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Abstract
We define a new fixpoint modal logic, the visibly pushdown
µ-calculus (VP-µ), as an extension of the modal µ-calculus. The
models of this logic are execution trees of structured programs
where the procedure calls and returns are made visible. This new
logic can express pushdown specifications on the model that its
classical counterpart cannot, and is motivated by recent work on
visibly pushdown languages [4]. We show that our logic naturally
captures several interesting program specifications in program ver-
ification and dataflow analysis. This includes a variety of program
specifications such as computing combinations of local and global
program flows, pre/post conditions of procedures, security prop-
erties involving the context stack, and interprocedural dataflow
analysis properties. The logic can capture flow-sensitive and inter-
procedural analysis, and it has constructs that allow skipping pro-
cedure calls so that local flows in a procedure can also be tracked.
The logic generalizes the semantics of the modal µ-calculus by
considering summaries instead of nodes as first-class objects, with
appropriate constructs for concatenating summaries, and naturally
captures the way in which pushdown models are model-checked.
The main result of the paper is that the model-checking problem
for VP-µ is effectively solvable against pushdown models with no
more effort than that required for weaker logics such as CTL. We
also investigate the expressive power of the logic VP-µ: we show
that it encompasses all properties expressed by a corresponding
pushdown temporal logic on linear structures (CARET [2]) as well
as by the classical µ-calculus. This makes VP-µ the most expres-
sive known program logic for which algorithmic software model
checking is feasible. In fact, the decidability of most known pro-
gram logics (µ-calculus, temporal logics LTL and CTL, CARET,
etc.) can be understood by their interpretation in the monadic
second-order logic over trees. This is not true for the logic VP-
µ, making it a new powerful tractable program logic.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Model checking; F.3.1 [The-
ory of Computation]: Specifying and Verifying and Reasoning
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about Programs; F.4.1 [Theory of Computation]: Mathematical
Logic—Temporal logic

General Terms Algorithms, Theory, Verification

Keywords Logic, specification, verification, µ-calculus, infinite-
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1. Introduction
The µ-calculus [20, 16] is a modal logic with fixpoints interpreted
over labeled transition systems, or equivalently, over their tree
unfoldings. It is an extensively studied specification formalism with
applications to program analysis, computer-aided verification, and
database query languages [13, 25]. From a theoretical perspective,
its status as the canonical temporal logic for regular requirements is
due to the fact that its expressiveness exceeds that of all commonly
used temporal logics such as LTL, CTL, and CTL∗, and equals
that of alternating parity tree automata or the bisimulation-closed
fragment of monadic second-order theory over trees [14, 18]. From
a practical standpoint, iterative computation of fixpoints naturally
suggests symbolic evaluation, and symbolic model checkers such
as SMV check CTL properties of finite-state models by compiling
them into µ-calculus formulas [8, 21].

In this paper, we focus on the role of µ-calculus to specify
properties of labeled transition systems corresponding to push-
down automata, or equivalently, Boolean programs [5] or recur-
sive state machines (RSMs) [3, 7]. Such pushdown models can
capture the control flow in typical sequential imperative program-
ming languages with recursive procedure calls, and are central to
interprocedural dataflow analysis [22] and software model check-
ing [6, 17]. While algorithmic verification of µ-calculus properties
of such models is possible [26, 10], classical µ-calculus cannot ex-
press pushdown specifications that require inspection of the stack
or matching of calls and returns. Even though the general prob-
lem of checking pushdown properties of pushdown automata is un-
decidable, algorithmic solutions have been proposed for checking
many different kinds of non-regular properties [19, 12, 15, 11, 2, 4].
These include access control requirements such as “a module A
should be invoked only if the module B belongs to the call-stack,”
bounds on stack size such as “after any point where p holds, the
number of interrupt-handlers in the call-stack should never exceed
5” and the classical Hoare-style correctness requirements of pro-
gram modules with pre- and post-conditions, such as “if p holds
when a module is invoked, the module must return, and q must
hold on return”.

In the program analysis literature, it has been argued that data
flow analysis, such as the computation of live variables and very
busy expressions, can be viewed as evaluating µ-calculus formulas
over abstractions of programs [24, 23]. This correspondence does
not hold when we need to account for local data flow paths. For
instance, for an expression e that involves a variable local to a pro-
cedure P , the set of control points within P at which e is very



busy (that is, e is guaranteed to be used before any of its variables
get modified), cannot be specified using a µ-calculus formula even
though interprocedural dataflow analysis can compute this infor-
mation. The goal of this paper is to identify a fixpoint calculus that
can express such pushdown requirements and yet has a decidable
model checking problem with respect to pushdown models.

Our search for such a calculus was guided by the recently pro-
posed framework of visibly pushdown languages for linear-time
properties [4]. In this variation of pushdown automata over words,
the input symbol determines when the pushdown automaton can
push or pop, and thus the stack depth at every position. The re-
sulting class of languages is closed under union, intersection, and
complementation, and problems such as inclusion that are unde-
cidable for context-free languages are decidable for visibly push-
down automata. This implies that checking pushdown properties of
pushdown models is feasible as long as the calls and returns are
made visible allowing the stacks of the property and the model to
synchronize. This visibility requirement seems only natural while
writing requirements about pre/post conditions or for interprocedu-
ral flow properties. The linear-time temporal logic CARET is based
on the same principle: its formulas are interpreted over sequences
tagged with calls and returns, and its syntax includes for each tem-
poral modality, besides its classical global version, a local version
that jumps from a call-state to the matching return-state, and thus,
can express non-regular properties, without causing undecidability.

In order to develop a visibly pushdown branching-time logic, we
consider structured trees as models. In a structured tree, nodes are
labeled with atomic propositions as in Kripke models, and edges
are tagged as call, return, or local. To associate a structured tree
with a program (or its abstraction), we must choose the set of ob-
servable atomic state properties, tag edges corresponding to calls
and returns from program blocks appropriately, and then take the
tree unfolding of this abstract program model. The abstract model
can be an abstraction of the program at any level of abstraction:
from the skeletal control-flow graph to boolean predicate abstrac-
tions of programs.

We define the visibly pushdown µ-calculus (VP-µ) over struc-
tured trees. The variables of the calculus evaluate not over sets of
states, but rather over sets of subtrees that capture summaries of
computations in the “current” program block. The fixpoint opera-
tors in the logic then compute fixpoints of summaries. For a given
state s of a structured tree, consider the subtree rooted at s such
that the leaves correspond to exits from the current block: differ-
ent paths in the subtree correspond to different computations of the
program, and the first unmatched return edge along a path leads to a
leaf (some paths may be infinite corresponding to cycles that never
return in the abstracted program). In order to be able to relate paths
in this subtree to the trees rooted at the leaves, we allow marking of
the leaves: a 1-ary summary is specified by the root s and a subset
U of the leaves of the subtree rooted at s. Each formula of the logic
is evaluated over such a summary. The central construct of the logic
corresponds to concatenation of call trees: the formula 〈call〉ϕ{ψ}
holds at a summary 〈s, U〉 if the state s has a call-edge to a state t,
and there exists a summary 〈t, V 〉 satisfying ϕ and for each leaf v
that belongs to V , the subtree 〈v, U〉 satisfies ψ.

Our logic is best explained using the specification of local reach-
ability: let us identify the set of all summaries 〈s, U〉 such that
there is a local path from s to some node in U (i.e. all calls from
the initial procedure must have returned before reaching U ). In our
logic, this is written as the formula ϕ = µX.〈ret〉R1 ∨ 〈loc〉X ∨
〈call〉X{X}. The above means that X is the smallest set of sum-
maries of the form 〈s,U〉 such that (1) there is a ret-labeled edge
from s to some node in U , (2) there is a loc-labeled edge from s to
t and there is a summary 〈t, U〉 in X , or (3) there is a call-labeled
edge from s to t and a summary 〈t, V 〉 in X such that from each

v ∈ V , 〈v, U〉 is a summary in X . Notice that the above formula
identifies the summaries in the natural way it will be computed on
a pushdown system: compute the local summaries of each proce-
dure, and update the reachability relation using the call-to-return
summaries found in the procedures called.

Using the above formula, we can state local reachability of
a state satisfying p as: µY.(p ∨ 〈loc〉Y ∨ 〈call〉ϕ{Y }) which
intuitively states that Y is the set of summaries (s, U) where there
is a local path from s toU that goes through a state satisfying p. The
initial summary (involving the initial state of the program) satisfies
the formula only if a p-labeled state is reachable in the top-most
context, which cannot be stated in the standard µ-calculus. This
example also illustrates how local flows in the context of dataflow
analysis can be captured using our logic.

In general, we allow markings of the leaves with k colors: a
k-colored summary rooted at a node consists of k subsets of the
leaves of the subtree rooted at this node. The k-ary concatenation
formula 〈call〉ϕ{ψ1, . . . ψk} says that the called procedure should
satisfy ϕ, and the subtrees at the return nodes labeled with color
i should satisfy the requirement ψi. While the concatenation op-
eration is a powerful recursive construct that allows the logic to
express pushdown properties, multiple colors allows expression of
branching-time properties that can propagate between the called
and the calling contexts.

The main result of this paper is that the logic VP-µ can be
model-checked effectively. Given a model of a program as a re-
cursive state machine [3, 7], or equivalently a pushdown system,
and a VP-µ formula ϕ, we show that we can model-check whether
the tree unfolding of the model satisfies ϕ in exponential time (the
procedure is exponential in both the formula and the model). For
a fixed formula ϕ, however, the model-checking problem is only
polynomial in the number of states in the model and exponential
in the number of control locations where a procedure in the model
may return. The model-checking algorithm works by computing
fix-points of the summary sets inductively, and illustrates how the
semantics of the logic naturally suggests a model-checking algo-
rithm. The complexity of model-checking VP-µ is EXPTIME-
complete, which matches the complexity of model-checking the
standard µ-calculus on pushdown systems (in fact, model-checking
alternating reachability properties is already EXPTIME hard [26]).

Finally, we study some expressiveness issues for the logic VP-
µ. We first show that VP-µ captures the temporal logic CARET,
which is a linear-time temporal logic over visibly pushdown words
that can capture several interesting pushdown specification proper-
ties. This shows that our branching-time logic captures the relevant
counterpart logic over linear models, much the same way as the
standard µ-calculus captures the temporal logic LTL. This makes
VP-µ the most expressive known specification logic of programs
with a decidable model checking problem with respect to Boolean
programs.

We also show that the notion of k-colors in the logic is important
by proving a hierarchy theorem: formulas of VP-µ that use k colors
are strictly weaker than formulas that use (k + 1) colors. Finally,
we show that the satisfiability problem for VP-µ is undecidable.
Note that this is not an issue as we are really only interested in the
model-checking problem; in fact the result serves to illustrate how
powerful the logic VP-µ is.

The paper is organized as follows. Section 2 introduces struc-
tured trees and summaries and Section 3 defines the logic VP-µ.
In Section 4 we present various properties that can be expressed
using VP-µ, including reachability, local reachability, expressions
for various temporal modalities like eventually and until, security
properties that involve inspection of stack, stack overflow proper-
ties, properties describing pre and post-conditions for procedures,
properties of access control and some data-flow analysis properties



such as very busy expressions. Section 5 shows how recursive state
machine models of programs can be model-checked against VP-µ
formulas, Section 6 contains results on expressiveness and unde-
cidability of satisfiability, and we conclude with some discussion
in Section 7.

2. Structured trees
Let AP be a finite set of atomic propositions, and I = {call , ret , loc}
a fixed set of tags. We are interested in trees whose nodes and
edges are respectively labeled by propositions and tags, and model
abstract states and statements in sequential, structured, possibly
recursive programs. Formally, an (AP , I)-labeled tree is a tuple
S = (S, s0, E, λ, η), where (S, s0, E) is a tree with node set
S, root node s0 and edge relation E, the node-labeling function
λ : S → 2AP labels nodes with sets of propositions they satisfy,
and the transition-labeling function η : E → I tags transitions as
procedure calls (labeled by call), procedure returns (ret ), or local
statements within procedures (loc). For a ∈ I , we write s

a
−→ s′

as shorthand for “(s, s′) ∈ E and η((s, s′)) = a.”
A finite path in an (AP , I)-labeled tree is a sequence π =

s1s2 . . . sn over S such that (si, si+1) ∈ E for all 1 ≤ i < n.
We will extend η to paths in S as follows. Let ei represent the
transition (si, si+1) in the above path π. Then η(π) is the word
η(e1)η(e2) . . . η(en−1) over the alphabet I .

Such a labeling lets us mark certain paths in S as matched. A
path π in S is called matched if and only ifw = η(π) is of the form

w := loc | call w ret | ww.

Given nodes s and s′ in S , we call s′ a matching return of s if
and only if there is a matched path π = ss1s2 . . . sn such that
sn

ret
−→ s′. Intuitively, s′ models the first state that the underlying

program reaches on popping the context of s off its stack frame.
The set of matching returns of s is written as MR(s). Then:

DEFINITION 1. A structured tree over AP is an (AP , I)-labeled
tree with root s0 that satisfies MR(s0) = ∅.
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Figure 1. (a) A structured tree (b) A 2-colored summary

Intuitively, paths from the root in structured trees do not have
“excess” returns that do not match any call—a structured tree
models the branching behavior of a program from a state s to, at
most, the end of the procedural context where s lies. Also observe
that the maximal subtree rooted at an arbitrary node in a structured
tree is not, in general, structured. Fig. 1-a shows a structured tree,
with nodes s1, . . . , s15 and transitions labeled call , ret and loc.
Some of the nodes are labeled by propositions p and q. Note
particularly the matching return relation; for instance, the nodes
s10, s11, s12, and s15 are matching returns for the node s2. Also,
MR(s1) = ∅.

2.1 Summaries

We are interested in subtrees of structured trees wholly contained
within “procedural” contexts; such a subtree models the branching
behavior of a program from a state s to each return point of its
context. Each such subtree rooted at s has a summary comprising
(1) the node s, and (2) the set of all nodes that are reached on
return from its context, i.e., MR(s). Also, in order to demand
different temporal requirements at different returns for a context,
we introduce a coloring of nodes in MR(s)—intuitively, a return
gets color i if it is to satisfy the i-th requirement. Note that such
colored summaries are defined for all s and that, in particular, we
do not require s to be an “entry” node of a procedure. Sets of such
summaries define the semantics of formulas in VP-µ.

Formally, for a non-negative integer k, a k-colored summary s

is a tuple 〈s, U1, U2, . . . , Uk〉, where s ∈ S and U1, U2, . . . , Uk ⊆
MR(s). For example, in Fig. 1-a, 〈s1〉 is a valid 0-colored sum-
mary, and 〈s2, {s11, s12}, {s10, s12}〉 and 〈s3, {s6}, ∅〉 are valid
2-colored summaries. The set of all summaries in S , each k-colored
for some k, is denoted by S.

Observe how each summary describes a subtree along with a
coloring of some of its leaves. For instance, the summary s =
〈s2, {s11, s12}, {s10, s12}〉 marks the subtree in Fig. 1-b. Such a
tree may be constructed by taking the subtree of S rooted at node
s2, and chopping off the subtrees rooted at MR(s2). Note that
because of unmatched infinite paths from the root, such a tree may
in general be infinite. Now, nodes s11 and s12 are assigned the color
1, and nodes s10 and s12 are colored 2. The node s15 is not colored.

Also, note that in the linear-time setting, a pair (s, s′), where
s′ ∈ MR(s), would suffice as a summary, and that this is the
way in which traditional summarization-based decision procedures
have defined summaries. On the other hand, for branching-time
reasoning, such a simple definition is not enough.

3. A fixpoint calculus of calls and returns
3.1 Syntax

In addition to being interpreted over summaries, the logic VP-µ
differs from classical calculi like the modal µ-calculus [20] in a
crucial way: its syntax and semantics explicitly recognize the pro-
cedural structure of programs via modalities call , ret and loc. A
distinction is made between call-edges, along which a program
pushes frames on its stack, ret -edges, which require a pop from the
stack, and loc-edges, which change the program counter and local
and global store without modifying the stack. Also, in order to en-
force different “return conditions” at differently colored returns in
a summary, it can pass formulas as “parameters” to call modalities.

Formally, let AP be a finite set of atomic propositions, Var be a
finite set of variables, and {R1, R2, . . .} be a set of markers. Then,
for p ∈ AP and X ∈ Var , formulas ϕ of VP-µ are defined by:

ϕ := p | ¬p | X | ϕ ∨ ϕ | ϕ ∧ ϕ | µX.φ | νX.φ

〈call〉 ϕ{ψ1, ψ2, ..., ψk} | [call ] ϕ{ψ1, ψ2, ..., ψk} |

〈loc〉 ϕ | [loc] ϕ | 〈ret〉 Ri | [ret ] Ri,

where k ≥ 0 and i ≥ 1. Let us define the syntactic shorthands
tt = p∨¬p and ff = p∧¬p for some p ∈ AP . Also, let the arity of
a VP-µ formula ϕ be the maximum k such that ϕ has a subformula
of the form 〈call〉ϕ′{ψ1, . . . , ψk} or [call ]ϕ′{ψ1, . . . , ψk}.

Intuitively, the markers Ri in a formula are bound by 〈call〉
and [call ] modalities, and variables X are bound by fixpoint quan-
tifiers µX and νX . We require our call-formulas to bind all the
markers in their scope. Formally, let the maximum marker index
ind(ϕ) of a formula ϕ be defined inductively as: ind(ϕ1 ∨ ϕ2) =
ind(ϕ1 ∧ ϕ2) = max{ind(ϕ1), ind(ϕ2)}; ind(〈loc〉ϕ) =
ind([loc]ϕ) = ind(µX.ϕ) = ind(νX.ϕ) = ind(ϕ); and
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ind(〈ret〉Ri) = ind([ret ]Ri) = i. For each p ∈ AP and
X ∈ Var , let us define ind(p) = ind(X) = 0. Finally, let us
have ind(〈call〉ϕ{ψ1, . . . , ψk}) = ind([call ]ϕ{ψ1, . . . , ψk}) =
max{ind(ψ1), . . . , ind(ψk)}. We will only be interested in for-
mulas where for every subformula χ of the form 〈call〉χ′{ψ1, . . . , ψk}
or [call ]χ′{ψ1, . . . , ψk}, we have ind(χ′) ≤ k. Such a formula ϕ
is said to be marker-closed if ind(ϕ) = 0.

The set Free(ϕ) of free variables in a VP-µ formula ϕ is de-
fined as: Free(ϕ1∨ϕ2) = Free(ϕ1∧ϕ2) = Free(ϕ1)∪Free(ϕ2);
Free(〈loc〉ϕ) = Free([loc]ϕ) = Free(ϕ); and Free(〈ret〉Ri) =
Free([ret ]Ri) = ∅. We have Free(〈call〉ϕ{ψ1, . . . , ψk}) =
Free([call ]ϕ{ψ1, . . . , ψk}) = Free(ϕ) ∪ Free(ψ1) ∪ . . . ∪
Free(ψk); for each p ∈ AP and X ∈ Var , Free(p) = ∅ and
Free(X) = {X}. Finally, we have Free(µX.ϕ) = Free(νX.ϕ) =
Free(ϕ) \ {X}. A formula ϕ is said to be variable-closed if it has
Free(ϕ) = ∅. We call ϕ closed if it is marker-closed and variable-
closed.

3.2 Semantics

Like in the modal µ-calculus, formulas in VP-µ encode sets, in this
case sets of summaries. Also like in the µ-calculus, modalities and
boolean and fixed-point operators allow us to encode computations
on these sets.

To understand the semantics of local (〈loc〉 and [loc]) modalities
in VP-µ, consider the 2-colored summary s = 〈s3, {s6}, {s8}〉 in
the tree S in Fig. 1-a. We observe that when control moves from
node s3 to s5 along a local edge, the current context stays the same,
but the set of returns that can end it and are reachable from the
current control point gets restricted (MR(s5) ⊆ MR(s3)). The
temporal requirements that we demand on return from the current
context stay the same modulo this restriction. Consequently, the 2-
colored summary s

′ = 〈s5, ∅, {s8}〉 describes program flow from
this point to the end of the current context and the requirements to
be satisfied at the latter. We use modalities 〈loc〉 and [loc] to reason
about such local succession. For instance, in this case, summary s

will be said to satisfy the formula 〈loc〉q.
An interesting visual insight about the structure of the tree Ss

for s comes from Fig. 2-a. Note that the tree Ss′ for s
′ “hangs”’

from the former by a local edge; additionally, (1) every leaf of Ss′

is a leaf of Ss, and (2) such a leaf gets the same color in s and s
′.

Succession along call edges is more complex, because along
such an edge, a frame is pushed on a program’s stack and a
new calling context gets defined. In Fig. 1-a, take the summary
s = 〈s2, {s11}, {s12}〉, and suppose we want to assert a 3-

parameter call formula 〈call〉ϕ′{q, p, tt} at s2. This requires us
to consider a 3-colored summary of the context starting at s3,
where matching returns of s3 satisfying q, p and tt are respec-
tively marked by colors 1, 2 and 3. Clearly, this summary is
s
′ = 〈s3, {s6}, {s8}, {s6, s8}〉. Our formula requires that s

′ sat-
isfies ϕ′. In general, we could have formulas of the form ϕ =
〈call〉ϕ′{ψ1, ψ2, . . . , ψk}, where ψi are arbitrary VP-µ formulas.
To see what this means, look at the summaries r1 = 〈s6, ∅, {s12}〉
and r2 = 〈s8, {s11}, ∅〉, which capture flow (under the assumed
coloring of MR(s2)) from s6 and s8 to the end of the context they
are in. To see if ϕ is satisfied, we will need to consider a summary
s
′′ rooted at s3 where the color i is assigned to nodes s6 and s8

precisely when r1 and r2 respectively satisfy ψi. Now, we require
s
′′ to satisfy ϕ′.

So far as the structures of these trees go, we find that the above
requires a split of the tree Ss for summary s in the way shown in
Fig. 2-b. The root of this tree must have a call-edge to the root of
the tree for s

′, which must satisfy ϕ. At each leaf of Ss′ colored i,
we must be able to concatenate a summary tree Ss′′ satisfying ψi

such that (1) every leaf in Ss′′ is a leaf of Ss, and (2) each such leaf
gets the same set of colors in Ss and Ss′′ .

As for the return modalities, we use them to assert that we
return at a point colored i. Because the binding of these colors to
temporal requirements was fixed at a context that called the current
context, the ret -modalities let us relate a path in the latter with
the continuation of a path in the former. For instance, in Fig. 2-
c, where the rectangle abstracts the part of a program unfolding
within the body of a procedure foo, the marking of return points
s1 and s2 by colors 1 and 2 is visible inside foo as well as at the
call site of foo. This lets us match paths P1 and P2 inside foo
respectively with paths P ′

1 and P ′
2 in the calling procedure. This

lets VP-µ capture the pushdown structure of branching-time runs
of a procedural program.

Let us now describe the semantics of VP-µ formally. A VP-µ
formula ϕ is interpreted in an environment that interprets variables
in Free(ϕ) as sets of summaries in a structured tree S . Formally,
an environment is a map E : Free(ϕ) → 2S. Let us write [[ϕ]]SE
to denote the set of summaries in S satisfying ϕ in environment E
(usually S will be understood from the context, and we will simply
write [[ϕ]]E ). For a summary s = 〈s, U1, U2, . . . , Uk〉, where
s ∈ S and Ui ⊆ MR(s) for all i, s satisfies ϕ, i.e., s ∈ [[ϕ]]E ,
if and only if one of the following holds:

• ϕ = p ∈ AP and p ∈ λ(s)
• ϕ = ¬p for some p ∈ AP , and p /∈ λ(s)
• ϕ = X , and s ∈ E(X)
• ϕ = ϕ1 ∨ ϕ2 such that s ∈ [[ϕ1]]E or s ∈ [[ϕ2]]E
• ϕ = ϕ1 ∧ ϕ2 such that s ∈ [[ϕ1]]E and s ∈ [[ϕ2]]E
• ϕ = 〈call〉ϕ′{ψ1, ψ2, ..., ψm}, and there is a t ∈ S such that

(1) s
call
−→ t, and (2) the summary t = 〈t, V1, V2, . . . , Vm〉,

where for all 1 ≤ i ≤ m, Vi = MR(t) ∩ {s′ : 〈s′, U1 ∩
MR(s′), . . . , Uk ∩MR(s′)〉 ∈ [[ψi]]E}, is such that t ∈ [[ϕ′]]E

• ϕ = [call ] ϕ′{ψ1, ψ2, ..., ψm}, and for all t ∈ S such that

s
call
−→ t, the summary t = 〈t, V1, V2, . . . , Vm〉, where for all

1 ≤ i ≤ m, Vi = MR(t) ∩ {s′ : 〈s′, U1 ∩ MR(s′), . . . , Uk ∩
MR(s′)〉 ∈ [[ψi]]E}, is such that t ∈ [[ϕ′]]E

• ϕ = 〈loc〉 ϕ′, and there is a t ∈ S such that s
loc
−→ t and the

summary t = 〈t, V1, V2, . . . , Vk〉, where Vi = MR(t) ∩ Ui, is
such that t ∈ [[ϕ′]]E

• ϕ = [loc] ϕ′, and for all t ∈ S such that s
loc
−→ t, the summary

t = 〈t, V1, V2, . . . , Vk〉, where Vi = MR(t) ∩ Ui, is such that
t ∈ [[ϕ′]]E



• ϕ = 〈ret 〉Ri, and there is a t ∈ S such that s
ret
−→ t and t ∈ Ui

• ϕ = [ret ] Ri, and for all t ∈ S such that s
ret
−→ t, we have

t ∈ Ui

• ϕ = µX.ϕ′ , and s ∈ S for all S ⊆ S satisfying [[ϕ′]]E[X:=S] ⊆
S

• ϕ = νX.ϕ′, and there is some S ⊆ S such that (1) S ⊆
[[ϕ′]]E[X:=S] and (2) s ∈ S.

Here E [X := S] is the environment E ′ such that (1) E ′(X) = S,
and (2) E ′(Y ) = E(Y ) for all variables Y 6= X . We say a node
s satisfies a formula ϕ if the 0-colored summary 〈s〉 satisfies ϕ. A
structured tree S rooted at s0 is said satisfy ϕ if s0 satisfies ϕ (we
denote this by S |= ϕ).

A few observations are in order. First, while VP-µ does not
allow formulas of form ¬ϕ, it is closed under negation so long
as we stick to closed formulas. Given a closed VP-µ formula ϕ,
consider the formula Neg(ϕ), defined inductively in the following
way:

• Neg(p) = ¬p, Neg(¬p) = p, Neg(X) = X
• Neg(ϕ1 ∨ ϕ2) = Neg(ϕ1) ∧ Neg(ϕ2), and Neg(ϕ1 ∧ ϕ2) =

Neg(ϕ1) ∨ Neg(ϕ2)
• If ϕ = 〈call〉 ϕ′{ψ1, ψ2, ..., ψk}, then

Neg(ϕ) = [call ] Neg(ϕ′){Neg(ψ1),Neg(ψ2), . . . ,Neg(ψk)}
• If ϕ = [call ] ϕ′{ψ1, ψ2, ..., ψk}, then

Neg(ϕ) = 〈call〉Neg(ϕ′){Neg(ψ1),Neg(ψ2), . . . ,Neg(ψk)}
• Neg(〈loc〉ϕ′) = [loc]Neg(ϕ′), and Neg([loc]ϕ′) = 〈loc〉Neg(ϕ′)
• Neg(〈ret〉Ri) = [ret ]Ri, and Neg([ret ]Ri) = 〈ret〉Ri

• Neg(µX.ϕ) = νX.Neg(ϕ), and Neg(νX.ϕ) = µX.Neg(ϕ)

Performing induction on the structure of ϕ, we obtain:

THEOREM 1. For all closed VP-µ formulas ϕ, [[ϕ]]⊥ = S \
[[Neg(ϕ)]]⊥.

Second, note that the semantics of closed VP-µ formulas is
independent of the environment; customarily, we will evaluate
such formulas in the unique empty environment ⊥: ∅ → S.
More importantly, the semantics of such a formula ϕ does not
depend on current color assignments; in other words, for all
s = 〈s, U1, U2, . . . , Uk〉, s ∈ [[ϕ]]⊥ iff 〈s〉 ∈ [[ϕ]]⊥ . Conse-
quently, when ϕ is closed, we can infer that “node s satisfies ϕ”
from “summary s satisfies ϕ.”

Third, every VP-µ formula ϕ(X) with a free variable X
can be viewed as a map ϕ(X) : 2S → 2S defined as fol-
lows: for all environments E and all summary sets S ⊆ S,
ϕ(X)(S) = [[ϕ(X)]]E[X:=S]. It is not hard to verify that this map
is monotonic, and that therefore, by the Tarski-Knaster theorem, its
least and greatest fixed points exist. The formulas µX.ϕ(X) and
νX.ϕ(X) respectively evaluate to these two sets. From Tarski-
Knaster, we also know that for a VP-µ formula ϕ with one free
variable X , the set [[µX.ϕ]]⊥ lies in the sequence of summary
sets ∅, ϕ(∅), ϕ(ϕ(∅)), . . ., and that [[νX.ϕ]]⊥ is a member of the
sequence S, ϕ(S), ϕ(ϕ(S)), . . ..

Fourth, a VP-µ formula ϕ may also be viewed as a map ϕ :
(U1, U2, . . . , Uk) 7→ S′, where S′ is the set of all nodes s such that
U1, U2, . . . , Uk ⊆ MR(s) and the summary 〈s, U1, U2, . . . , Uk〉
satisfies ϕ. Naturally, S′ = ∅ if no such s exists. Now, while a VP-
µ formula can demand that the color of a return from the current
context is i, it cannot assert that the color of a return must not be
i (i.e., there is no formula of the form, say, 〈ret〉¬Ri). It follows
that the output of the above map will stay the same if we grow any
of the sets Ui of matching returns provided as input. Formally, let
s = 〈s, U1, . . . , Uk〉 and s

′ = 〈s, U ′
1, . . . U

′
k〉 be two summaries

such that Ui ⊆ U ′
i for all i. Then for every environment E and

every VP-µ formula ϕ, s′ ∈ [[ϕ]]E if s ∈ [[ϕ]]E .
Such monotonicity over markings has an interesting ramifica-

tion. Let us suppose that in the semantics clauses for formulas of
the form 〈call〉ϕ′{ψ1, ψ2, . . . , ψk} and [call ]ϕ′{ψ1, ψ2, . . . , ψk},
we allow t = 〈t, V1, . . . , Vk〉 to be any k-colored summary such
that (1) t ∈ [[ϕ′]]E , and (2) for all i and all s′ ∈ Vi, 〈s′, U1 ∩
MR(s′), U2 ∩ MR(s′), . . . , Uk ∩ MR(s′)〉 ∈ [[ψi]]E . Intuitively,
from such a summary, one can grow the sets Ui to get the “maxi-
mal” t that we used in these two clauses. From the above discus-
sion, VP-µ and this modified logic have equivalent semantics.

Finally, let us see what would happen if we did allow formulas
of form 〈ret〉¬Ri (at a summary 〈s,U1, . . . , Uk〉, the above holds
iff there is an edge s

ret
−→ t such that t /∈ Ui). It turns out that

formulas involving the above need not be monotonic, and hence
their fixpoints may not exist. To see why, consider the formula
ϕ = 〈call〉(〈ret〉R1 ∧ 〈ret〉(¬R1)){X}) and a structured tree
where the root s leads to two ret -children s1 and s2, both of which
are leaves. Let S1 = {〈s1, ∅〉}, and S2 = {〈s1, ∅〉, 〈s2, ∅〉}.
Viewing ϕ as a map ϕ : 2S → 2S, we see that ϕ(S1) is not a
subset of ϕ(S2).

3.3 Bisimulation closure

Bisimulation is a fundamental relation in the analysis of la-
beled transition systems. The equivalence induced by a variety
of branching-time logics, including the µ-calculus, coincides with
bisimulation. In this section, we study the equivalence induced by
VP-µ, that is, we want to understand when two nodes satisfy the
same set of VP-µ formulas.

Consider two structured trees S1 = (S1, in1, E1, λ1, η1) and
S2 = (S2, in2, E2, λ2, η2). Let S be S1 ∪ S2 (we can assume that
the sets S1 and S2 are disjoint), S be the set of all summaries in S1

and S2, and η denote the labeling of S as given by η1 and η2.
The bisimulation relation ∼ ⊆ S × S is the greatest relation

such that whenever s ∼ t holds, (1) η(s) = η(t), (2) for every edge
s

a
−→ s′, there is an edge t

a
−→ t′ such that s′ ∼ t′, and (3) for

every edge t
a

−→ t′, there is an edge s
a

−→ s′ such that s′ ∼ t′.
We write S1 ∼ S2 if in1 ∼ in2.

VP-µ is interpreted over summaries, so we need to lift the
bisimulation relation to summaries. A summary 〈s, U1, . . . Uk〉 ∈
S is said to be bisimulation-closed if for every pair u, v ∈ MR(s)
of matching returns of s, if u ∼ v, then for each 1 ≤ i ≤ k, u ∈ Ui

precisely when v ∈ Ui. Thus, in a bisimulation-closed summary,
the marking does not distinguish among bisimilar nodes, and thus,
return formulas (formulas of the form 〈ret〉Ri and [ret ]Ri) do not
disntinguish among bisimilar nodes. Two bisimulation-closed sum-
maries s = 〈s, U1, . . . , Uk〉 and t = 〈t, V1, . . . , Vk〉 in S and
having the same number of colors are said to be bisimilar, written
s ∼ t, iff s ∼ t, and for each 1 ≤ i ≤ k, for all u ∈ MR(s) and
v ∈ MR(t), if u ∼ v, then u ∈ Ui precisely when v ∈ Vi. Thus,
roots of bisimilar summaries are bisimilar and the corresponding
markings are unions of the same equivalence classes of the parti-
tioning of the matching returns induced by bisimilarity. Note that
every 0-ary summary is bisimulation-closed, and bisimilarity of 0-
ary summaries coincides with bisimilarity of their roots.

Consider trees S and T in Fig. 3. We have named the nodes
s1, s2, t1, t2 etc. and labeled some of them with proposition p. Note
that s2 ∼ s4, hence the summary 〈s1, {s2}, {s4}〉 in S is not
bisimulation-closed. Now consider the bisimulation-closed sum-
maries 〈s1, {s2, s4}, {s3}〉 and 〈t1, {t2}, {t3}〉. By our definition
they are bisimilar. However, the (bisimulation-closed) summaries
〈s1, {s2, s4}, {s3}〉 and 〈t1, {t3}, {t2}〉 are not.

We now want to prove that bisimilar summaries satisfy the same
VP-µ formulas. For an inductive proof, we need to consider the
environment also. We assume that the environment E maps VP-µ
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variables to subsets of S (the union of the sets of summaries of the
disjoint structures). Such an environment is said to be bisimulation-
closed if for every variable X , and for every pair of bisimilar
summaries s ∼ t, s ∈ E(X) precisely when t ∈ E(X).

LEMMA 1. If E is a bisimulation-closed environment and ϕ is a
VP-µ formula, [[ϕ]]E is bisimulation-closed.

Proof: The proof is by induction on the structure of the formula
ϕ. Consider two bisimulation-closed bisimilar summaries s =
〈s, U1, . . . Uk〉 and t = 〈t, V1, . . . Vk〉, and a bisimulation-closed
environment E . We want to show that s ∈ [[ϕ]]E precisely when
t ∈ [[ϕ]]E .

If ϕ is a proposition or negated proposition, the claim follows
from bisimilarity of nodes s and t. When ϕ is a variable, the
claim follows from bisimulation closure of E . We consider a few
interesting cases.

Suppose ϕ = 〈ret〉Ri. s satisfies ϕ precisely when s has a
return-edge to some node s′ in Ui. Since s and t are bisimilar, this
can happen precisely when t has a return edge to a node t′ bisimilar
to s′, and from definition of bisimilar summaries, t′ must be in Vi,
and thus t must satisfy ϕ.

Suppose ϕ = 〈call〉ϕ′{ψ1, . . . ψm}. Suppose s satisfies ϕ.
Then there is a call-successor s′ of s such that 〈s′, U ′

1, . . . U
′
m〉

satisfies ϕ′, where U ′
i = {u ∈ MR(s′) | 〈u, U1∩MR(u), . . . Uk∩

MR(u)〉 ∈ [[ψi]]E}. Since s and t are bisimilar, there exists a call-
successor t′ of t such that s′ ∼ t′. For each 1 ≤ i ≤ m, let
V ′

i = {v ∈ MR(t′) | ∃u ∈ U ′
i . u ∼ v}. Verify that the summaries

〈s′, U ′
1, . . . U

′
m〉 and 〈t′, V ′

1 , . . . V
′

m〉 are bisimilar. By induction
hypothesis, 〈t′, V ′

1 , . . . V
′

m〉 satisfies ϕ′. Also, for each v ∈ V ′
i ,

for 1 ≤ i ≤ m, the summary 〈v, V1 ∩MR(v), . . . Vk ∩MR(v)〉 is
bisimilar to 〈u, U1 ∩MR(u), . . . Uk ∩MR(u)〉, for some u ∈ Ui,
and hence, by induction hypothesis, satisfies ψi. This establishes
that t satisfies ϕ.

Case ϕ = µX.ϕ′. Let X0 = ∅. For i ≥ 0, let Xi+1 =
[[ϕ′]]E[X:=Xi]. Then [[ϕ]]E = ∪i≥0Xi. Since E is bisimulation

closed, and X0 is bisimulation-closed, by induction, for i ≥ 0,
each Xi is bisimulation-closed, and so is [[ϕ]]E .

As a corollary, we get that if S1 ∼ S2, then for every closed
VP-µ formula ϕ, S1 |= ϕ precisely when S2 |= ϕ. The proof also
shows that to decide whether a structured tree satisfies a closed VP-
µ formula, during the fixpoint evaluation, one can restrict attention
only to bisimulation-closed summaries. In other words, we can
redefine the semantics of VP-µ so that the set S of summaries
contains only bisimulation-closed summaries. It also suggests that
to evaluate a closed VP-µ formula over a structured tree, one can
reduce the structured tree by collapsing bisimilar nodes as in the
case of classical model checking.

If the two structured trees S1 and S2 are not bisimilar, then there
exists a µ-calculus formula (in fact, of the much simpler Hennessy-
Milner modal logic, which does not involve any fixpoints) that
is satisfied at the roots of only one of the two trees. This does
not immediately yield a VP-µ formula that distinguishes the two
trees because VP-µ formulas cannot assert requirements across

return-edges in a direct way. However, a more complex encoding is
possible. We defer the details to the full paper. Thus, two structured
trees satisfy the same set of closed VP-µ formulas precisely when
they are bisimilar.

Let us consider two arbitrary nodes s and t (in the same struc-
tured tree, or in two different structured trees). When do these two
nodes satisfy the same set of closed VP-µ formulas? From the ar-
guments so far, bisimilarity is sufficient. However, the satisfaction
of a closed VP-µ formula at a node s depends solely on the subtree
rooted at s and truncated at the matching returns of s. In fact, the
full subtree rooted at s may not be structured as it can contain ex-
cess returns. For a structured tree S , and a node s, let Ss denote the
structured tree rooted at s obtained by deleting all the return-edges
leading to the nodes in MR(s). For instance, in Fig. 3, Ss1

com-
prises nodes s1 and s5 and the loc-edge connecting them. It is easy
to check that if ϕ is a closed VP-µ formula then 〈s〉 satisfies ϕ in
the original structured tree precisely when Ss satsifies ϕ. If s and t
are not bismilar, and the non-bisimilarity can be established within
the structured subtrees Ss and St rooted at these nodes, then some
closed VP-µ formula can distinguish them.

THEOREM 2. Two nodes s and t satisfy the same set of closed VP-
µ formulas precisely when Ss ∼ St.

4. Specifying requirements
In this section, we explore how to use VP-µ as a specification lan-
guage. On one hand, we will see how VP-µ and classical temporal
logics differ fundamentally in style of expression; on the other, we
will express properties not expressible in logics like the µ-calculus.
The C program in Fig. 4 will be used to illustrate some of our
specifications. Also, because fixpoint formulas are typically hard
to read, we will define some syntactic sugar for VP-µ using CTL-
like temporal operators.

Reachability Let us express in VP-µ the reachability property
Reach that says: “a node t satisfying proposition p can be reached
from the current node s before the current context ends.” As a pro-
gram starts with an empty stack frame, we may omit the restriction
about the current context if s models the initial program state.

Now consider a nontrivial witness π for Reach that starts with
an edge s

call
−→ s′. There are two possibilities: (1) a node satisfying

p is reached in the new context or a context called transitively from
it, and (2) a matching return s′′ of s′ is reached, and at s′′, Reach
is once again satisfied.

To deal with case (2), we mark a matching return that leads
to p by color 1. Let X store the set of summaries of form 〈s′′〉,
where s′′ satisfies Reach . Then we want the summary 〈s,MR(s)〉
to satisfy 〈call〉ϕ′{X}, where ϕ′ states that s′ can reach one of
its matching returns of color 1. In case (1), there is no return
requirement (we do not need the original call to return), and we
simply assert 〈call〉X{}.

Before we get to ϕ′, note that the formula 〈loc〉X captures the
case when π starts with a local transition. Combining the two cases
and using CTL-style notation, the formula we want is

EF p = µX.(p ∨ 〈loc〉X ∨ 〈call〉X{} ∨ 〈call〉ϕ′{X}).

Now observe that ϕ′ also expresses reachability, except (1) its
target needs to satisfy 〈ret〉R1, and (2) this target needs to lie in the
same procedural context as s′. In other words, we want to express
what we call local reachability of 〈ret〉R1. It is easy to verify that

ϕ′ = µY.(〈ret〉R1 ∨ 〈loc〉Y ∨ 〈call〉Y {Y }).

We cannot merely substitute p for 〈ret〉R1 in ϕ′ to express local
reachability of p. However, a formula EF l p for this property is



easily obtained by restricting the formula EF p:

EF
l p = µX.(p ∨ 〈loc〉X ∨ 〈call〉ϕ′{X}).

For example, consider the structured tree in Fig. 4 that models
the unfolding of the C program in the same figure. The transitions
in the tree are labeled by line numbers, and some of the nodes are
labeled by propositions. Suppose we have a proposition free(x)
that is true immediately after a line where x is freed, EF l free(x)
holds at the entry point of procedure foo (node s1).

Generalizing, we will allow p to be any VP-µ formula that
keeps EF p and EF l p closed.

It is easy to verify that the formula AF p, which states that
“along all paths from the current node, a node satisfying p is
reached before the current context terminates,” is given by

AF p = µX.(p ∨ ([loc]X ∧ [call ]ϕ′′{X})),

where ϕ′′ demands that a matching return colored 1 be reached
along all local paths:

ϕ′′ = µY.(p ∨ ([ret ]R1 ∧ [loc]Y ∧ [call ]Y {Y })).

As in the previous case, we can define a corresponding operator
AF l that asserts local reachability along all paths. For instance, in
Fig. 4, AF l free(x) does not hold at node s1.

Note that the highlight of this approach to specification is the
way we split a program unfolding along procedure boundaries,
specify these “pieces” modularly, and plug the summary specifica-
tions so obtained into their call sites. This “interprocedural” reason-
ing distinguishes it from logics such as the µ-calculus that would
reason only about global runs of the program.

Also, there is a significant difference in the way fixpoints are
computed in VP-µ and the µ-calculus. Consider the fixpoint com-
putation for the µ-calculus formula µX.(p ∨ 〈〉X) that expresses
reachability of a node satisfying p. The semantics of this formula
is given by a set SX of nodes which is computed iteratively. At the
end of the i-th step, SX comprises nodes that have a path with at
most (i − 1) transitions to a node satisfying p. Contrast this with
the evaluation of the outer fixpoint in the VP-µ formula EF p.
Assume that ϕ′ (intuitively, the set of “jumps” from calls to re-
turns”) has already been evaluated, and consider the set SX of
summaries for EF p. At the end of the i-th phase, this set contains
all s = 〈s〉 such that s has a path consisting of (i − 1) call and
loc-transitions to a node satisfying p. However, because of the sub-
formula 〈call〉ϕ′{X}, it also includes all s where s reaches p via
a path of at most (i − 1) local and “jump” transitions. Note how
return edges are considered only as part of summaries plugged into
the computation.

Invariance and until Now consider the invariance property “on
some path from the current node, property p holds everywhere till
the end of the current context.” A VP-µ formula EG p for this
is obtained from the identity EG p = Neg(AF Neg(p)). The
formula AG p, which asserts that p holds on each point on each
run from the current node, can be written similarly.

Other classic branching-time temporal properties like the exis-
tential weak until (written as E(p1 W p2)) and the existential until
(E(p1 U p2)) are also expressible. The former holds if there is a
path π from the current node such that p1 holds at every point on π
till it reaches the end of the current context or a node satisfying p2

(if π doesn’t reach either, p1 must hold all along on it). The latter, in
addition, requires p2 to hold at some point on π. The for-all-paths
analogs of these properties (A(p1 U p2) and A(p1 W p2)) aren’t
hard to write either.

Neither is it difficult to express local or same-context versions
of these properties. Consider the maximal subsequence π′ of a
program path π from s such that each node of π′ belongs to the

1 int a, *g;

2 void foo ()
3 {
4 int *x, b=1;
5 x = ALLOC(int);
6 g = x;
7 bar ();
8 free (x);
9 b = a*a + b*b;
10 return;
11 }

12 void bar ()
13 {
14 int y;
15 a++;
16 if (y==0)
17 free(g);
18 else
19 foo ();
20 return;
21 }
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same procedural context as s. A VP-µ formula EGlp for exis-
tential local invariance demands that p holds on some such π′,
while AG lp asserts the same for all π′. Similarly, we can define
existential and universal local until properties, and correspond-
ing VP-µ formulas E(p1 U

l p2) and A(p1 U
l p2). For instance,

in Fig. 4, E(¬free(g) U l free(x )) holds at node s1 (whereas
E(¬free(g) U free(x )) does not). “Weak” versions of these for-
mulas are also written with ease. For instance, it is easy to verify
that we can write generic existential, local, weak until properties as

E(p1 W
l p2) = νX.((p1 ∨ p2)∧ (p2 ∨ 〈loc〉X ∨ 〈call〉ϕ′{X})),

where ϕ′ asserts local reachability of 〈ret〉R1 as before.

Interprocedural dataflow analysis It is well-known that many
classic dataflow analysis problems can be reduced to temporal logic
model-checking over program abstractions [24, 23]. For example,
consider the problem of finding very busy expressions in a program
that arises in compiler optimization. An expression e is said to be
very busy at a program point s if every path from s must evaluate
e before any variable in e is redefined. Let us first assume that all
variables are in scope all the time along every path from s. Now
label every node in the program’s unfolding right after a statement
evaluating e by a proposition use(e), and every node reached via
redefinition of a variable in e by mod(e) (see Fig. 4). Because of
loops in the flow graph, we would not expect every path from s to
eventually satisfy use(e); however, we can demand that each point
in such a loop will have a path to a loop exit from where a use of
e would be reachable. Then a VP-µ formula that demands that e is
very busy at s is

A((EF use(e) ∧ ¬mod(e))W use(e)).

Note that this property uses the power of VP-µ to reason about
branching time.

However, complications arise if we are considering interproce-
dural paths and e has local as well as global variables. Suppose in
Fig 4, the global variable a and the local variable b are two observ-
ables, and we want to check if the expression e = (a2 + b2), used



in line 9, is very busy at line 6. We would, as before, track changes
to a and b between lines 6 and 9. But we must note that as soon
as an interprocedural path π between these two points leaves the
current context, the observable b falls out of scope. This path may
subsequently come back to procedure foo because of recursion,
and a new instance of b may be created. However, modification of
this new instance of b should not cause e not to be very busy in the
current context. In other words, we should only be concerned with
the local uses of b. For the same reason, use of e in a different con-
text should not be of interest of us. On the other hand, the global
variable a needs to be tracked through every context along a path
before a local use of e on it.

Local temporal properties come of use in covering such cases.
Let us define two propositions modg(e) and mod l(e) that are true
at points where, respectively, a global or a local variable in e is
modified. The VP-µ property we assert at s is

νX.(((EF
l
use(e)) ∧ ¬modg (e) ∧ ¬modl (e)) ∨ use(e))

∧ (use(e) ∨ ([loc]X ∧ [call ]ψ{X, tt})),

where the formula ψ tracks global variables like a in new contexts:

ψ = µY.(¬mod g(e) ∧ (([ret ]R1 ∧ 〈ret〉R2)

∨ ([call ]Y {Y, tt} ∧ [loc]Y ))).

Note the use of the formula 〈ret〉R2 to ensure that [ret ]R1 is
not vacuously true.

Pushdown specifications The domain where VP-µ stands out
most clearly from previously studied fixpoint calculi is that of
pushdown specifications, i.e., specifications involving the program
stack. We have already introduced a class of such specifications
expressible in VP-µ: that of local temporal properties. For in-
stance, the formula EF lp needs to track the program stack to know
whether a reachable node satisfying p is indeed in the initial calling
context. Some such specifications have previously been discussed
in context of the temporal logic CARET. On the other hand, it is
well-known that the modal µ-calculus is a regular specification
language (i.e., it is equivalent in expressiveness to a class of finite-
state tree automata), and cannot reason about the stack in this way.
We have already seen an application of these richer specifications
in program analysis. In the rest of this section, we will see more of
them.

Nested formulas and stack inspection Interestingly, we can ex-
press certain properties of the stack just by nesting VP-µ formulas
for (non-local) reachability and invariance. To understand why, re-
call that VP-µ formulas for reachability and invariance only reason
about nodes appearing before the end of the context where they
were asserted. Now let us try to express a stack inspection property
such as “if procedure foo is called, procedure bar must not be on
the call stack.” Specifications like this have previously been used in
research on software security [19, 15], and are not expressible by
regular specifications like the µ-calculus. While the temporal logic
CARET can express such properties, it requires a past-time operator
called caller to do so. To express this property in VP-µ, we define
propositions cfoo and cbar that respectively hold at every call site
for foo and bar. Now, assuming control starts in foo, consider the
formula

ϕ = EF (cbar ∧ 〈call〉(EF cfoo){}).

This formula demands a program path where, first, bar is called
(there is no return requirement), and then, before that context is
popped off the stack, a call site for foo is reached. It follows that
the property we are seeking is Neg(ϕ).

Other stack inspection properties expressible in VP-µ include
“when procedure foo is called, all procedures on the stack must
have the necessary privilege.” Combining reasoning about the pro-
gram stack with reasoning about the global evolution of the pro-
gram, VP-µ can even specify dynamic security constraints where
privileges of procedures change dynamically depending on the
privileges used so far.

Stack overflow One of the hazards of using recursive calls in a
C-like language is that stack overflow, caused by unbounded recur-
sion, is a serious security vulnerability. VP-µ can specify require-
ments that safeguard against such errors. Once again, nested modal-
ities come handy. Suppose we assert AG(〈call〉ff {}) throughout
every context reached through k calls in succession without inter-
vening returns (this can be kept track of using a k-length chain of
〈call〉 modalities). This will disallow further calls, bounding the
stack to height k.

Other specifications for stack boundedness include: “every call
in every program execution eventually returns.” This property re-
quires the program stack to be empty infinitely often. Though this
requirement does not say how large the stack may get—even if a
call returns, it may still overflow the stack at some point. Further,
in certain cases, a call may not return because of cycles introduced
by abstraction. However, it does rule out infinite recursive loops in
many cases; for instance, the program in Fig. 4 will fail this prop-
erty because of a real recursive cycle. We capture it by asserting
AG Termin at the initial program point, where

Termin = [call ](AF
l(〈ret〉R1)){tt}.

Preconditions and postconditions For a program state s, let
us consider the set Jmp(s) of nodes to which a call from s
may return. Then the requirement: “property p holds at some
node in Jmp(s)” is captured by the VP-µ formula 〈jump〉p =
〈call〉(EF l 〈ret〉R1){p}. The dual formula [jump]p, which re-
quires p to hold at all such jump targets, is also easily constructed.

An immediate application of this is to encode the partial and to-
tal correctness requirements popular in formalisms like Hoare logic
and JML [9]. A partial correctness requirement for a procedure A
asserts that if precondition Pre is satisfied when A is called, then if
A terminates, postcondition Post holds upon return. Total correct-
ness, additionally, requires A to terminate. These requirements can-
not be expressed using regular specifications. In VP-µ, let us say
that at every call site to procedure A, proposition cA holds. Then a
formula for partial correctness, asserted at the initial program state,
is

AG((Pre ∧ cA) ⇒ [jump]Post).

Total correctness is expressed as

AG((Pre ∧ cA) ⇒ (Termin ∧ [jump]Post )).

Access control The ability of VP-µ to handle local and global vari-
ables simultaneously is useful in other domains, e.g., access con-
trol. Consider a procedure A that can be called with a high or low
privilege, and suppose we have a rule that A can access a database
(proposition access is true when it does) only if it is called with a
high privilege (priv holds when it is). It is tempting to write a prop-
erty ϕ = ¬priv ⇒ AG (¬access) to express this requirement.
However, a context where A has low privilege may lead to another
where A has high privilege via a recursive invocation, and ϕ will
not let A access the database even in this new context. The formula
we are looking for is really ϕ′ = ¬priv ⇒ AG l (¬access), as-
serted at every call site for A.

Multiple return conditions As we shall see in Section 6.2, the
theoretical expressiveness of VP-µ depends on the fact that we
can pass multiple return conditions as “parameters” to VP-µ call



formulas. We can also use these parameters to remember events that
happen within the scope of a call and take actions accordingly on
return. To see how, we go back to Figure 4; now we interested in the
properties of the pointer variables x and g. Suppose control starts at
foo and moves on to bar; also, let us ignore the recursion in line 19
and assume the call to bar in line 7 returns. Before this call, x and
g point to the same memory location. Now consider two scenarios
once this call returns: (1) the global g was freed in the new context
before the return, so that x now points to a freed location, (2) g was
not freed, so that x still points to allocated memory. Suppose our
requirements for the next program point in the two cases are: (1) x
must not be freed in foo, (2) x should be freed to avoid memory
leak. We express these requirements by asserting the VP-µ formula
ϕ at the program point calling bar:

ϕ = 〈call〉ψ′{[loc]¬free(x), [loc]free(x)},

where ψ′ is a fixed-point property that states that: each path in the
new context must (1) see free(g) at some point and then reach
〈ret〉R1, or (2) satisfy ¬free(g) until 〈ret〉R2 holds. We omit the
details for want of space.

5. Model-checking
In this section, we introduce the problem of model-checking VP-
µ over unfoldings of recursive state machines. Our primary result
is an iterative, symbolic decision procedure to solve this problem.
Appealingly, this algorithm follows directly from the operational
semantics of VP-µ and has the same complexity as the best algo-
rithms for model-checking µ-calculus over similar abstractions. We
also show a matching lower bound.

5.1 Recursive state machines

Recursive state machines (RSMs) are program abstractions that
model interprocedural control flow in recursive programs [3].
While expressively equivalent to pushdown systems, RSMs are
more visual and tightly coupled to program control flow. For this
reason, we will use them as our system model.

Syntax. A recursive state machine (RSM)M over a set of proposi-
tions AP is a tuple (〈M1,M2, . . . ,Mm〉, start), where eachMi is
a procedure of the form (Li, Bi, Yi,Eni,Ex i, δi, κi). The mean-
ing of the components of Mi is summarized in the following:

• Li is a finite set of control locations, and Bi is a finite set of
boxes.

• Yi : Bi → {1, 2, . . . , m} is a map that assigns a procedure to
every box.

• Eni ⊆ Li is a non-empty set of entry locations, and Ex i ⊆ Li

is a non-empty set of exit locations.
• Let Callsi = {(b, en) : b ∈ Bi, en ∈ EnYi(b)} denote

the set of calls in Mi, and let Retns i = {(b, ex) : b ∈
Bi, ex ∈ ExYi(b)} denote the set of returns in Mi. Then
δi ⊆ (Li ∪ Retns i) × (Li ∪ Callsi) defines the set of RSM
edges.

• κi is a labeling function κi : (Li ∪ Callsi ∪ Retns i) → 2AP

that associates a set of propositions to each control location, call
and return.

A control location start ∈
S

i Li in one of the components is
chosen as the initial location. We assume that for every distinct i
and j, Li, Callsi, Retns i, Nj , Callsj , and Retnsj are pairwise
disjoint. We refer to arbitrary calls, returns and control locations
in M as vertices. The set all vertices is given by V =

S

i(Li ∪
Callsi ∪ Retns i), and the set of vertices in procedure j is denoted
by Vj . We also write B =

S

i Bi to denote the collection of all
boxes in M . Finally, the extensions of all functions δi, κi and Yi
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Figure 5. A recursive state machine.

are denoted respectively by δ : V → V , κ : V → 2AP , and
Y : B → {1, 2, . . . ,m}.

Fig. 5 depicts an RSM extracted from the C program in Fig. 4.
Here we are interested in the behavior of the pointer variable g, and
variables and statements not relevant to this behavior are abstracted
out. We use two propositions g0 and g1 that are true respectively
when g points to free and allocated memory. The procedures and
vertices in this RSM correspond to procedures and control states in
Fig. 4; transitions correspond to lines of C code and are labeled by
line numbers.

Each procedure has two entry and exit points corresponding to
the two possible abstract values of g. Pointer assignments and calls
to free and ALLOC changes the values of these propositions in the
natural way. Note in particular that we cannot tell without a global
side-effect analysis whether x and g point to the same location be-
fore line 8. We model this uncertainty using nondeterminism.

Semantics. The semantics of an RSM M are defined by an infi-
nite graph C(M) = (C, c0, EC , λC , ηC), known as its configu-
ration graph. Here, C is a set of configurations, c0 is the initial
configuration, EC ⊆ C × C is a transition relation, and functions
λC : C → 2AP and ηC : EC → {call , ret , loc} respectively la-
bel configurations and transitions. Stealing notation for structured
trees, we write c

s
−→ c′ if (c, c′) ∈ EC and ηC((c, c′)) = a.

The set C of configurations in C(M) comprise all elements
(γ, u) ∈ B∗ × V such that either

• γ = ε and u ∈ V , or
• γ = b1 . . . bn (with n ≥ 1) and (1) u ∈ VY (bn), and (2) for all
i ∈ {1, . . . , n − 1}, bi+1 ∈ BY (bi).

The initial configuration is c0 = (ε, start ). The configuration-
labeling function λG is defined as: λG((γ, u)) = κ(u), for all
(γ, u) ∈ B∗ × V . Now we can define the transition relation
EG and the transition-labeling function ηG in G. For c = (γ, u),
c′ = (γ′, u′) and a ∈ {call, ret , loc}, we have a transition
c

a
−→ c′ if and only if one of the following holds:

– Local move: u ∈ (Li ∪ Retns i) \ Ex i, (u, u′) ∈ δi, γ′ = γ,
and a = loc;

– Procedure call: u = (b, en) ∈ Calls i, u′ = en, γ′ = γ.b, and
a = call ;

– Return from a call: u ∈ Ex i, γ = γ′.b, u′ = (b, u), and
a = ret .

5.1.1 Configuration trees

We will evaluate VP-µ formulas on configuration trees of RSMs,
which are unfoldings of configuration graphs of RSMs. Consider an
RSM M with configuration graph C(M) = (C, c0, EC , λC , ηC).
The configuration tree of M is a structured tree Conf (M) =
(S, s0, E, λ, η), whose set of nodes S ⊆ C+ and set of transitions
E ⊆ S × S are the least sets constructed by the following rules:

1. c0 ∈ S.



2. Let s.c ∈ S for some s ∈ C∗ and some configuration c ∈ C,
and suppose c

a
−→ c′ for some a ∈ {call , loc, ret} and some

c′ ∈ C. Then s.c.c′ ∈ S and s.c
a

−→ s.c.c′ .

The above also defines the transition-labeling map η in Conf (M).
The node-labeling function λ is given by: for each node s = s′.c,
λ(s) = λC(c). The initial node is s0 = c0. Finally, we define a
map Curr : S → C that gives us the current configuration for any
node in Conf (M) as follows: for all s ∈ C∗ and all c ∈ C, if
s.c ∈ S then Curr (s.c) = c.

Summaries in Conf (M) are now defined as in Section 2.1.
We identify the summary s0 = 〈s0〉 as the initial summary in
Conf (M). We say that the RSM M satisfies a closed VP-µ for-
mula ϕ if and only if s0 ∈ [[ϕ]]⊥ .

Note that each node in Conf (M) captures, along with the
current configuration, the history of an execution till this point.
However, it is easy to see that if Curr (s) = Curr(s′) for two
nodes s and s′ in Conf (M), then s and s′ are bisimilar. Then
by Theorem 2, the difference between the histories of s and s′ is
irrelevant so far as VP-µ formulas are concerned.

5.2 Model-checking VP-µ over RSMs

For a closed VP-µ formula ϕ and an RSM M , the model-checking
problem of ϕ over M is to determine if M satisfies ϕ.

Recall that configurations of M are of the form (γ, u), where γ
is a stack of boxes and u is a vertex in M . Clearly, the set MR(s)
for the current node s and the set ϕret of ret-subformulas that hold
at the current summary depend on the current stack γ. However, we
observe that both these sets refer only to the box to which control
returns from the current context, and not to boxes further down the
box stack. In other words, so far as satisfaction of VP-µ formulas
go, we are only interested in the top of γ.

To formalize this intuition, let us define a map Erase : (γ, u) 7→
u that erases the stack of a given configuration of M . We can
extend this map to sets of nodes in the usual way. Now con-
sider two k-colored summaries s = 〈s,U1, U2, . . . , Uk〉 and s

′ =
〈s′, U ′

1, U
′
2, . . . , U

′
k〉, where Curr (s) = (γb, u) and Curr (s′) =

(γ′b, u). We call s and s
′ top-equivalent if and only if for all i,

Erase(Ui) = Erase(U ′
i). Then we have:

LEMMA 2. Let s1 and s2 be two top-equivalent k-colored sum-
maries in the configuration tree of an RSM M . Then for any closed
VP-µ formula ϕ, s1 satisfies ϕ iff s2 satisfies ϕ.

It turns out that we can restrict our attention to bounded-size sum-
maries that only keep track of the top of the box stack while doing
VP-µ model-checking. We call these summaries stackless. In or-
der to define stackless summaries formally, we will need to define
reachability between nodes in an RSM. Consider any vertex u in an
RSM M . A vertex v is said to be empty-stack reachable from u if
there is a path in Conf (M) from (ε, u) to (ε, v). It is well-known
that for any u, the set Reachε(u) of vertices empty-stack reachable
from u can be computed in time polynomial in the size of M [3].

We also need to define the set of possible returns from an RSM
vertex u. Suppose u ∈ Vl is in procedure Ml. The set Ret b(u) of
possible returns from u to a box b with Y (b) = l consists of all
(b, ex) such that ex ∈ Reach ε(u) ∩ Ex l. Clearly, for any u and b,
the set Retb(u) can be computed in time polynomial in M . Also,
we will use the notation Ret(u) = ∪bRet b(u).

Now, let n be the arity of the formula ϕ. A stackless summary
is a tuple 〈u,Ret1,Ret2, . . . ,Retk〉, where 0 ≤ k ≤ n, and
for some b, Ret j ⊆ Ret b(u) for all j. The set of all stackless
summaries in M is denoted by SLS .

Let ESL : Free(ϕ) → 2SLS be an environment mapping free
variables in ϕ to sets of stackless summaries, and let ⊥ denote

FIXPOINT (X,ϕ, ESL)
1 X ′ = Eval(ϕ, ESL)
2 if X ′ = ESL(X)
3 then return X ′

4 else return FIXPOINT (X,ϕ′, ESL[X := X ′])

Figure 6. Fixpoint computation for VP-µ.

the empty environment. We define a function Eval(ϕ, ESL) that
assigns a set of stackless summaries to a VP-µ formula ϕ:

• If ϕ = p, for p ∈ AP , then Eval(ϕ, ESL) consists of all
〈v,Ret1, Ret2, . . . , Retk〉 such that p ∈ κ(v) and k ≤ n.

• If ϕ = ¬p, for p ∈ AP , then Eval(ϕ, ESL) consists of all
〈v,Ret1, Ret2, . . . , Retk〉 such that p /∈ κ(v) and k ≤ n.

• If ϕ = X , for X ∈ Var , then Eval(ϕ, ESL) = ESL(X).
• If ϕ = ϕ1 ∨ ϕ2 then

Eval(ϕ, ESL) = Eval(ϕ1, ESL) ∪ Eval(ϕ2, ESL).
• If ϕ = ϕ1 ∧ ϕ2 then

Eval(ϕ, ESL) = Eval(ϕ1, ESL) ∩ Eval(ϕ2, ESL).
• If ϕ = 〈call〉 ϕ′{ψ1, ψ2, ..., ψm}, then Eval(ϕ, ESL) con-

sists of all 〈(b, en),Ret1,Ret2, . . . ,Retk〉 such that for some
〈en,Ret ′1,Ret ′2, ...,Ret ′m〉 ∈ Eval(ϕ′, ESL), and for all
(b′, ex′) ∈ Ret ′i, where i = 1, . . . ,m, we have:

1. b′ = b

2. 〈(b′, ex′),Ret ′′1 ,Ret ′′2 , . . . ,Ret ′′k〉 ∈ Eval(ψi, ESL), where
Ret ′′j = Ret j ∩ Ret((b′, ex′)) for all j ≤ k.

• If ϕ = [call ] ϕ′{ψ1, . . . , ψm}, then we have Eval(ϕ, ESL) =
Eval(ρ, ESL)∪Noncall , where ρ = 〈call〉ϕ′{ψ1, ψ2, ..., ψm},
and Noncall comprises all summaries 〈u,Ret 1, . . . ,Retk〉, for
k ≤ n, such that u is not a call. This works because the [call ]
modality may hold vacuously, and because a node in an RSM
can have at most one outgoing call-transition.

• If ϕ = 〈loc〉 ϕ′, then Eval(ϕ, ESL) consists of all stackless
summaries 〈u,Ret1, . . . ,Retk〉 such that for some v satisfying
(u, v) ∈ δ, we have 〈v,Ret1 ∩Ret(v), . . . , Retk ∩Ret(v)〉 ∈
Eval(ϕ′, ESL).

• If ϕ = [loc] ϕ′, then Eval(ϕ, ESL) consists of all stackless
summaries 〈u,Ret1, . . . , Retk〉 such that for all v satisfying
(u, v) ∈ δ, we have 〈v,Ret1 ∩Ret(v), . . . ,Retk ∩Ret(v)〉 ∈
Eval(ϕ′, ESL).

• If ϕ = 〈ret〉 Ri, then Eval(ϕ, ESL) consists of all summaries
〈ex,Ret1, . . . ,Retk〉 such that (1) Ret i = {(b, ex)}, where
(b, ex) ∈ Ret(ex), and (2) for all j 6= i, Ret j = ∅.

• If ϕ = [ret ] Ri, then Eval(ϕ, ESL) = Eval(〈ret〉Ri, ESL) ∪
Nonret , where Nonret has all summaries 〈u,Ret 1, . . . ,Retk〉
such that u is not an exit.

• If ϕ = µX.ϕ′, then
Eval(ϕ, ESL) = FixPoint (X,ϕ′, ESL[X := ∅]).

• If ϕ = νX.ϕ′, then
Eval(ϕ, ESL) = FixPoint (X,ϕ′, ESL [X := SLS ]).

Here FixPoint (X,ϕ, ESL) is a fixpoint computation function that
uses the formula ϕ as a monotone map between subsets of SLS ,
and iterates over variable X . This computation in described in
Fig. 6.

The following theorem is easily proved:

THEOREM 3. For an RSM M and a closed VP-µ formula ϕ,
Conf (M) satisfies ϕ if and only if 〈s0〉 ∈ Eval(ϕ,⊥). Further-
more, Eval(ϕ,⊥) is computable.



Note that our decision procedure is symbolic in nature, and that one
could represent sets of summaries using BDD-like data structures.
Also, it directly implements the operational semantics of VP-µ for-
mulas over stackless summaries. In this regard VP-µ resembles the
modal µ-calculus, whose formulas encode fixpoint computations
over sets; to model-check µ-calculus formulas, we merely need to
perform these computations. Unsurprisingly, our procedure is very
similar to classical symbolic model-checking for the µ-calculus.

5.3 Complexity

In an RSM M , let θ be an upper bound on the number of possible
returns for a vertex, and letNV be the total number of vertices. Let
n be the arity of the formula in question. Then the total number of
stackless summaries in M that we need to consider is bounded by
N = nNV 2θn. Let us now assume that union or intersection of
two sets of summaries, as well as membership queries on such sets,
take linear time. It is easy to see that the time needed to evaluate a
non-fixpoint formula ϕ of arity k is bounded by O(N2θ|ϕ|) (the
most expensive modality is 〈call〉ϕ′{ψ1, . . . , ψn}, where we have
to match an “inner” summary satisfying ϕ′ as well as n “outer”
summaries satisfying the ψi-s). For a fixpoint formula ϕ with one
fixpoint variable, we may needN such evaluations, so that the total
time required to evaluate Eval(ϕ,⊥) isO(N 3θ|ϕ|). For a formula
ϕ of alternation depth d, this evaluation takes time O(N3dθd |ϕ|).

It is known that model-checking alternating reachability speci-
fications on an RSM M is EXPTIME-hard [26]. Following con-
structions similar to those in Section 4, we can generate a VP-µ
formula ϕ from a µ-calculus formula f expressing such a property
such that (1) the size of ϕ is linear in the size of f , and (2) M sat-
isfies ϕ if and only ifM satisfies f . It follows that model-checking
a closed VP-µ formula ϕ on an RSM M is EXPTIME-hard.

Combining all of the above, we have:

THEOREM 4. Model-checking a VP-µ formula ϕ on an RSMM is
EXPTIME-complete.

6. Expressiveness
Now we present a few results concerning the expressiveness of VP-
µ.

6.1 VP-µ and the temporal logic CARET

We will now establish that the temporal logic CARET is contained
in VP-µ.

A visibly pushdown automaton A is a pushdown automaton
with an added restriction: its input alphabet Σ is partitioned into a
call alphabet Σc, a local alphabet Σl, and a return alphabet Σr . On
reading a call or return symbol, A must respectively push and pop
precisely one symbol on/from the stack; on a local input symbol,
A must change state without modifying the stack. A run of such
an automaton on an input word w is simply a sequence of moves it
makes while reading w.

From the results implicit in [2, 4], it follows that for any CARET
formula ϕ over the set of propositions P , there exists Aϕ over
infinite words with a Büchi acceptance condition, over the alphabet
Σi = {(loc, v) | v ∈ 2P }, Σc = {(call , v) | v ∈ 2P } and
Σr = {(ret , v) | v ∈ 2P } that accepts precisely the models that
satisfy ϕ. We can show that:

THEOREM 5. For any nondeterministic Büchi visibly pushdown
automaton A over the alphabets described above, there is a VP-
µ formula ϕA that holds in a structured tree if and only if there is
some path in the tree that is accepted by A.

It follows as a corollary that CARET model checking is reducible to
VP-µmodel-checking: we can take the negation of any CARET for-

mula ϕ, find the corresponding VP-µ formula, and check whether
it holds in a program model. The model satisfies this VP-µ formula
if and only if it is not the case that all runs of the model satisfy the
CARET formula.

We will now sketch the idea behind the proof of Theorem 5. For
brevity, however, we will consider acceptance by final state rather
than Büchi acceptance. More precisely, we will have a special final
state qf , and a run will be considered accepting if and only if it
reaches qf somewhere along the run. This simplification will take
out many of the details of our translation while retaining its basic
flavor.

Now, ϕA will be a 1-ary formula, and will have variables Xq

and Sq,q′,b, where q, q′ in A and b ∈ B (the stack alphabet).
Intuitively, a 1-ary summary (s, U) will be in Xq if there is a run
starting from s and state q along some path that reaches qf before
it meets any matching return of s. The summary (s,U) will be in
Sq,q′,b if s is not at the top-level, there is a path that ends with an
unmatched return edge, and the automaton has a run from q to q′

along this path such that at the unmatched return b is popped from
the stack to reach q′.

We will write the VP-µ formula ϕA using a set of equations
rather than in the standard form. Translation from this equational
form to the standard form proceeds as in the modal µ-calculus [16];
we leave out the details. Let us denote internal transitions as
(q, v, q′), push transitions as (q, v, q′, b) (if in state q and read-
ing (call , v), push b onto stack and go to q′), and pop transitions as
(q, v, b, q′) (if in state q with b on top-of stack and reading (ret , v),
pop b and go to q′). Let the set of transitions of A be ∆. Also, for
each valuation v ∈ 2P , let ψv =

V

p∈v p ∧
V

p6∈v ¬p.
Then, the formula ϕA will be the formula corresponding toXqin

when taking the least fixpoint of the following equations:

Xq =
_

(q,v,q′)∈∆

(ψv ∧ 〈loc〉Xq′ )

∨
_

(q,v,q′,b)∈∆

(ψv ∧ 〈call〉Xq′{ff })

∨
_

(q,v,q1,b)∈∆

_

q′

(ψv ∧ 〈call〉Sq1,q′,b{Xq′})

Sq,q′,b =
_

(q,v,b,q′)∈∆

(ψv ∧ 〈ret〉R1)

∨
_

(q,v,q′′)∈∆

(ψv ∧ 〈loc〉Sq′′,q′,b)

∨
_

(q,v,q1,b′)∈∆

_

q2

(ψv ∧ 〈call〉Sq1,q2,b′{Sq2,q′,b}).

6.2 An arity hierarchy

Now we show that the expressiveness of VP-µ formulas increases
with their arity. For two structured trees S1 and S2 with initial
nodes s1 and s2, we say S1 and S2 are distinguished by a closed,
k-ary VP-µ formula ϕ if and only if s1 satisfies ϕ and s2 does not.
Then we have:

THEOREM 6. For every k ≥ 1, there is a a closed (k + 1)-ary
formula ϕk+1, and two structured trees S1 and S2, such that ϕk+1

can distinguish between S1 and S2, but no closed k-ary VP-µ
formula can.

We will sketch the proof for the case k = 1. Before we do so,
we need some extra machinery. More precisely, we will define a
preorder called quasi-bisimilarity over summaries that takes into
account their coloring. It turns out that VP-µ respects this preorder.
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Consider a pair of k-colored summaries s = 〈s, U1, . . . , Uk〉
and t = 〈t, V1, . . . , Vk〉 such that each path in the trees rooted at
s and t comprises a chain of loc-edges followed by one ret -edge
leading to a leaf. Let S and T respectively be the sets of non-leaf
nodes in these trees. We say that s and t are quasi-bisimilar if there
is a relation �⊆ S × T such that s � t and

1. For all s′ � t′, we have λ(s′) = λ(t′)

2. If s′ � t′, then for every s′′ such that s′
loc
−→ s′′, there is a t′′

such that t′
loc
−→ t′′ and s′′ � t′′. Also, for every t′′ such that

t′
loc
−→ t′′, there is an s′′ such that s′

loc
−→ s′′ and s′′ � t′′.

3. If s′ � t′, then for every s′′ such that s′
ret
−→ s′′, there is a t′′

such that t′
ret
−→ t′′, and for every t′′ such that t′

ret
−→ t′′, there

is an s′′ such that s′
ret
−→ s′′. Further, if s′′ ∈ Ui then t′′ ∈ Vi,

for all i (note that this is not an “iff” condition).

Now, we can show inductively that if s and t are quasi-bisimilar,
then for every variable-free VP-µ formula ϕ, if s satisfies ϕ, then
t satisfies ϕ as well (note that the converse is not true; for instance,
t may satisfy [ret ]Ri even when s does not). We skip the proof.

Let us now come back to Theorem 6. Consider the two non-
bisimilar structured trees S and T in Fig. 7-a with initial nodes
s0 and t0. It is easy to see that the 2-ary VP-µ formula ϕ =
〈call〉(〈loc〉(〈ret〉R1 ∧ 〈ret 〉R2)){p,¬p} distinguishes s0 and t0.
Let us now see if there is a closed, 1-ary formula ϕ that can distin-
guish between S and T . First, if ϕ is a disjunction or conjunction,
we can get a smaller witness for this distinction. Further, because
trees S and T are of fixed depth, we need only consider fixpoint-
free formulas. The interesting case is that of formulas of the form
ϕ = 〈call〉ϕ′{ψ}.

Assume this formula is satisfied by 〈s0〉; then there is a
bisimulation-closed summary of the form s = 〈s1, U〉 that satisfies
ϕ′. For each such s, we find a t = 〈t1, V 〉. Note that s can assume
only four values; these are 〈s1, {s9, s4, s5}〉, 〈s1, {s10, s6, s7}〉,
〈s1, {s9, s4, s5, s10, s6, s7}〉, and 〈s1, ∅〉. The corresponding val-
ues of t are 〈t1, {t6, t7}〉, 〈t1, {t4, t5}〉, 〈t1, {t4, t5, t6, t7}〉, and
〈t1, ∅〉 respectively. Note that for any value s takes, the corre-
sponding t is quasi-bisimilar to it, which means that t satisfies ϕ′.

Further, for each v ∈ V there is a bisimilar node u ∈ U . It follows
that if all u ∈ U satisfy ψ, then so do all v ∈ V . Then 〈t0〉 satisfies
ϕ.

Similarly one can show that 〈t0〉 satisfies ϕ only if 〈s0〉 satisfies
ϕ.

To extend the proof to arbitrary k, we consider a structure S ′

where, like in S , the root has one call-child s1—except s1 now has
a large number N of loc-children s′. From each s′, we have (k+1)
ret -edges leading to “leaves” s′′, each of which is labeled with
exactly one proposition from the set AP = {p1, p2, . . . , pk+1}.
For (N − 1) values of s′, the leaves of the trees rooted at s′ are
labeled such that only k of them have distinct labels. But there is
a particular s′ (call it s′d) for which these leaves get distinct labels
p1, . . . , pk+1.

Now take a structure T ′ that is obtained by removing the subtree
rooted at node s′d from S ′. Following the methods for the case
k = 1, we can show that S ′ and T ′ may be distinguished by a
(k + 1)-ary formula, but by no k-ary formula. We skip the details.

6.3 Satisfiability

The logic VP-µ can express several surprisingly complex proper-
ties by exploiting the branching nature of the models. Consider the
tree fragment depicted in Figure 7-b.

We have a set of propositions P from which the ai’s and bi’s
are drawn from; we also have extra propositions $ and ∗. It turns
out that we can write a VP-µ formula ϕwhose models consist only
of trees that are bisimilar to the tree given in the figure, with the
restriction that the word a1 . . . an = bm . . . b1. This is surprising
as even a visibly pushdown word automaton cannot accept precisely
the words encoded along the branch a1 . . . an$b1 . . . bm (it could if
the second portion encoding the b’s are returns, but not when they
are calls). The VP-µ formula can accept this by expressing mainly
the following requirements: (a) there are only two ret edges after
b1, (b) consider any position ai and let bj be a position such that
the last return in the string of returns after bj matches the call at ai;
then we require that the string of returns following bj+1 ends up
matching the call at ai followed by exactly two more returns.

These requirements ensure that the string of returns below the
bj symbols grow according to the sequence 2, 4, 6, . . .. Now, the
VP-µ formula also demands that for any position ai, if the returns
below bj end by matching the call at ai, then bj = ai. This ensures
that m = n and a1 . . . an = bm . . . b1. The formula has to be
written carefully and is complex, and we omit its exact description.

The above structure turns out to be very powerful. Notice that
no finite recursive state machine will have its unfolding as the
above tree (which is why model-checking is decidable!). However,
we can show, using the above construction, that trees of the kind
above concatenated to each other can encode the computations of
a Turing machine, and hence the satisfiability problem for VP-µ is
undecidable (we omit details of the proof):

THEOREM 7. Given a VP-µ formula, the problem of checking
whether there is some structured tree that satisfies it is undecidable.

7. Conclusions
We have defined a powerful fixpoint logic over execution trees of
structured programs that captures pushdown specifications taking
into account both local and global program flows. It can express
several useful and interesting properties, both in program verifica-
tion as well as dataflow analysis, and yet admits tractable model-
checking. The logic unifies and generalizes many existing logics,
leading to a new class of decidable properties of programs that, we
believe, will be a basis for future software model checking tools. In
fact, the decidability of most known program logics (µ-calculus,
temporal logics LTL and CTL, CARET, etc.) can be understood



by interpreting them in the monadic second-order logic over trees,
which is decidable (this can also be used to show that the satisfia-
bility problem for these logics is decidable). However, there is no
such embedding of the logic VP-µ into the MSO theory of trees
(the fact that its satisfiability problem is undecidable argues that
there cannot be such an effective embedding).

This paper can lead to work in several interesting directions.
One natural question that arises is how robust the logic VP-µ is.
The modal µ-calculus has been shown to be the canonical bisim-
ulation closed modal logic, as it captures all bisimulation-closed
properties definable using monadic second order logic [18], and is
exactly equivalent to trees accepted by a restriction of alternating
parity tree automata that by design can accept only bisimulation-
closed sets of trees [14]. While we have not discussed this aspect
in this paper, the logic VP-µ was carefully designed to have such
a canonical expressive power. We have established in a subsequent
paper [1] that VP-µ is expressively equivalent to alternating visibly
pushdown parity tree automata, a natural variant of tree automata
on structured trees. As a corollary, it follows that for any closed
modal µ-calculus formula f , we can construct a closed VP-µ for-
mula ϕf such that a node in a structured tree satisfies f if and only
if it satisfies ϕf .

Finally, the logic VP-µ expresses properties using forward
modalities. As argued in [23], several dataflow analysis problems
also require backward modalities; extending VP-µ to backward
modalities will result in expressing several other dataflow prob-
lems.
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