ahalf-Gaussiarwhich has the shape of a
Gaussian forr > 0, and equals 0 elsewhere. Note that the density
function of (Y | B) is normalized so that its integral still equals 1.

Conditionals also require us to define the notiomuxkture of
random variables to model the joining of information abdug t
behavior of the program on two different branches. Consider
vector-valued random variablé; and Y2 such thatY; ~ h;
andY2 ~ ho. We define themixtureof Y1 andY» with respect
to a constant > 0 to be a random variabl®; L, Y2 with the
following density function:

h(x) =v-hi1(x)+ (1 —v) - ha(x). @)

By combining all of the above concepts, we can now give a genci
definition of the probabilistic semantics of programs.

(6)

Definition 3 (Probabilistic semantics of programs)et P’ be an
arbitrary subprogram aP (including, possiblyP itself), and lefY’
be a random vector ovét’.

The probabilistic semantics d?’ is a partial function[P']*
defined by the following rulesiP’]# is as follows:

o [skip]#(Y) =Y.
e [x: := E]*(Y) = Y’ defined by Equation (5).
o [Pi; P2](Y) = [P]7 ([P]7(Y)).

[if B then P, else PQ]]#(Y) =
. letv = [B]#(Y) in
(IA]*(Y | B)) Uy ([P]*(Y | =B)).

e Let P' = while B { P, }, let us also set
Y. = [P]*(Y | B).
For all j > 0, let us define a map:

v if j =0
[PT#(Y) = { letv = [B]#(Y) in
(IP']7,(Y1)) U, Y otherwise.
Now we define{P']# (Y) = lim; o [P']7. O

Of particular interest in the above are the rules for brasemel
loops. Supposé”’ equals if B then P; else P»,” and suppose

[P']#(Y) ~ h'. Now consider ank € R*. We note that an out-
put of P’ in the neighborhood of could have arisen from either the
true or the false branch d?’. These two “sources” are described
by the distribution functions of the variablé®]# (Y | B) and
[P.]# (Y | —B). The valueh(x) is then the sum of these two
“sources,” weighted by their respective probabilitiesisTihtuition
directly leads to the expression in the rule for branches.

The semantics of loops is more challenging. Eétnow equal
while B { Pi }. While each approximatio@P’]]f(Y) is com-
putable, the limit] P’]#(Y) is not guaranteed to exist. While it
is possible to give sufficient conditions aR’ under which the
above limit exists, developing these results properly véiguire a
more rigorous, measure-theoretic treatment of probaibikeman-
tics than what this paper offers. Fortunately, our smoatérpreta-
tion algorithm does not depend on the existence of this Jiamitl
only uses the approximatiorﬂsP’]]f(Y). Therefore, in this paper,
we simplyassumehe existence of the above limit for alt’ and
Y. In other words[P']* is always a total function.

Smoothed semantics The smoothed semantics Bfis now easily
defined in terms of the probabilistic semantics:

Definition 4 (Smoothed semantics)et 5 > 0, x € R¥, and let

Y ~ fx,o, Wherec = (8,...,3) and fx,, is as in Definition 2.
Further, suppose that for all subprograis of the programp,
[P']*# is a total function. The smoothed semantics of the program
P is defined as

[Pl5(x) = Exp[[P]*(Y)]. O

B
2.4 Properties of smoothed semantics

Before finishing this section, let us relate our smoothedaseits
of programs to the traditional, crisp semantics. We noteé disa
becomes smallemﬁ approachegP]. The one exception to the
above behavior involves “isolated” features [@?] defined over
measure-0 subsets of the input space. For example, sugpose
represents the functionif = 0 then 1 else 0"—here, theP
outputs 1 only within a measure-0 subseffofin this caseﬂ?]]ﬁ
evaluates to 0 on all inputs, for every valuesf

Observe, however, that in this case, the set of inpdits which
mﬁ(x) and [P](x) disagree has measure 0. This property can

be generalized as follows. For functiorfs : RX — RX and
g : RE — RX let us say thaff andg agreealmost everywhere
and write f = g, if the set of inputse for which f(z) # g(x) has
measure 0. We can prove the following “limit theorem™:

[P].

The same property can be restated in terms of the probabilist
semantics. To do so, we will have to relate our probabilisge
mantics with our crisp semantics. This can be done by stgdyia
behavior of the probabilistic semantics when the inputritiistion
has all its mass concentrated around a paigt Such a random
variable can be modeled by a Dirac delta, leading to theatig
theorem.

Theorem 2. limg—,0 [P] 4

~
~

Theorem 3. LetY be a random vector with a distribution:
h(x) = §(x — xo0)
Then the variablg P]# (Y) follows the distribution
I (x) = 6(x — [P](xo0))
Informally speaking, the random vecf®ris “equivalent” to the
(non-random) vectoko. The above theorem states thia]* (Y)
is also “equivalent,” in the same sense, to the oufpf(xo).

Theorem 2 can now be obtained using the relationship betaeen
probabilistic and smoothed semantics.

3. Smooth interpretation

The last section defined Gaussian smoothing in terms of a prob
abilistic semantics based on transformations of randoralas.
The semantics of Definition 3, however, do not lend themselwe
algorithmic implementation. The immediate problem is timainy
of the evaluation rules require complex manipulations duitia@ry
probability density functions. More abstractly, the snizat se-
mantics of Definition 3 essentially encodes the precise\iehaf
the program on all possible inputs, a losing propositiomfithe
point of view of a practical algorithm. This section deseslfour
approximations that form the basis of our practical smoanthri
pretation algorithm. The approximations focus on four afiens
that introduce significant complexity in the representaid den-
sity functions. These approximations are guided by ouraghof
representation for the probability density functions;uadgly the
most important design decision in our algorithm.

e Conditional probabilities: The use of conditional probabilities
allows the probability density functions to encode the path
constraints leading to a particular point in the execut@ath
constraints can be arbitrarily complex, so having to encode
them precisely as part of the representation of the statespos
a challenge for any practical algorithm.

Mixture: The mixture procedure combines the state of two
different paths in the program without any loss of inforroati

hy = [mo,m1,...my] Wherem; = (w;, s, ;) is a Gaus-
sian component. Our goal is to find a density functiop s =
[mo, mf, ... m’y] that best approximates the probability density of
Y| B. To simplify the problem, we require that; = (¢, i, 3i)-
With a bit of calculus, it is easy to see that the solution ieto

[BI*(Y4)
[B]#(Y)’

whereY; follows the Gaussian distribution with mean and
standard deviatior®;. This definition still requires us to compute
[B]*(Y:), butitis easy to do so approximately at runtime. Exam-
ple 1 showed how to compute this exactly for the case wihes

of the form(x; < a) or (a < x; < ¢). Other cases can be handled
heuristically by rules such as

ti = w;

[B1 A Ba]#(Y)
[-BI*(Y:)

[Bi]#(Y:) - [B2]* (Y2).
1— [B]#(Y2).

As for computing[B]# (Y), it turns out we do not have to. If
we observe the rules in Definition 3, we see that every time we
useY | B, the resulting density function gets multiplied by a factor
[B]*(Y). Therefore, we can perform a few simple adjustments to
the evaluation rules of Definition 3 to avoid having to renakm
ize the representation of the distribution after every s&ipping

This poses a problem because it means that by the end of thenormalization has other benefits besides efficiency. Spattifi the

execution, the probability density function encodes theaveor
of the program on all possible paths.

Update: The semantics of update involve complex integrals and
Dirac deltas; a practical smoothing algorithm needs a smpl
update procedure.

Loop approximation: The probabilistic semantics defines the
behavior of loops as the limit of an infinite sequence of opera
tions. In order to make smooth interpretation practicalnest

be able to efficiently approximate this limit.

3.1 Random variables as Gaussian mixtures

The first important design decision in the smooth interpieteal-
gorithm is that each random variable is approximated by daan
variable following aGaussian mixture distributionThe density
function hy of a variable following a Gaussian mixture distribu-
tion has the following form:

hy = Z wi - H Jus).8:6) = Z wi* fu;,8, (8)

i=0..M 7j=0..K 1=0..M

where f,,, 3, is the density function of a Gaussian with mean
wi € F¥ and standard deviatioh, € R

The above equation represents a distribution withdistinct
components, where each component is a weighted Gaussi&n in
independent variables. The weights must add up td to ensure
that the function above is a legal probability density fimmet

By assuming that all density functions have the form aboue, o
system can represent a random variable very compactly asaf li
triples of the form

hy = [(wo, fto, Bo), - - -, (War, puar, Bar)]
wherey;, 8; € R for all 4.

Conditional probabilities The probabilistic semantics makes ex-
tensive use of conditional probabilities. Unfortunatefya ran-
dom variableY has a density function of the form defined in
Equation (8), the variabl& | B for some Boolean expressiai
is most likely not going to have that form. Our solution is todfi
an approximation ofY|B that matches our canonical form. Let

total weight of the un-normalized representation of théritiistion
gives us a good estimate of the probability that the execuiiil
reach a particular program point. This becomes useful wieai d
ing with loop termination, as we will see further ahead.

Mixture The mixture operation is easy to implement accurately
on our chosen representation. Given two random variaKles
hx andY ~ hy with

hx = [(wi 13, BE), - -, (wit, g, Bar)]
hY = [(wOY7Iu‘OY7/BOY)77(w%7u%75%)]7

the mixtureX U, Y has the probability density function shown be-
low. It simply contains the components of both of the initatri-
butions weighted by the appropriate factor. Note that tseltde-
low assumes normalized representationsiferandhy, if they are
unnormalized, the scaling factor is already implicit in theights,
and all we have to do is concatenate the two lists.

[(’U'U)é(, /’Lé<7 58()7 (a3 (’U'U)i({, /’@6{7 51)61)7 ((1_1])on7 /’Lg7ﬂ(¥)7]

One drawback of this representation is that it can grow &igni
icantly in the process of applying mixtures. Every time we @i
random variable with a representation of sizewith one of size
N, the result is a random variable with a representation & siz
M + N. Performing mixtures in the process of evaluating the prob-
abilistic semantics leads to an explosion in the number ofm
nents; by the end of the program, the total number of comgsnen
will be equal to the number of possible paths through the narog
an enormous number even for modestly sized programs.

To prevent this explosion, our interpreter establishes ado
N, so if a mixture causes the number of components to exceed
N, the result is approximated with a representation of size
The approximation is performed according to the pseudodode
Algorithm 1.

In this algorithm, themerge operation takes two components
in the distributionhx and replaces them with a single component
computed according to the following function.

Algorithm 1 Restrict(hx, N)
Input: Density function
hx = [(wQ, 43 55)s - (whr, i, Bar)]

of size M needs to be reduced to sizé < M.

1: while Size(hx) > N do

2: find pair (w}*, i, B7), (W), u, BF) € hx that
minimizescost((wi, ui, B7°), (w3, 13, B7°))

3: hx := replace components and j in hx with
merge((wX, uX, BX), (WX, 1, BX))

4: end while

5: return hx

merge((w®, pu*, B%), (w’, p°, 8°)) = (w', 1, B)
/ w® +wb

w =
where ¥ = (b w4+ p - w) /(w* + w)
8 w (Be42)|p —p/ | D) +w’ (B +2| b —p'||?)

wa +wb

Loop approximation A final approximation has to do with loop
termination. Consider a program of formwhile B { ... }, and
recall the approximationﬁP]];**E defined in Definition 3. Our inter-
preter use@P]]f (Y), for a sufficiently highy, as an approximation
to the idealized outpUtP]* (Y). An advantage of this approach is
that [[P]]f(Y) is defined for allj, even when the limit in the defi-
nition of [P]# (Y') does not exist.

To select a suitable value gf we apply a simple heuristic. Sup-
poseY' is the unnormalized random variable obtained by execut-
ing the body of the loog times on the input random variabhé.
Our system monitors the weight &f . Because our representations
are unnormalized, the weight &f" is an estimate of how much
an execution withy iterations will contribute to the end solution.
Further, as weights get multiplied along paths, an exegutitth
4’ > 7 loop iterations will contribute strictly less thavi’. When
the weights associated witi’ become sufficiently small (less than
10~% in our implementation), we determine that an execution with
j or more iterations has nothing to contribute to the outpuhef
smooth interpreter, and talﬁ@]]f as an approximation dfP]#.

The above strategy essentially amounts to a dynamic veo$ion
loop unrolling, where the amount of unrolling is based onptab-
ability that the loop will iterate a certain number of itéaais. Once

The mean is computed as one would expect, as the We|ghtedthat probability falls below threshold, the unrolling isrteénated.

average of the two components to be merged; the new variaifice w
grow in proportion to how far the old means were from the mean
of the merged component. The definition of merge is optimal: i
produces the best possible approximation of the two comyene

The algorithm merges in a greedy fashion, always trying to
merge components that will cause the smallest possiblegehtan
the distributionhx . The cost of a merge is computed according to
the following function.

cost((w®, u*, B*), (wb7ub7ﬂb))

= w|u® = |+’ —
wherey’ = (u®-w® + p®-w?)/(w® +w®). The cost is an estimate
of how much information will be lost when the two components
are merged into one. The algorithm as stated is quite ineffici
in that it does a lot of repeated work, but it is simple to statd

implement, and for the values &f we used for our experiments, it
was reasonably efficient.

Example 3. Let us consider the following prograi, previously
seen in Example 2:

if xo > 0 then skip else xo := 0

We sketch the smooth interpretation Bf on the input0.5 and
B = 1. Here, the input random variab® has the representation
hy [(1,0.5,1)]. To propagate it through?, we must first
compute[xzo > 0)]* (Y). This is done following Example 1—the
result is approximately.69. Thus, the random variablég; and
Y. propagated into the true and the false brancl eéspectively
have densitiedy, = [(0.69,0.5,1)] andhy, = [(0.31,0.5,1)].

Now we have[skip]# (Y1) = Y: and[xo := 0]#(Ys2) =
[(0.31,0,1)]. The estimation ofYs = [P]#(Y) thus has the
representatiothy, = [(0.69,0.5,1), (0.31,0, 1)], and the output
of the smooth interpretation 569 x 0.5 = 0.345.

Now, let P’ equal if xo > 5 then skip else Xo := Xo + 5
and consider the programi®; P’. To do smooth interpretation of

As we have stated before, each component in the density func-this program, we must propagatg-, through P’. The resulting

tion hx carries information of the behavior of the program on a
particular path. The&estrict operation has the effect of summariz-
ing the behavior of multiple paths in a single component. fEseilt

is an algorithm with very selective path sensitivity; pathith very
high probability, or whose behavior is very different frohetoth-
ers are analyzed very accurately, while paths with simigduaviors
are merged into a single summary component. The price paid fo
this selective path sensitivity is a small amount of distarity in

the smooth semantics. This is because a small change in ame co
ponent can cause components to merge differently. In Sebtiove
will explore this effect in the context of one of our benchksar

Update Our interpreter implements assignments according to
the following rule: If X ~ hx = [qo,q1,...qn] Whereg;
(w’ivu‘ﬁﬁ’i)’then

[r; = BJ*(X) =X’

whereX' = [¢h, i, .. gk, andq) = (wi, uslj = [E] ()], B:).
From the rule for assignments in our probabilistic semantic

is possible to determine that the above definition is optinmaler

the constraint thaB; remain unchanged. We could have gotten a

more accurate definition if we allowet] to change, but the added

accuracy would have been at the expense of greater comyplexit

distributionhy, will equal:
[(0.69,0.5,1),(0.31,0,1),(2.3-107%,5.5,1), (9.8 - 1078, 5,1)],
Now, if our limit of components equals then theRestrict opera-
tion will merge the last two components, which together faweh

a small weight that the effect of the merge on the accurachef t
solution will be negligible.

4. Parameter synthesis

In this section, we introduce tlaptimal parameter synthessob-
lem for embedded control programs as a concrete applicafion
smooth interpretation.

4.1 Problem definition

Motivating example: Thermostat Let us consider a simple con-
trol application: a thermostat that controls the tempeeanf a
room by switching on or off a heater. The code for the program
is shown in Figure 3-(a). The program repeatedly reads itetime
perature of the room using a routineadTemp. If this temperature

is above a certain threshotdff, the heater is switched off; if it is
below a thresholdon, the heater is switched on. We assume that
the time gap between two successive temperature readingtsey
known constantt. Also, the differential equations that govern the

(a) Source code of controller:

tOff := ??; tOn :=
repeat every dt {
temp := readTemp();
if (isOn() and temp > tOff)
switchHeater (0Off);
else if (not isOn() and temp < tOn)
switchHeater (On); }

?7?:
£

(b) Temperature variation in warming phase:
d

Ezternp =—k-temp+h
(c) Temperature variation in cooling phase:

d
—temp = —k - tem;
at P P

Figure 3. Parameter synthesis in a thermostat

change of room temperature during the warming or coolingsgha
are known from the laws of physics and the characteristidh®f
heater. These are as in Figure 3-(b) and Figure 3-(c).

What we do not know are the values of the threshelisand
tOff. These thresholds are tleentrol parameterf the thermo-
stat. For the room’s temperature to be controlled desirdbbse
parameters must be instantiated properly. At the same tgjoed”
values of these parameters do not easily follow from higlellpro-
gramming insights. Consequently, we aimstmthesize¢hese val-
ues automatically.

The inputs to this synthesis problem include the thermostat
program and the given model of temperature variation, abasel
specification Let atrajectory of the program be a finite sequence
of temperature values. gpecificationSpec for this setting consists
of a finite set of trajectories (known as theference trajectoriés
Intuitively, the i-th value 7[¢] in a reference trajectory is the
desiredtemperature of the room during tikeh loop iteration.

Let us now fix an instantiation of the parameteea andtoff
with real values. Now consider any reference trajectgrihe first
value inT corresponds to thimitial condition of ~ and is denoted
by Init(7). Now let us consider an execution of the system from a
point where the room is at temperatubeit(7) (note that this ex-
ecution is deterministic). Letoss be the sequence of temperature
readings returned by the fir8f = |7| calls toreadTemp. This se-
guence captures the observable behavior of the system thmeler
present instantiation of the control parameters and thee Sam
tial condition asr, and is known as thebserved trajectorpf the
system. We refer to the distance (defined for this exampldéas t
L,-distance) between andross as ther-error between the pro-
gram andSpec. Theerror between the system arithec is the sum
of r-errors over all- € Spec (note that this error is a function of
tOn andtoff). The goal of optimal parameter synthesis is to find
values for the control parameters such that the error betes
program andSpec is minimized.

Observe that we do not aim to match the observed and reference 3.

trajectories of the program exactly. This is because in ettirg,
where parameters range over real domains, a problem may ofte
lack exact solutions but have good approximate ones. Whien th
happens, a good synthesis technique should find the besbappr
mate answer rather than report that the program could notaoe m
to match the specification.

Optimal parameter synthesis as function minimization More
generally, we could define an instance of the optimal paramet
synthesis problem for an embedded control system as cimgsist
of a physical systen#®; with known characteristics, a prograf

float singleTrajError (float tOn, float tOff,
trajectory 7) {
float temp := Init(7);
float Err := 0;
bool isOn = false;

for (i :=0; i <N; i:=1+1){
Err := Err + (temp — 7[i])%;
if(isOn){ temp := temp + dt = K * (h - temp); }
else{ temp := temp * (1 - K » dt); }
if (isOn and temp > tOff)
isOn := false;
else if (not isOn and temp < tOn)
isOn := true;

}
return /Err; }

Figure 4. Parameter synthesis in a thermostat (contd.)

with uninitialized parameters that contraly, and a specification
Spec consisting of a set of reference trajectoriesidt The goal
of optimal parameter synthesis would be to minimize theadist
between the reference and observed trajectories.

Instead of defining the problem this way, we formulate it as
an equivalent function minimization problem. This forntida is
achieved by constructing a prograBrror whose inputs are the
missing parameters if;, whose transitions capture the combined
dynamics ofP; and P», and whose output is the error betwen
andSpec. The goal now is to find inputs t&rror that minimize its
output.

For example, consider the procedutmgleTrajError in Fig-
ure 4. This procedure is obtained by “weaving” the dynamftb®
room’s temperature into the code for the controller, andnmdiag
the Ly-distance between the observed and reference trajeciories
a special variabl&€rr. The input variables of the routine atén
andtoff—the control parameters that we want to synthesize. Now
let Error be a function returing the sum of the return values of
singleTrajError for 7 € Spec (tOn andtOff are fixed), and con-
sider the problem of finding an assignment to the input&afbr
such that the value it returns is minimized. An optimal soluto
this problem is also an optimal solution to the parametett®gis
problem for our control system.

In general, let? be any program with a single real-valued output
variable out. The output minimization problenfor P is to find
an inputq to P such that the value of the outpyt (we have
q" = [P](q)) is minimized. This is the problem that we solve using
smooth interpretation. By solving this problem, we alsosedhe
optimal parameter synthesis problem for control programs.

4.2 Algorithm

Algorithm 2 SMOOTHED-NELDER-MEAD(F, 7, €)

1: repeat
2: Randomly select starting poipt € R*
Select large3 > 0.
4: repeat
5: p := NELDER-MEAD(SMOOTH(F, 3), p, n, €)
6: = new value smaller than old value 8f
7 until 8 < e
8: if F(p) < F(bestp) then bestp :=p

9: until timeout
10: return bestp

Our approach to the output minimization problem (and hence,
optimal parameter synthesis) is based on local optimizaSpecif-

ically, we useNelder-Mead simplex seardi5], a derivative-free
local optimization technique that is implemented in the GSIti-
entific Library (GSL) [10]. Let us say we want to minimize a éin
tion F : RX — R. To do so using Nelder-Mead search, we issue a
call NELDER-MEAD(F, p, 7,), wherep € R¥ is aninitial point,

n > 0 is astep sizeande > 0 is astopping thresholdOn this
call, the search algorithm starts by constructingiraplexaround
the pointp (the maximum distance of the points in this simplex
from p is a defined byy). This simplex is now iteratively shifted
through the search landscape. More precisely, in eachiderghe
algorithm uses a simple geometrical transformation to tettee
simplex so thatF has “better” values at the extrema of the sim-
plex. After each iteration, the value of at the “best” vertex of
the simplex is recorded. The search terminates when we @ach
approximate fixpoint—i.e., when the best valuefobetween two
iterations differs by less than At this point the simplex is con-
tracted into one point, which is returned as a local minimdinfo

Naive and smoothing-based algorithms A simple way to solve
parameter synthesis using Nelder-Mead search would benterge
ate the functiorError, then call NELDER-MEAD (Error, Pin, 1, €)
with suitablen ande; the function could even be called repeatedly
from a number of different starting points, to increase the like-
lihood of hitting a global minima. Unfortunatelygrror is only
available as an imperative program, and in most cases oébit®
us, proves to be too ill-behaved to be minimized using NeMead
search.

For example, consider again our thermostat, whereor is a
function of tOn and t0ff. In Figure 5-(a), we plot the value of
Error astOn andt0ff vary—this plot is the “search landscape”
that the search algorithm navigates. In Figure 5-(b), we thie
magnitude of the gradient afrror vs tOn and toff. The plots
are “thermal” plots, where lighter colors indicate a highuea
Now note the highly irregular nature of the search landscape
particular, note the black squares in the bottom left coofehe
gradient plot: these represent “plateaus” where the gnadi® but
the value ofErrror is far from minimal. It is therefore not a surprise
that empirically, Nelder-Mead search fails to solve theapaater
synthesis problem even in this simple-looking example.

The problem of plateaus and discontinuities can be payrtiall
overcome using smoothing. Consider the algorithmsimoothed
Nelder-Mead searckhown in Algorithm 2. This time, local search
operates on the smoothed versiorbfor—we start with a highly
smooth search landscape, then progressively reduce the wél
the smoothing parametgrto increase the accuracy of the analysis.
Of course, the accuracy of smoothing and the tradeoffs afi-acc
racy and scalability also depend on the path-sensitivitynoboth
interpretation. We do not believe that there is a singlecyotif
path-sensitivity that will be successful for all applicats. There-
fore, we allow the user to play with various strategies irfiedént
benchmark applications.

Now consider the thermostat application again. Eet= 1.0,

h = 150.0, anddt = 0.5. Also, let us use a partially path-
sensitive smooth interpretation where we track only up t@tp
simultaneously—i.e., an abstract state has at most 2 coenpgn
Figures 5-(c)-(h) depict the values @&frror and its gradient un-
der this smooth interpretation, for various valuesofNote how
the gradient smooths out into a uniform slopeAsncreases—
empirically, this causes the search to converge rapidly.

5. Evaluation

In this section, we describe a series of experiments thaterve p
formed to evaluate the benefits of smoothed Nelder-Meadtlsear
in parameter synthesis. We used an implementation of naaleri
search available in the GNU Scientific Library (GSL). Ourlava

Figure 5. (a) Error vs. (t0On, t0££f): no smoothing. (b) Magni-
tude of gradient offrror: no smoothing. (CError: 4% = 0.5. (d)

Gradient plot;3%> = 0.5. (e) Error: 82 = 5. (f) Gradient plot:
B2 =5. (g) Error: 82 = 50. (h) Gradient plot3% = 50.

while(t < T) {
if (gear > 0)
v := v + dtx(a(gear, v) * v + 5.0);

else v :=v - dtx(v * v * drag);
if (gear = 1 and v > s1) {

gear := 0; nxt := 2; w :=0.8; }
if (gear = 2 and v > s3) {

gear := 0, nxt := 3, w :=0.8; }
if (gear = 3 and v > s3) {

gear := 0; nxt := 4; w :=0.8; }
if (gear = 4 and v > s4) {

gear := 0, nxt := 5, w :=0.8; }
if (w < 0.0 and gear = 0)

gear := nxt;
t =t + dt;

w:=w-dt; }

Figure 6. The gearbox benchmarksy, s2, s3, and s4 are the

control parameters)

ation centers on three questions that are central to théityadf
our approach:

1. Do typical control applications actually exhibit distiomities
that would be significant enough to require smoothing?

2. If discontinuities do exist, are they eliminated by snhooter-
pretation? We are particularly interested in how the apipnax
tions made by our algorithm affect the quality of smoothing.

3. Does smoothing actually make a difference for parameter s
thesis?

To answer these questions, we analyzed three applicativms:
thermostat controller introduced in Section 4, a gearbatrodier,
and a PID controller with brakes. We have already discusised t
thermostat application in some detail; also, it is less |“vearld”
than the other two applications. Consequently, in thisiseate
focus on the gearbox and the PID controller.

5.1 Gearbox iteration. Each row in the figure corresponds to a differenit i

The gearbox benchmark models the gearbox of a car. Here welidl Valu€s1 = s2 = s3 = s4 = sin;. The first column, with
have five gears, théth of which (I < ¢ < 5) has an associated p = 0.0001, corresponds to thg case where there is wrtually no
efficiency curve’of the form - = smoothing; the second column involves moderate smoothkingj,

the last column involves a huge amount of smoothing. Thescorr
ali,v) = 1 . settings ares; = 14, s = 24, 53 = 40, s4 = 65.

’ 1+ (v—pi)?/25 The first two rows show clearly the effect of smoothing on the
Herew represents the current velocity of the car, and . . . , ps) = ability of Nelder-Mead search to find a solution. Without sitio
(5,15, 25, 40, 60) are known parameters. Note that at 7gea1he ing, the solver is stuck in a plateau where the error remainstant
gearbox achieves maximum efficiencyat= p;. At geari, the after every try. By contrast, the smoothed version of thélem

velocity of the car changes according to the equation quickly finds a g_ood, if_not necessarily o_ptimal, sol_utiormtelthat
from some starting points, the method is able to find a cosect

dv/dt =v - a(i,v) + u. lution even in the absence of smoothing. In fact, in the thing
of Figure 8, the solution found without smoothing is actyalétter
than the solution found with smoothing.

To understand these effects better, we ran a series of experi
dv/dt = —(v* - drag) ments to help us visualize the error as a function of the wiffes;.
The results are shown in Figure 7. lllustrating a functiomdbur
dimensional parameter space is tricky; for these plots, el all
the parameters constant at their optimal value and we dldkie
error as a function of one of the parameters. For exampleigin F
ure 7(a), we held., s3 ands4 constant and plotted the error as a
function of s, for different values of3.

The unsmoothed functions all have a very smooth region close
to the middle, with big plateaus and discontinuities clasethe
edges. This explains why for some cases, the unsmoothetidunc
was able to converge to a correct solution, but for othersais w
completely lost. If the Nelder-Mead search starts in theatimece-
gion, it easily converges to the correct solution, but itérts in a
plateau, it is unable to find a solution. When we do apply simoot
ing, the results are dramatic; even small degrees of smaptiuim-
pletely eliminate the discontinuities and cause the plet¢ahave a
small amount of slope. This helps the Nelder-Mead searchadet
to “see” the deep valleys at the end of the plateau.

A final observation from these plots is that while smoothing
eliminates discontinuities and plateaus, the smoothectifmcan
still have sub-optimal local minima. Additionally, smoath can
change the position of the actual minima, so the minima of the
smoothed function may be different from the minima of thgioal
function. This explains why in Figure 8 with starting valug, 8he
unsmoothed function produced a better solution than thetred
version. The solution to this problem is to start with a vanosth
function and then progressively reduce the degree of srmapto
that the most accurate solution can be found.

whereu is a known constant. When the gearbox is disengaged, the
velocity of the car follows the equation

where drag is a known constant. We assume that= 5.0 and
drag = 0.0005.

The controller for the gearbox decides when to shift from
one gear to the next. The system only allows consecutive gear
transitions—i.e., from gea#, we can only shift to geati + 1).
Fori = 1 to 4, we have a control parameter whose value is the
velocity at which geai is released and gedt + 1) is engaged.
There is a second complicating factor: gear changes arasiain-
taneous. In our model, each shift take8 seconds—thus, for 0.8
seconds after geaiis released, the gearbox stays disengaged.

We define a trajectory of the system to be the sequence of val-
ues of the velocity at the beginning of loop iterations. We want
to make the system reach a target veloeigy, 4. as soon as pos-
sible; accordingly, we use a single reference trajectoyefform
(0, Vearget, Vtarget, - - - p. Our goal is to synthesize values for the
control parameters; -s, such that thd.,-distance between the ob-
served and reference trajectories is minimized. As in tamtlostat
example, we write a program that folds the dynamics of thesphy
ical component (car) into the source code of the controlieis—
this program that we analyze. The main loop of this benchrsark
shown in Figure 6 (we have omitted the lines computing thergrr

Smooth interpretation in this application requires us to the
program on Gaussian distributions corresponding to thialias
s1-54. This proves to be highly challenging. First, the number of
paths in the system @(QT/dt), making completely path-sensitive
smooth interpretation infeasible. At the same time, indlisinate
merging of distributions propagated along different patfiklead
to inaccurate smoothing, causing the minima of the smoagined
gram to become meaningless. In particular, the delay intitfigrsy
of gears makes a certain level of path-sensitivity essentithe .
system loses track of the concrete values of varialtesor w, it 5.2 PID Controller with a brake
risks losing track of how much time has elapsed since thegmtar Inthis problem, we want to synthesize parameters for a Ptiopal-
disengaged, or of what gear should be engaged next. Thuglthe Integral-Derivative (PID) controller for a wheel. To maketprob-
ues of these variables must be tracked precisely acrossidtes. lem more interesting, we have considered a version of thiel@m

We studied this benchmark using our implementation of shembt where the wheel has brakes. The brake allows for a much fimer co
Nelder-Mead search (based on g4 library). We assumed that trol of the motion, and consequently a more effective cdlaroAt
dt = 0.1 andT = 20.0. We limited the number of distinct com- the same time, they lead to a significant increase in the dize o
ponents of the distribution 0, a very small number compared to the parameter space and the number of control-flow paths to be
the astronomical number of paths in the program. considered, making parameter synthesis much more difficult

For our first experiment, we ran Nelder-Mead search with a The code for the benchmark, obtained by combining the dy-
number of initial values for the;, and with various degrees of namics of the wheel with the code for the controller, is shawn
smoothing. Since one of our goals was to understand theteffec Figure 9. The parameters we want to synthesizesarez, andss
of 8 on Nelder-Mead search, all the experiments were run keep- (the coefficients of the proportional, derivative, and gnggé com-
ing B constant, rather than progressively reducing it as we did ponents of the controller), anfd -bs (parameters in the Boolean
in Algorithm 2. The results are summarized in the plots in-Fig expression deciding when to apply the brake). Known cotsian
ure 8. The lines in each figure show how the solution evolveéls wi cludedt = 0.1, target = 7, inertia = 10.0, anddecay = 0.9.
each iteration of Nelder-Mead search; the solid region aextbi- As for the specification, we want to ensure that after exaEtly
tom of the graph shows how the error value changes with each seconds, the wheel reaches its target positiomaefet = 7. The

variable s1 variable s2 variable s3 variable s4

$2=24, 53=40, 54=65 51=14, 53=40, 54=65 $1=14, 52=24, 54=65 51=14, 52=24, s3=40
250 240 290
230 270
220 —
—— 250 R -
’// 210 \\ \\
- = 200 - N N “ L 230 < —beta=7
5 5 5 5
= = = ~ i E \ beta=5.
190 \{w 210 \\ —beta=3
180 N —beta=15
9% e — beta=0.00005
170 o - “
160 160 170
150 150 150
0 20 40 60 80] 20 40 60 80 0 20 40 60 80] 20 40 60 80
value of s1 value of s2 value of s3 value of s4
@) (b) (© (d)
Figure 7. Error in the gearbox benchmark as a function of{a)(b) sz, (c) s3, (d) s4
Initial value B =0.005 B=1.5 B=5
beta = 0.005 beta=1.5 beta=5
80 500 100 500
60 450 80 /__/—"\w\/———v 450
400 60 400
40 g dbq'_r\/—
» ==error » ==error £ ==error
s 30 _g k3 —s1 § 40 M 30 g
32 —s2 3 ~s2 5 o M —s2
s 300 _ s . 2 20 300 _
s s3 > 3 3 _/ V 3
0 —s4 —s4 > —s4
250 0 250
10 20 30 40 50 60 70
20 200 20
. =50 40 Iteration of numerical search 150 Iteration of numerical search 40 Iteration of numerical search 150
SZ”LZ -
beta = 0.005 beta=1.5 beta=5
80 500 80 500 100 500
60 450 60 AW - 450 80 450

AL
400 400 60 400
40
error =error =error
0 0

40 H
g " 350 _ g % " 350 _ E 40 350 _ g
wE B MWW e i 00 72
0 4 —s4 2 —s4
250 30 40 50 61 0 250
10 20 30 40 50 60 70
20 200 20 200
Er— 40 -40 Iteration of numerical search 150 -40 Iteration of numerical search 150 -40 Iteration of numerical search 150
wmr —
beta = 0.005 beta=1.5 beta=5
80 500 80 500 100 500
60 450 60 I Py NN 450
/ 400 - 400
40 ~ 40 7 H -
5 A W - S e
52) ~s2 B ~s2 s -2
s 300 s [300 g3 3 —s3
0 s4 0 s4 s s4
10 20 30 40 50 60 70 250 10 20 30 40 50 60 70 250
20 200 20 200
S:: =30 40 Iteration of numerical search 150 40 Iteration of numerical search 150 Iteration of numerical search
mr ——
Figure 8. Effect of Nelder-Mead search on the control parameters aiftgpx
precise error function is defined as follows: and allows the algorithm to find optimal parameters from @etar
of starting points.
ET‘T‘OT(SL 82,83,b1,...,bs) = To illustrate the effect of smoothing, consider Figure }0(a
if (target — ¢ < ang < target + ¢) then 0 else 10, which showsError as a function o3 with all other controls held

constant. Once again, the effect of smoothing is dramattee 3
is very small, the error function only has two deep groves, ian
is zero everywhere else. As we increase the valug,dhe deep
groves turn into gentle slopes.

Two interesting features are worth pointing out in Figurél0
First, as in the previous benchmark, smoothing has thetedfiec
shifting the minima slightly. In fact, in this case, we seesavitocal
minimum appear around-0.1. If this appears strange, remember
that the plot is only showing a slice of a multi-dimensionbdtp

wheree = 0.00001 for all our experiments. A notion of trajectories
corresponding to this error function is easily defined—wip ske
details.

This function Error is highly discontinuous. Within a small
subset of the input space, it evaluates to O—everywhere itlse
evaluates td0. Such functions lead to the worst-case scenario for a
Nelder-Mead search algorithm as the latter is stuck in @platOn
the other hand, smooth execution really shines in this isngia
Smoothing creates a gradient that Nelder-Mead search daw,o

Error as a function of 3, s1=0, s2=0

——Beta=0.3
Beta =0.2

Error

/.

Error

——Beta=0.1
——Beta=0.05

——Beta=0.01

Effect of N on the quality of the smoothing for beta = 0.2
——N=30

: ST

75— ——N=90

——Beta =0.001

——N=150

0.1

value of s3

(@)

4 01 02 03 04
Value of $3

(b)

Figure 10. (a) Error function for PID controller as a function of for different values ofs. (b) Error function as a function & for different
extents of path-sensitivityl\ is the maximum number of components per symbolic state)

while(t <
if(by =

T {

d+ by >0and by * v+ by >0 or

bs * d + bg > 0 and by = v + bg > 0) {
if(v > 0)
brakev := -1;
else brakev := 1;
}
else brakev := 0;
d := dist(ang, target);
torq := So * d + S1 * V + S2 * id + brakev;
id := id = decay + d; // id: integral of distance

oldv := v;
// velocity v: derivative of distance
v :=vVv + (torq / inertia) =« dt;
ang := ang + (v + oldv)/2 = dt;
if (ang > 2 * m)
ang := ang - 2 * T;
else if (ang < 0)
ang := ang + 2 * T;

Figure 9. PID controller with a brake

What is happening is that smoothing is allowing us to observe
local minimum in a different dimension.

The second feature is the “noise” to the right of the plot; par
ticularly for the most-smoothed curvgg (= 0.3). This noise, it
turns out, is an artifact of the approximation that we maki wie
Restrict operation to limit the number of components in our rep-
resentation of the distribution (see Section 3). Thesespitre all
generated by setting the maximum number of components af a di
tribution to N = 90. As we mentioned in Section 3, thigestrict
operation is the only approximation we make that is capabie-o
troducing discontinuities.

In the plot in Figure 10, we can observe the effect of setting
N to higher or lower values. In this ploty is the number of
states maintained by the analysis. Notice that in most oftaph,
the value of N doesn't really matter; the plot is very smooth
regardless. Wheans starts becoming more positive, however, the
system starts to become unstable, so path sensitivity $egin
matter more and more. Notice that fov 30, the loss of
information due to merging of paths causes major discoiti@zu
in the function. Increasingv up to 150 virtually eliminates these
effects, since now the system can maintain enough patmiafiion
to avoid building up approximation errors. Of course, higleues
of V come at the cost of scalability.

Finally, Figure 11 shows the effect that smoothing has on our
final goal of synthesizing parameters. The plots show thaweh
of the solution found by Nelder-Mead search af#ériterations,
with and without smoothing. The solution found without srtiiog
is essentially useless; in this solution, the wheel staittsan angle

beta = 0.001 start = 0.1

2005
-00!

1.2

1
a
g 2 \'._.ﬂﬁ'._.vs_ 08
H ¥ WP 06
g 1995 - Tew = 0.4
2 [- ®ang
£ 19 - 02 ¢ pReak
0
1.985 0.2
2 0 2 4 6 8 10 12

time

beta = 0.01 start=0.1

714

12
6.14

5.14

0.8
414

3.14

0.6

®ang
214 ez © BREAK

1.14

- 04

........

angle in radians

0.2
0.14

@ o
n

-0.2

AN

time

Figure 11. Execution of the PID controller with the best parame-
ters found with3=0.01 and 0.0001

of 2 radians, and drifts slowly without much direction. Thee
line in the chart shows the brake, which in this solution igaayed

the whole time. In other words, without smoothing, Neldesdd
search was completely unable to find an acceptable soluBgn.
contrast, when we applied smoothing with= 0.01 (which is
actually fairly large, given that the unit here is a radidhg, system
was able to find a very good solution. The wheel starts at two
radians, and rotates in a very controlled manner towardgas

of 7 radians. Also, the brake (blue line) is mostly disengaged un
around 6 time units, when the brake suddenly becomes engaged
helping the wheel reach the desired position exactly at &séred
time.

Overall, we can see that for these benchmarks, discongsuit
are a real obstacle to solving the parameter synthesisgmobith
numerical optimization techniques. Smoothing is able imiekte
these discontinuities, making parameter synthesis pesgholdi-
tionally, the most significant effect of our approximatica® the
small discontinuities introduced by theestrict operation.

6. Related work

So far as we know, the present paper is the first to developi@mot
of smoothing for programs. While the idea of modeling sofeva
by smooth mathematical functions was previously consitiéne
DeMillo and Lipton [6] in a brief note, their only technicatsult
was a simple proof that every discrete transition systembman

captured by a smooth function. Neither did DeMillo and Lipto
identify an application of this view of program semantics.

However, Gaussian smoothing is ubiquitous in signal andjena
processing [19], and smooth approximations of booleantions
is a well-studied topic in theoretical computer science].[Tte
idea of using smooth approximations to improve the perforcea
of numerical methods like gradient descent is well-knowrthi@
domain of neural networks [3]. The basic unit of a neural wekw
is a perceptron which has several real-valued inputs, atpltu
1 if and only if a weighted sum of these inputs is above a aertai
threshold. In multilayer perceptrons, comparison of théghied
sum with a threshold is replaced with the application of ansiml
function, making learning more efficient. At a high levely atrat-
egy is similar, as we also replace conditionals with sigrmoithe
difference is that in our setting, smoothing is tied to a fjmeprob-
abilistic semantics of programs, and the extent of smogthtrdif-
ferent points in the program are globally related by this @etios.

As for smooth interpretation, it is related to a line of retogark
on probabilistic abstract and operational semantics [4,118] that
builds on classic work on abstract interpretation [5] andbpr
bilistic semantics [13]. In particular, our work is relatedSmith’s
work [20] on abstract interpretation using truncated ndrdistri-
butions. There are several important differences betweeithS
approach and ours—in particular, not being interested fifiva-
tion of probabilistic safety properties, we do not use aestihg
semantics or offer a notion of probabilistic soundness.

The problem of tuning real-valued system parameters issa cla
sic problem in systems theory. In particular, the hybridteys
community has studied the problem [7, 9, 12] in the context of
embedded control applications such as ours. In their approa
to the problem, a cyber-physical system is typically modele
as a hybrid automaton [1]; analysis approaches include laimu
tion, symbolic reachability analysis, and counterexargplieled
abstraction-refinement. To the best of our knowledge, nétlei®
prior work frames parameter synthesis as a problem in naateri
optimization, or uses smoothing or path-insensitivity.

Related efforts on program synthesis includes the Sketsh sy
tem for combinatorial program sketching [21, 22], the ALsfs-
tem [2], and the Autobayes system [8] for synthesis of Bayesi
classifiers. Like our approach to parameter synthesisetlags
proaches aim to produce a program satisfying a specificgti@m
a partial program conveying the high-level insight of a Solu
However, none of these systems use a notion of program approx
mation akin to Gaussian smoothing.

7. Conclusion

In this paper, we have introduced a notion of Gaussian snmapth
of programs, and presented an implementation of the smupthi
transform based on symbolic execution. Using the concnetb-p
lem of optimal parameter synthesis and three embeddedotaptr
plications, we have demonstrated that smoothing fa@kitétte use
of numerical search techniques in the analysis of embeduoierat
programs.

The development of probabilistic and smoothed semantics in
this paper was fairly informal. We leave a rigorous study o t
mathematical properties of smoothed semantics, as welhas t
benefits of program smoothing to numerical methods, forréutu
work. A second thread of future work will study the interplefy
program smoothing with static analysis. Approximationsaoied
from smoothing are more accurate if smoothing is applied onl
on regions of the input space where the program behaves in a
discontinuous manner. It may be possible to use recenttsesul
on continuity analysisof programs [4] to statically identify these
regions. Finally, we plan to expand our technique for patame
synthesis into a method that can synthesize discrete asasell

real-valued program parameters and expressions. Suclpeseap
will integrate the present approach with the sketching a@gn to
program synthesis [21, 22].

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. HenzingerH. Ho,
X. Nicollin, A. QOlivero, J. Sifakis, and S. Yovine. The algibimic
analysis of hybrid system&heor. Comput. S¢i138(1):3—-34, 1995.

[2] D. Andre and S. Russell. State abstraction for prograbienaein-
forcement learning agents. RAAI/IAAI, pages 119-125, 2002.

[3] C. Bishop. Neural Networks for Pattern Recognitiofh995.

[4] S. Chaudhuri, S. Gulwani, and R. Lublinerman. Contip@halysis
of programs. IiPOPL, 2010.

[5] P. Cousot and R. Cousot. Abstract interpretation: a edifattice
model for static analysis of programs by construction orapma-
tion of fixpoints. InPOPL, 1977.

[6] R. DeMillo and R. Lipton. Defining software by continugusmooth
functions. IEEE Transactions on Software Engineeririg/ (4):383—
384, 1991.

[7] A. Donzé, B. Krogh, and A. Rajhans. Parameter synthesifiybrid
systems with an application to Simulink models.HECG 2009.

[8] B. Fischer and J. Schumann. AutoBayes: A system for geimgr
data analysis programs from statistical modétsurnal of Functional
Programming 13(03):483-508, 2003.

[9] G. Frehse, S. Jha, and B. Krogh. A counterexample-guaggatoach
to parameter synthesis for linear hybrid automata.HBCGC pages
187-200, 2008.

[10] B. Gough. GNU Scientific Library Reference Manual. 2009

[11] S. Gulwani and G. Necula. Discovering affine equalitis;ng random
interpretation. IrPOPL, 2003.

[12] T. Henzinger and H. Wong-Toi. Using HyTech to synthesiontrol
parameters for a steam boiler. Formal Methods for Industrial
Applications pages 265-282, 1995.

[13] D. Kozen. Semantics of probabilistic prograndisComput. Syst. Sci.
22(3):328-350, 1981.

[14] D. Monniaux. Abstract interpretation of probabilstemantics. In
SAS pages 322-339, 2000.

[15] J.A. Nelder and R. Mead. A simplex method for functiomimiza-
tion. The computer journal7(4):308-313, 1965.

[16] N. Nisan and M. Szegedy. On the degree of Boolean funstas real
polynomials.Computational Complexity4(4):301-313, 1994.

[17] D. Parnas. Software aspects of strategic defensersgsteommuni-
cations of the ACV28(12):1326-1335, 1985.

[18] A. Di Pierro and H. Wiklicky. Probabilistic abstractterpretation and
statistical testing. IlPAPM-PROBMIVpages 211-212, 2002.

[19] J. Russ.The image processing handbodBRC Press, 2007.

[20] M. Smith. Probabilistic abstract interpretation offierative programs

using truncated normal distribution&lectron. Notes Theor. Comput.
Sci, 220(3):43-59, 2008.

[21] A. Solar-Lezama, R. M. Rabbah, R. Bodik, and K. Ebciogkro-
gramming by sketching for bit-streaming programs.PIoDI, pages
281-294, 2005.

[22] A. Solar-Lezama, L. Tancau, R. Bodik, V. Saraswat, ané&shia.
Combinatorial sketching for finite programs. ASPLOS '062006.

