
Instrumenting C programs with Nested Word

Monitors ⋆

Swarat Chaudhuri and Rajeev Alur

University of Pennsylvania

1 Introduction

In classical automata-theoretic model checking [6], a system model generates
a language L of words modeling system executions, and verification involves
checking if L ∩ L

′ = ∅, L
′ being the language of words deemed “unsafe” by the

specification. This view is also used in program analyzers like Blast [5] and
Slam [2], where a specification is a word automaton (or monitor) with finite-
state control-flow that accepts all “unsafe” program executions. Typical analysis
constructs the “product” of a program and a monitor, in effect instrumenting the
program with extra instructions, so that the input program fails its specification
iff the product program fails an assertion. The latter is then checked for possible
assertion failures. Monitors also find use in testing and runtime verification,
where we try finding assertion violations in the product program at runtime.

One shortcoming of these notations is expressiveness. As finite automata
cannot argue about the nested structure of procedure calls and returns in pro-
grams, these languages cannot state pre/post-conditions arising in specification
languages like JML [4]: “if a file is open right before a call, then it is open when
the procedure returns.” Nor can they reason about procedural contexts and ex-
press properties like: “if a file is opened, it must be closed before the current
context ends.” Another issue is that these notations cannot reason modularly
about programs. If programs are structured, why not specifications as well?

These problems can be overcome if a program execution is modeled as a
nested word [1] rather than as a word. A nested word is obtained by adding, to
a word modeling an execution, a set of nested jump-edges that connect call sites
to their matching returns. A nested word automaton processing a nested word
reads the symbols in the underlying word just like a word automaton. However,
it also takes jump-edges into account: while transitioning to a return position (a
point in the word with an incoming jump-edge), a nested word automaton can
consult its state at the source of the jump-edge, i.e., the call matching the return.
Intuitively, the monitor tracks the program’s global control flow by following the
underlying word, and its local control flow by following the jump-edges.

This paper presents a specification language—called Pal—based on nested
word automata, and a tool to instrument C code using it. This language ex-
tends the Blast specification language [3], and while its richer foundations lets
it state context-sensitive properties, it has syntax close to Blast’s and allows

⋆ This research was partially supported by ARO URI award DAAD19-01-1-0473 and
NSF award CCR-0306382.

easy instrumentation. Monitors in Pal are independent of the programs they are
used to instrument, and work irrespective of whether recursion is present. While
they are theoretically only as expressive as monitors in Blast in the absence
of recursion, they are more modular, succinct and comprehensible even in this
case. We believe, therefore, that these monitors present an example of structured

specifications, suitable for structured programs. Finally, while our monitors ex-
tend the specification format of a model checker, their use is not limited to static
checking. Once a program has been instrumented with a monitor, it can be used
for testing or run-time verification as well as static analysis or model checking.

2 Language description

We present the Pal language using an ex-global int infoo = 0;

global int open = 0;

global FILE * stream;

event { /* event 1 */

pattern {

$1=fopen($2,$?);}

guard { strcmp($2,’’dat’’)

||(open==0 && infoo==1)}

action {

if (!strcmp($2,’’dat’’)){

open = 1;

stream = $1;}}

}

event { /* event 2 */

pattern { fclose ($1); }

action { if ($1 == stream)

open = 0; }}

event { /* event 3 */

pattern { $? = foo ($?); }

local int stored;

before {

action { stored = infoo;

infoo = 1; }}

after {

guard { open == 0 }

action {

infoo = stored; }}

}

Fig. 1. A Pal specification

ample. Consider a C program that opens
and closes files via calls to fopen and fclose,
and the following requirement: “a secret file
dat is not opened outside the scope of a
file-handling routine foo. If foo, or a pro-
cedure called transitively from it, opens a
stream for dat, then: (1) no new stream for
dat is opened without closing the current
stream, and (2) any open stream for this
file must be closed by the time the top-level
call to foo returns.” Such a discipline follows
programmer intuition and prevents security
flaws where the main context, unaware that
foo has left open a sensitive stream, invokes
an untrusted program that can now do I/O
on the “leaked” stream (for a real instance
of such a bug, see Sec. 3).

A Pal monitor for this requirement is
shown in Fig. 1. The states of the monitor
are encoded by a set of monitor variables,
and its transitions by a set of event{...}
blocks. Some monitor variables are global and
are declared using the keyword global —
intuitively, global monitor variables may be
tested or updated by any event. In addition,
each event includes an optional set of local

monitor variables, declared using the key-
word local, whose scope is restricted to the
current event.

Events are fired by matching patterns on
statements in the analyzed program. A pat-
tern, specified in a pattern{...} block, is

an assignment or procedure call with possible “pattern variables” ($?, $1, $2,

etc.). During matching, the variables $1, $2, etc. match arbitrary C expressions
and the variable $? serves as a wildcard— e.g., the pattern in event 1 matches all
calls to fopen. For each statement matching the pattern 1 specified in the i-th
event, the monitor sets up a precondition and a postcondition using the code in
the blocks before{...} and after{...} in this event. The precondition (sim-
ilarly, postcondition) checks whether an optional guard—a C expression over
monitor and pattern variables, inside a guard{...} block—is satisfied by the
monitor state right before (after) this statement. If the guard is not satisfied, an
assertion violation is reported. Otherwise, the state of the monitor is updated by
executing the C code contained within an optional action{...} block. This code
is allowed to read pattern variables, and read or update monitor variables. For
succinctness, we allow guards and actions to be defined outside before or after
blocks (event 1 or 2)—in this case they are assumed to define preconditions.

During instrumentation, code blocks implementing
int infoo = 0;

int open = 0;

FILE * stream;

bar() {

int stored;

...

stored = infoo;

infoo = 1;

x = foo(y);

if (open == 0)

infoo = stored;

else ERROR;

...

}

Fig. 2. Instrumenting
using event 3

an event’s precondition and postcondition are respec-
tively injected before and after statements matching
its pattern. Consider a call x = foo(y) in a proce-
dure bar in a program; on instrumentation using the
monitor in Fig. 1, this line is replaced by the chunk of
code in Fig. 2. Declarations of the monitor variables
are added as well; stored is declared locally in bar,
and infoo, open, and stream are declared globally.

Note that this syntax closely resembles that of the
Blast query language. Blast, too, allows injection
of code before or after a program statement using the
keywords before and after. This similarity is a de-
sign feature, as our goal was to extend Blast mini-
mally to obtain a specification language for context-
sensitive requirements. The key new features in Pal

are local variables and the ability to declare before

and after blocks in the same event. This modification
makes a major semantic difference: the control-flow of
a monitor is now given by a nested word automaton,

rather than a word automaton. Consider our example monitor and an execution
of the input program containing a call to foo. In the nested word capturing this
execution, there is a jump-edge from the call to foo to its matching return. Now,
as the monitor reads this execution, it can save its state right before control en-
ters foo using its local variables, and retrieve this state at the matching return.
Thus, it has the power of a nested word automaton that reads the corresponding
nested word, consulting its state at the source of an incoming jump-edge while
transitioning to a return position. On the other hand, our monitor can use its
global variables to pass states into invoked procedures such as foo, just like a
Blast monitor. More abstractly, this amounts to state updates as it reads the
underlying word structure.

1 Monitors are deterministic—i.e., if more than one pattern is matched at any point,
we break the tie by picking the one in the event defined first.

We end this section with some hints to check that the monitor in Fig. 1
specifies our original requirement. The variables infoo and open track whether
foo is in the stack and whether dat is open, and stream stores a possible open
stream for dat. The variable stored is used to infer whether control is back to
the top-level context calling foo. The rest is easily verified.

3 Implementation and case studies

We have implemented Pal on top of the current implementation of Blast. The
specification and analysis modules in Blast are orthogonal: the former generates
C code instrumented with a monitor, while the latter checks the generated code
for assertion failures. We extend Blast’s specification module to permit Pal

monitors, and analyze the generated code statically as well as dynamically. The
source code of our implementation, along with the examples that we now discuss,
is available at http://www.cis.upenn.edu/~swarat/tools/pal.tar.gz.

File descriptor leak in fcron A monitor as in Sec. 2 could be used to prevent
a reported bug (http://nvd.nist.gov/nvd.cfm?cvename=CVE-2004-1033) in
Version 2.9.4 of fcron, a periodic command scheduler for Linux. Here, the main
function of a binary (fcrontab) calls a routine parseopt, which calls a routine
is allowed to check if a user is “allowed”, which calls a procedure that opens,
but forgets to close, a stream for a secret file fcron.allow. After control returns
to the main context, the program starts a process with a name derived from an
environment variable. However, an attacker can change the value of this variable
to start a malicious program that reads fcron.allow via the open file stream.

This error may be prevented by a policy that allows parseopt to open
fcron.allow, but not to leak its descriptor. Also, we could require that this
secret file is not opened outside the scope of parseopt. This policy makes intu-
itive sense: as parseopt is a routine verifying a username, it is reasonable that it,
or procedures it calls transitively, opens the file of allowed users. However, by the
principle of least privilege, this file should only be opened when necessary, i.e.,
when parseopt is on the stack. A monitor expressing these requirements looks
very similar to the one in Fig. 1. On instrumenting fcron with this monitor, we
find a policy violation within a few random tests. However, abstraction-based
model checking using Blast is not suitable for this example, as Blast cannot
currently perform good analysis of library functions like strcmp.

Stack-sensitive security properties Consider the security property: “A pro-
gram must not execute a sensitive operation write at any point when an un-
trusted routine foo is on the stack.” In the Java and C# languages, such policies
are automatically enforced by the run-time environment, using the mechanism
of stack inspection. In C, they may be enforced dynamically using a monitor—
however, traditional monitors cannot express such properties of the stack, so
that a nested word monitor is needed. Of course, such monitors could also be
used in static analysis or software model checking.

Fig. 3 shows a monitor for this property. The global variable infoo tracks if
foo is in the stack, and a guard prevents writes within the scope of foo.

We note that Pal may also be used to state some requirements of this na-
ture that cannot be enforced via stack inspection. Consider the property: “If an
untrusted procedure has ever been on the stack, a certain sensitive operation
must not be executed.” The rationale is that an untrusted routine may cause a
side-effect that proves to be dangerous at a future point, so that if we call one,
we must strengthen the security policy. However, since the culpable routine may
no longer be on the stack when a violation occurs, stack inspection does not help
in this case. On the other hand, it is easy to state such properties in Pal; code
for a sample monitor is available on our webpage.

Logging policies Pal also finds use in stat-
global int infoo = 0;

event {

pattern { write(); }

guard { infoo == 0 }

}

event {

pattern {$? = foo($?);}

local int stored;

before {

action { stored = infoo;

infoo = 1; }}

after {

action {infoo = stored;}

}

}

Fig. 3. Stack-sensitive security

ing logging policies enforced in large develop-
ment efforts such as Windows. Consider the
property: “Whenever a procedure returns an
error value, the error must be logged via a
routine log before control leaves the current
procedural context.” Now, different develop-
ment groups may call log via different wrap-
per functions; however, the logging policy is
fixed across groups and thus independent of
the wrappers. In order to track if control
has returned from a wrapper to the original
context, we need a Pal monitor.

While we do not have access to indus-
trial code bases where such policies are most
natural, we have applied a Pal monitor for
this property on a couple of hand-coded ex-
amples. These may be downloaded from our
webpage.

Acknowledgement: We thank Zhe Yang
for valuable suggestions.

References

1. R. Alur and P. Madhusudan. Adding nested structure to words. In Developments

in Language Theory, pages 1–13, 2006.
2. T. Ball and S. Rajamani. The slam toolkit. In Computer Aided Verification, 13th

International Conference, 2001.
3. D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar. The blast

query language for software verification. In SAS, pages 2–18, 2004.
4. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G.T. Leavens, R. Leino, and

E. Poll. An overview of JML tools and applications. In Workshop on Formal

Methods for Industrial Critical Systems, pages 75–89, 2003.
5. T.A. Henzinger, R. Jhala, R. Majumdar, G.C. Necula, G. Sutre, and W. Weimer.

Temporal-safety proofs for systems code. In CAV, pages 526–538, 2002.
6. G.J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-

neering, 23(5):279–295, 1997.

