Model Checking on Trees with Path
Equivalences*

Rajeev Alur, Pavol Cerny, and Swarat Chaudhuri

University of Pennsylvania

Abstract. For specifying and verifying branching-time requirements, a
reactive system is traditionally modeled as a labeled tree, where a path
in the tree encodes a possible execution of the system. We propose to
enrich such tree models with “jump-edges” that capture observational
indistinguishability: for an agent a, an a-labeled edge is added between
two nodes if the observable behaviors of the agent a along the paths to
these nodes are identical. We show that it is possible to specify infor-
mation flow properties and partial information games in temporal logics
interpreted on this enriched structure. We study complexity and decid-
ability of the model checking problem for these logics. We show that it is
PSPACE-complete and EXPTIME-complete respectively for fragments
of CTL and p-calculus-like logics. These fragments are expressive enough
to allow specifications of information flow properties such as “agent A
does not reveal x (a secret) until agent B reveals y (a password)” and of
partial information games.

1 Introduction

Temporal logics have been successfully used for specifying and verifying require-
ments of reactive systems such as distributed protocols [6,12]. In particular, in
the branching-time approach, a system is modeled as a labeled tree whose paths
correspond to executions of the system; a specification describes a set of correct
trees; and verification reduces to a membership question [10]. Typical branching-
time specification languages include CTL, the u-calculus, and tree automata |9,
7]. The theoretical foundations of this approach are now well understood, and
model checkers such as SMV implement highly optimized algorithms for verifying
branching-time requirements of finite-state systems [3, 5].

This paper is motivated by our interest in extending model checking to rea-
soning about secrecy requirements of software systems [14]. Informally, a variable
x is not secret after an execution e of a process a if the value of x is the same
after all executions that are equivalent to e, where two executions are considered
equivalent if the “observable” behavior of the process a (such as messages sent
and received by a) is identical along the two executions. Classical tree logics
cannot relate distinct paths in the tree, and thus, secrecy is not specifiable in
logics such as the p-calculus [1].

* This research was supported by NSF grants CPA 0541149 and CNS 0524059.

To be able to specify properties such as secrecy, we propose to enrich the
traditional tree model with “jump-edges” that capture observational indistin-
guishability. More precisely, consider a tree T whose nodes are labeled with sets
of atomic propositions. For an agent a, if the set of propositions O(a) captures
the observable behavior of a, then two tree nodes are considered a-equivalent
if the paths from the root to these nodes agree on the propositions in O(a) at
every step. We convert the tree T into a graph IG(T) by adding, for every agent
a of interest, an a-labeled edge between every pair of a-equivalent nodes. One
can view IG(T) as a Kripke model, where both nodes and edges have labels, and
interpret standard tree logics over it. For an agent a, we also define a stuttering
(weak) equivalence on paths to make modeling of timing insensitive information
flow properties possible. We define a graph IG" (T') similarly.

Tree logics interpreted over tree models augmented with equivalence edges
have rich expressiveness. To specify that the agent a keeps the value of a variable
x secret, we simply have to assert that for all tree nodes, the value of z is different
from the value of = in one of the nodes connected by an a-labeled edge. One
can integrate temporal reasoning with secrecy to specify requirements such as
“agent a does not reveal x unless agent b reveals y.” These examples, as well as
the more specific examples in Section 2, lead us to conclude that a tree with path
equivalences is a useful model for reasoning about information flow properties.
The reason is that it contains just enough information so that these properties
are specifiable in logics interpreted on this model.

Games are useful for specifying requirements as well as for formulating syn-
thesis questions. In partial information games, the strategy can depend only on
the sequence of observations, rather than the complete execution of the system.
If a-labeled edges model the knowledge of player a (i.e. they connect two nodes
in the tree iff along the paths leading to these nodes the sequence of observations
of a is the same), then different versions of such partial information games are
also expressible in our framework.

In our formulation, the model checking question is to decide whether IG(Tk)
satisfies a tree logic formula ¢, where Tk is the tree unfolding of a finite-state
model K. Keeping track of paths equivalent with respect to one agent requires
a subset construction leading to PSPACE complexity. We show that this con-
struction can be generalized, and the key parameter is the nesting depth of the
specification. Informally, when we need to evaluate a formula ¢ after jumping
across an a-labeled edge, then an additional layer of subset construction is re-
quired to process b-equivalence, for agents b # a. We show that, if we restrict the
nesting depth to 1, as is the case for all our example specifications, the model
checking problem for a CTL-like logic is PSPACE-complete, and EXPTIME-
complete for a pu-calculus-like logic. When nesting depth is unbounded, model
checking for CTL~ (the CTL-like logic) becomes nonelementary, and is unde-
cidable for pa-calculus (the p-calculus-like logic).

(a) Uig {p1,p2, p3}

{pQ} U2 U3 {p17p2}

u o Us U o

o) o ps) (o) (s}

Fig. 1. (a) A labeled tree (b) Part of its equivalence graph

2 Trees with path equivalences

Let P be a set of propositions. We consider labeled, unranked, unordered, infinite
trees of the form T' = (V, E, A, r), where V is an infinite set of nodes, E CV xV
is a set of tree edges, A : V — 2% is a map labeling each node with the set of
propositions holding there, and r € V is the root of the tree. A path in T is a
sequence of nodes m = vgvyvs ... such that vg = r and for all i, v; is the parent
of v;+1. Note that each node can be associated with a unique path (the path
that leads from the root to this node) and vice-versa.

Let A be a fixed set of agents, and let us have a map O : A — 2F defining
the set of observables for an agent. We use the map O to define equivalences
among paths in a tree T as follows. Let the map Obs, : V — 2F, defined as
Obsq(v) = A(v)NO(a) for all v, return the observables of a at a node v of T. We
lift this map to paths in T by defining Obs,(vovy ...) = Obsq(vg) Obsy(v1)
Let u and v be two nodes of T and let 7 be a path leading from the root to u and
7" a path leading from the root to v. Nodes u and v are a-equivalent (written as
u g v) iff Obsy(m) = Obsy ().

We define the equivalence graph IG(T) of a tree T as the node and edge-
labeled graph where: (1) the set of nodes is the set V of nodes of T'; (2) the root
node of IG(T) is the root r of T; (3) the node-labeling map A is the same as in
T; (4) there is an unlabeled edge from node u to node v (in this case, we write
u — v) iff (u,v) is an edge in T; (5) for each agent a, there is an edge labeled
a from u to v (we write u % v) iff u =, v. Intuitively, the structure IG(T') uses
a-labeled edges to capture equivalence and defined by the relation ~,. We can
now view IG(T) as a Kripke structure rooted at r. It is on this structure that
we interpret our logics. Fig. 1-(a) depicts a tree T with path equivalences. We
have two agents a and o' satisfying O(a) = {p1,p2} and O(a’) = {p2,p3}, and
the nodes uj,us,... are labeled as in the figure. Now it is easy to check that,
for instance, ug /2, uz. Consequently, the edges of the equivalence graph IG(T),

part of which is shown in Fig. 1-(b), include us LA uz (and uz 5 ug.)

The above definition of a-equivalence can be considered time sensitive in the
sense that it can model an observer who knows that a transition has occurred
even if the observation has not changed. We consider also the following time
insensitive equivalence. Let =,, be the smallest congruence on sequences of sets

of propositions such that U =, UU, where U is a set of propositions. This
relation is sometimes called stuttering congruence. Once more, let v and v be
two nodes of T and let m be a path leading from the root to u and 7’ a path
leading from the root to v. Nodes v and v are weakly a-equivalent (written as
u Y v) iff Obs,(7) = Obse (). The weak-equivalence graph IG*(T') graph is
defined similarly as IG(T'), with ~¥ replacing =,.

a

3 Branching-time logics on equivalence graphs

In this section, we interpret branching-time temporal logics on equivalence graphs
and apply this interpretation to express some natural information-flow and
partial-information requirements.

pa~-calculus The pq-calculus has modalities to reason about edges labeled
a, for any agent a, as well as unlabeled edges. For example, we have formulas
such as (a)p, which holds at a node w iff there is a node v satisfying ¢ such that
u % v. In order to increase the expressiveness of the logic (without increasing
the complexity of model checking), we add an operator (a) to the syntax. The
formula (@) holds at a node w if there is another node v satisfying ¢ on the
same level of IG(T) (i.e., with the same distance from the root) that is not
a-equivalent to u. See Example 4 below for an example of a property specified
using the (@) operator. To define the semantics of this operator, we will need to
refer to nodes that are on the same level. This can be done using an agent sl
such that O(sl) = 0. Intuitively, this agent does not observe anything, and thus
considers all the nodes at the same level to be equivalent.

Formally, let P be the set of propositions labeling our trees, and Var be a
set of variables. Formulas in the px-calculus are given by the grammar: ¢ = p |
@ | X o1V | ()¢ | {a)¢' | @ | pX.¢'(X), if X occurs in ¢’ only under
an even number of negations, where p € P,a € A and X € Var.

As for semantics, consider the equivalence graph IG(T) of a tree T with
path equivalences. A formula ¢ is interpreted in an environment £ that inter-
prets free variables of the formula as sets of nodes in IG(T). The set [p]e of
nodes satisfying ¢ in environment £ is defined inductively in a standard way.
We state only a few cases: (1) [{()¢]e = {u : for some v,u — v and v € [y]c};
(2) [{a)¢]e = {u : for some v, u S vandv e [ele}, 3) [@¢le = {u :
for some v, u *L v and —(u % v)and v € [¢]e}. If ¢ is a closed formula, its sat-
isfaction by w is independent of the environment. If u satisfies ¢ in this case,
then we write u |= ¢. If IG(T) has root r, then T satisfies ¢ (T |= @) iff r = .

u¥-calculus For reasoning on the model IG™(T'), we use a fragment of pn-
calculus called p¥-calculus that does not contain the operator (@), since in this
case the same level predicate is not meaningful. If the root r of IG" (T') satisfies
a closed p¥-calculus formula ¢, then T satisfies ¢ (written T' = ¢).

CTL~ As we shall see in Section 4, the full p~-calculus over equivalence
trees turns out to have an undecidable model checking problem'. Consequently,

! One may wonder if monadic second order logic (MSO) is of any interest in this
context. It turns out that a single path equivalence relation suffices to encode the

we are interested in a simple fragment called CTL~ that is very similar to CTL
interpreted on equivalence trees. Not only is this logic decidable, but it is also
expressive enough for most of our illustrative examples.

Formulas of CTLa are given by: ¢ = p | ¢1 V2 | 7¢' | EX ¢’ | El, ¢
ElL ¢ | p1 EU s | EG¢', where p € P and a € A as before. Following CTL
conventions, let us use the following abbreviations EF ¢ and AG ¢. We also write
AX ¢, Al, ¢ and Alzp as shorthand for ~EX —p, =El, -, and ~FI; =p. We
define the semantics of CTL~a using a map ¥ : ¢ — 1 that rewrites a CTL~
formula ¢ as a p-calculus formula 1. The function ¥ is defined inductively in the
standard way. We state the definition only for a few cases: W(EI, ¢’) = (a)¥(¢’)
and U (ET; ¢') = (@)¥(¢'). A tree T with path equivalences satisfies a CTL~
formula ¢ iff it satisfies & ().

CTL~" We also consider the logic CTL~=" for reasoning on the model with
weak path equivalences IG"(T'). This logic does not contain the operator ET;,
but otherwise is same as CTLa . Its semantics is defined on IG*(T).

Semantics on finite Kripke structures. We use finite Kripke structures to
model finite-state systems. Formally, a Kripke structure K is a tuple (Q, —C
QxQ,\:Q — 2P r), where Q is a finite set of states, — is a transition function,
A : Q — 27 is a map labeling each state with the set of propositions, and r € Q
is the initial state.

We want to define when a Kripke structure K satisfies a CTLx (CTL~a"Y
e,) formula . Note that it is not possible to define whether or not the
formula holds in a particular state of K. The reason is that the equivalence
relations are relations on paths in the structure, rather than on states of the
structure. Thus, given a state s, it is not possible to determine which states are
equivalent to s. This also implies that whether or not a given Kripke structure K
satisfies ¢ can be defined inductively on the structure of ¢ on the tree unrolling
of K. For a node in this tree, there is a unique path leading to it, so the set of
equivalent nodes is well-defined. Given a Kripke structure K, let Tk be its tree
unrolling. T can be seen as a tree with (weak) path equivalences (which are
determined by the set of agents A). Then we define K = ¢ iff Tk | .

Let us now see how logics on trees with path equivalences aid specification.

'

Ezxample 1. Consider the game of Battleship. In our formulation, each player
owns a grid whose cells are filled with 0’s and 1’s, and at each round, a player
asks another player about the contents of a cell. A central requirement is that
player a does not reveal information about the contents of a cell (¢,7) at any
time unless the opponent asks specifically for them. To see how this property
may be unintentionally violated in an automated Battleship game, consider an
implementation where rows in a’s grid are represented as linked lists that a
iterates through to answer a query about a cell. Now, if a is asked about an
element in an empty row, it gives an answer immediately (as it has nothing
to iterate over). If the row is non-empty, it must iterate through a non-empty

“same-level” predicate on trees studied in the literature [11]. This implies that model
checking MSO on trees with path equivalences is undecidable even for single-agent
systems.

list and spend more time “thinking”. Thus, a’s opponent may glean information
about whether a row in a’s board is nonempty by tracking the time a takes to
answer a query.

We can write a requirement forbidding the above scenario in CTLa . Let
propositions ¢;; and ask;; be true at points in a play respectively iff cell ¢;;
contains 1 and a receives a request to reveal the contents of cell (4,7). We
omit the full definition of a-equivalence in this version; roughly, observables
of a includes the requests a receives, the answers it gives, and a “silent propo-
sition” 7 that holds when a is “thinking”. Now consider the CTL~ property
@ = (nask;; BEU (Al, ¢ij V Al, —¢;j)), which asserts that there is no play with
a node such that: (1) all behaviors a-equivalent to the play till this point lead to
nodes where the content of (i,) is the same, and (2) no explicit request for the
contents of cell (4, j) is made by the opponent prior to this point. This ensures
that the adversary cannot infer the contents of (¢, j) by watching a’s observables.
On the contrary, in the case when Al,¢ holds at any reachable node of the tree
for some secret property ¢, then an observer of a can infer the property ¢ by
watching a’s actions till that point. In other words, a leaks the secret ¢.

Ezample 2. Logics on trees with path equivalences may be used to specify prop-
erties of systems where participants have partial information. Consider a Kripke
structure representing a blindfold reachability game played by an agent a. At
each round, an active node represents the current state of the game, and when «a
takes an action, a child of the current active node becomes the new active node.
Because of partial information, however, a given action may cause different chil-
dren of the current node to become active. We say that a has a winning strategy
in this game if it can decide on a sequence of actions a priori, execute actions in
it in succession, and no matter what actual path in the tree is taken, end in a
node satisfying a target proposition p. Letting two paths be a-equivalent iff they
agree on the sequence of actions of a, we find that a has a winning strategy in
this game iff the tree satisfies the CTL~ requirement E'F (Al, p)).

Now consider an adaptive reachability game, where a can choose actions to
guide the game while it is in progress. Let some of the tree nodes be now labeled
with a control proposition b. At each round, a is now able to pick, along with
an action, one of the control formulas b and —b. At any given point, partial
information may cause different children of the current node to become active;
however, the new active node is guaranteed to satisfy the control formula chosen
at the current round. Let us define a-equivalence as before. It can be shown that
a has a strategy to reach a node satisfying a target proposition p iff the game
tree satisfies the pa-calculus formula ¢ = pX.(p V [a][](bA X) V [a][](—=b A X)).

Ezample 3. In various protocols involving multiple agents, a need for proper-
ties involving secrecy and time arises often. For example in the case of auction
protocols (studied in security literature, see e.g. [4]), the following property is
important. Agent a’s bid is not revealed before the auctioneer reveals all the
bids. In order to illustrate how such requirements can be expressed in our logic,
we present the following formula, which states that agent a does not reveal p (a

secret) before agent b reveals ¢: ¢ = =((Ely g A EIy —~q) EU (Al p vV Al, —p)).
The formula expresses it is not the case that: b does not reveal ¢ (EI, g\ EI, —q)
until a reveals p (Al,pV Al, —p). Now let us consider agents who make only
time-insensitive observations, i.e. ones who cannot tell that an agent has per-
formed an operation if the observables have not changed. This can be modeled
using the weak-equivalence graph. The correctness of the protocol can thus be
established by model checking the formula ¢ on IG*(T).

Ezample 4. Consider a system that is being observed by a low-security observer.
We define low-security (low) and high-security (high) variables, where low vari-
ables are visible to the observer and high variables are not. We now show how to
specify in CTL~ the following requirement R: “ The sequence of valuations of
the low variables is the same along all execution paths.” Consider for example
the case when there is a secret input, i.e. an input to a high variable. If the above
requirement R is satisfied, the observer cannot infer any property of the secret
input, since there cannot be any flow of information from the high input to low
variables. (Note however that the requirement R is even stronger, it prevents
e.g. inputs to low variables.)

The values of variables are encoded by propositions from a set P. We have
one proposition for every bit of every variable. We will use only one agent a. The
subset of propositions observable by the agent is the set of all those propositions
that encode low variables. The requirement R is satisfied iff the following CTL~
formula holds: AG Al false. This property says that for each node, there does
not exist an a-nonequivalent node at the same level of the execution tree. This
implies that all nodes at the same level are a-equivalent, and therefore have the
same valuations of low variables. Notice that this property cannot be captured
without the AI; operator, since we need to refer to all nodes at the same level.

4 Model checking

In this section we present a model checking algorithm for CTL~ and the p~-
calculus. We are given a finite state system, such as a program or a protocol and
a CTL~ formula ¢. We want to check whether the system satisfies the formula.

Recall that K = ¢ is defined in terms of an infinite state structure. However,
we can still apply model checking on a finite state system. This is because for
a given CTL~ formula ¢ and a given Kripke structure K, we can find a finite
model FM?(K) such that FM?(K) |= ¢ ift T = ¢. Let A, be the set of agents
that appear in .

The nesting depth of a CTL~ formula ¢ is intuitively the number of nestings
between equivalence operators E1,, El;z. The only exception is the nesting of
FE1I, operators for the same agent, which does not contribute to nesting depth.
For example, the nesting depth of El, pis 1, (EI, p) EU (El,r) is also 1, while
for EI, EI; p it is 2. On the other hand, ET, E1, p and EI, (¢1 EU EI, ¢2) have
a nesting depth of 1. The nesting depth of ¢ will be denoted by nd(y). Formally,
the nesting depth is defined as follows. We will use an auxiliary function that

takes two parameters: nd(p, a), where a is an agent. Let ¢ be an agent that does
not appear in . The function nd(yp, a) is then defined as follows: (1) nd(p,a) =
0if o = p, (2) nd(p,a) = nd(e1) if ¢ = =(¢1), EX o1, Ely 01, EG 91, (3)
nd(p,a) = max(nd(p1, a), nd(p2,a)) if ¢ = 1V 2,901 EU @2, (4) nd(p,a) =
nd(p1,b) + 1if ¢ = EI, 1 where b # a, (5) nd(p,a) = nd(p1,c) + 1if ¢
EI; ¢1. nd(yp) can then be defined as nd(yp, c).

The complexity of model checking of a CTL~ formula ¢ grows rapidly with
the nesting depth of ¢. However, as we show, the nesting of EI, operators for
the same agent does not contribute to the growth in complexity of the problem.
This distinction is especially important in the case of the p-calculus, where the
formulas with unbounded nesting depth are undecidable in general. However,
formulas where only (a) operators for the same agent are nested unboundedly
are in a decidable (EXPTIME-complete) fragment. This fragment allows e.g.
specification of adaptive partial-information games (see Section 3).

Finite model FM¥(K) We first give the intuition behind the construction
of the finite state model FM¥(K). The states of this model carry enough infor-
mation so that the semantics of CTLa formulas can be defined on these states
in such a way that FM¥(K) = ¢ iff Tk |= ¢. Consider the case when ¢ is a
CTL formula. To determine whether ¢ holds at a node s of Tk, we only need to
know to which state of K the node s corresponds, because if two nodes in Tk
correspond to the same state of K, they satisfy the same CTL formulas. Now
consider ¢ = E1, ¢1, where 1 is a CTL formula. Let S be the set of a-equivalent
nodes of Tk . In order to determine whether E 1,1 holds at s, one needs to know
to which state of K the node s corresponds and to which states of K the nodes
in S correspond. The amount of information needed is thus finite, and can be
stored as a pair (s,U) such that s € Q,U C @, where @ is the set of states
of K. We also need to know how to update this information across transitions.
There are two key ideas: First, the transition relation (s,U) — (¢,V) on these
pairs can be computed locally - the set of nodes V' equivalent to ¢ will be all
those nodes v that have the same observation as ¢t and that have predecessors
equivalent to s, i.e. stored in U. Second, we can also define an a-transition (=)
on these tuples locally, since the tuple stores the set of nodes that are mutually
a-equivalent. The transition is thus defined as follows: (s,U) = (t,U) for t € U.

This construction lends itself to generalization in three ways: we can have
multiple agents, we can store information needed for a transitions, and we can
keep enough information to allow nesting of equivalence and nonequivalence
operators. This leads to a definition of the finite-state model of FM?(K). Note
that in order to allow for nesting of equivalence operators, it is not enough to
store only a set of a-equivalent nodes U for all agents a. In fact, for each node in
U, we need to store the set of its b-equivalent nodes (where b # a), etc. We store
this information as a tree whose nodes are labeled by states of K. Formally, we
define FM¥(K) as follows:

States of FM¥(K): A state W of FM¥(K) is a tree of depth at most nd(p).
The vertices of these trees are labeled by states of K and edges are labeled by
a or a, where a is in A,. We require that if a subtree is an a-child of its parent,

then it itself does not have a-children. For all nodes in W, we require that no
two of its a-children are isomorphic (similarly for a-children). The state W is
labeled by the same propositions as its root in the original Kripke structure K.

The intuition behind the definition is simple: a node s in Tk corresponds to a
state W, if s is a root of W, the a-equivalent nodes of s correspond to a-children
of W and this correspondence continues to depth nd(y). Such a state thus carries
enough information to allow checking whether or not ¢ of nesting depth nd(p)
holds. An example of a state W is in Figure 2. It stores the information about
a node s, which has two a-equivalent nodes v and v, one a-nonequivalent node
t and one b-equivalent node z.

If a subtree rooted at u is an a-child of its parent s, it does not need to
have a-children, since the nodes that are a-equivalent to u are a-equivalent to
s., thus we do not need to replicate these nodes as children of u. In fact, we do
not replicate this information. The main reason is that for a subtree of depth
d, the a-siblings store more information (they are trees of depths (at most) d)
than would a-children - subtrees of depth (at most) d — 1. This is what allows
arbitrary nesting of E1, (or (a)) operators for the same agent a.

We can bound the number of states in FM¥(K). To state an upper bound,
we will use the following function exp: exp(a,b,0) = a, exp(a,b,n+ 1) = axb*
2¢xp(a:b:n) - Considering how a state is constructed (it does not have isomorphic
a-children), we can conclude that FM?(K) has less than exp(|K|, 2% |A,|, nd(y))
states.

Transition relation of FM¥(K): We explained above how a transition func-
tion is determined locally for tuples of the form (s, U) representing the node and
a set of its a-equivalent nodes. The construction can be generalized to states of
FM?(K). We abuse the notation slightly and use the same notation for tran-

sition relations —,—,-% as is used in Tk. Given a state W, root(W) refers to
its root (a node in K). a-child of W refers to the tree rooted at a node that is
an a-child of the root of W. For a state W of depth n, transition relation — is
defined recursively on n.

— n = 0: Trees W and W’ are of depth 0, i.e. they contain only a root without
any children. W — W’ if root(W) — root(W’) in the Kripke structure K.
—n=k+1W — W iff root(W) — root(W') in K and
e V is an a-child of W' iff Obs,(root(W')) = Obsy(root(V)) and there
exists an a-child U of W, such that U — V
e V is an a-child of W' iff either there exists an a-child U of W, such
that U — V or there exists an a-child U’, such that U’ — V and
Obs g (root(W')) # Obsg(root(V)).

An example of a transition W — W' transition in FM?(K) is in Figure 2. The
figure captures the following situation: There is a transition in K from s (the
root of W) to ¢, and from the a-equivalent node u to v’ and the node v’ is a-
equivalent to s’ (similarly for the b-equivalent node). The node v is a-equivalent
to s and it has a transition to v’ in K. However, v’ is not a-equivalent to s’. The
node t is non-equivalent to s, thus its successor ¢’ will be nonequivalent to s’.
The subtrees T, Ty, T, T, need to be transformed in a similar way.

W W' such that W — W’ W such that W = W

Fig. 2. States and transitions of FM?(K)

We defined the structure FM?(K) in order to keep information about a-
equivalent nodes locally. Now we use this information to define a-transitions
(transitions of the form W % W'). The idea is that on an a-transition, we go
from a state W to a state W’ represented by an a-child of W. In general, this
transition leads from a tree of depth n to a tree with depth n— 1 (this is true for
b-children where b # a and all (a)-children). However, for a-children we leverage
the fact that a-children of a parent are mutually equivalent, which enables us to
construct a tree such that the depth of a-children does not decrease. Transition

relations —, % are defined as follows:

— W & W’ iff W’ can be constructed as follows: Let V be an a-child of W.
Let V' be V' with other a-children of W as a-children (note that V' did not
have a-children). Let V" be W without all the a-children, and we remove the
leaves for all the other children (to ensure that the depth of W’ is smaller
or equal to nd(p)). Finally, let W’ be V' with V" as an a-child.

— W S W' if W is a a-child of W

An example of an % transition in FM¥?(K) W = W” is in Figure 2. The idea
is that W will be a subtree rooted at an a-child of s, which in this case is the
subtree rooted at u. However, as explained above, we add as a-children subtrees
rooted at a-siblings of u (in this case, the subtree rooted at v) and the subtree
rooted at the parent s and its subtrees (except the a-children). We modify these
subtrees (T and T¢ in the figure) by removing the leaves.

CTL~ We want to prove that the finite state model FM ¥ (K) is adequate for
evaluating the formula ¢, i.e. that for each node s of Tk there is a corresponding
state W in FM¥(K), such that ¢ holds in s iff it holds in W. In order to state
this claim, we need to define the correspondence between the states of Tk and
FM?(K). We will do so using a family of functions 2. Each 2" is a function
that relates a node in Tk to a node of FM¥(K). It is defined recursively as
follows:

— n=0: 2%u) is a tree of depth 0, whose root is w.
—n=k+1: 28 (u) = W iff W can be constructed as follows: root(W) = .
Consider the set S of all a-equivalent nodes of u. For every node v in this set,

compute V = 2% (v). Let V' be V without a-children. Add V' as an a-child
to W. For every node r at the same depth as wu, that is not a-equivalent to
u, add R = £2%(r) as an a-child to W.

The following lemma asserts that the construction of FM?(K) is correct. It im-
plies that model checking of CTLa formula ¢ can be performed on FM¥(K). It
is proven by induction on the nesting depth of the formula. However, the induc-
tive hypothesis needs to be strengthened to account for the fact that arbitrary
nesting of the E'I, operator for the same agent is allowed.

Lemma 1. Tk, s = ¢ iff FM?(K), 2"(s) &= ¢, where n = nd(yp)

A nesting-free formula is a formula with nesting depth at most 1. Thus it is
a formula that can refer to operators El,, EI; for different agents, but it can
nest only the FI, operators for the same agent. All of the example properties
mentioned in Section 3 are expressed in this fragment.

Theorem 1. The model checking problem for nesting-free formulas of CTL= is
PSPACE-complete.

Proof. (Sketch) We show that the problem is in PSPACE using Lemma 1. The
lemma shows that it is possible to reduce CTL~ model checking to CTL model
checking on an exponentially larger structure FM?(K), whose number of states
is less than | K|+ 2% |A| x 2/, Note however, that it is not necessary to construct
the structure ahead of time, since the transition function can be computed lo-
cally. Thus the non-deterministic model checking algorithm for CTL [10] that
uses only logarithmic space in terms of the size of the structure can be used.
Therefore the model checking problem for nesting-free formulas is in PSPACE.
The lower bound is obtained by reduction from equivalence checking of nonde-
terministic finite automata. a

The reasoning that shows that the model checking for nesting-free formulas is
in PSPACE can be extended to obtain the following result.

Theorem 2. For a fized CTL~ formula ¢ such that nd(y) > 2, the model
checking problem is decidable in space polynomial in exp(|K|,2* |A|, nd(p) —1).

In order to obtain a lower bound for the model checking problem for CTL~
formulas, we can encode Shilov and Garanina’s Act-CTL-K,, [15] in CTL~
and use the fact that model checking for Act-CTL-K,, has a nonelementary
lower bound. Act-CTL-K,, is a logic similar to CTL with actions augmented
with knowledge operators that are given the perfect-recall semantics, i.e. an
agent remembers the whole sequence of its past states. CTL with actions can
be encoded into CTL in a standard way. If we define the equivalence rela-
tion =, to be such that two paths (sequences of the multiagent system) are
equivalent iff the corresponding sequences of states of agent a are the same,
then the knowledge operator K; corresponding to agent a can be encoded as
follows: K;po = — EI, — ¢. Therefore, defining the function Tower(n,k) as
Tower(n,1) = n and Tower(n, k + 1) = 270wer(k) e have:

Theorem 3. For every algorithm A for the model checking problem of CTL~ ,
and each i > 1, there is a Kripke structure K with n states and a CTL~ formula
@ such that A runs on K and ¢ in time 2(Tower(n,1)).

pa-calculus We now consider the model checking problem for px-calculus
formulas on trees with path equivalences. In general, this problem is undecidable.
We can prove it by encoding Shilov and Garanina’s p-calculus of knowledge -
(uPLK,)[15]. This logic can be encoded in pa-calculus over trees with path
equivalences in a similar way as as Act-CTL-K,, was encoded to CTL= . Since
the model checking problem for uPLK,, is undecidable, we have:

Theorem 4. The model checking problem for the px-calculus is undecidable.

However, we identify a decidable fragment of the u~-calculus as follows. Define
the set Subf(p) of subformulas of a formula ¢ inductively as: (1) for ¢ = p
or —p, Subf(p) = {p}; (2) if ¢ equals p1 V o or w1 A pa, then Subf(p) =
{e}USubf (1)U Subf (v2); (3) if ¢ equals ()¢', []¢’, (a)¢’ or [a]¢’, for arbitrary
a, we have Subf(p) = Subf(¢'); and (4) for ¢ = pX.¢' or vX.¢', we have
Subf(p) = {X} U Subf(¢'). Now, let us only consider “well-named” formulas,
i.e., closed formulas ¢ where for each variable X appearing in ¢, there is a unique
binding formula uX.¢" or vX.¢" in Subf(p) such that X € Subf(¢'). As for the
p-calculus, every closed pa-calculus formula can be rewritten in a well-named
form. Now construct the graph G, with node set Subf(y) and edges as below:

/ /

1. for each node ¢ of the form ()¢ , (@), lal¢’, nX.¢', or vX.¢', add an
edge from ¢ to ¢'.
2. for each node X, where X € Var, add an edge from X to the unique sub-

formula of the form uX.p’ or vX.¢" that binds it.

s [e

Intuitively, G, captures the operational semantics of ¢. If there is a path from
¢' to ¢” in G/, then evaluation of ¢’ requires the evaluation of ¢” (note that
to evaluate ¢’ = X, we must recursively evaluate the formula ¢” binding X).

A formula is said to be a-modal (resp. a-modal) if it is of the form (a)¢p or [a]p
(resp. (a)p or [a]y). Let m = ¢19)2 ... ¢, be a path in G. The nesting distance
of 7 is k, where k is the length of the maximum subsequence 7’ = {95 ... 9} in
7 such that: (1) each ¢} is an a-modal formula for some agent a; and (2) for each
i, if 1} is a-modal and +;,, is a’-modal, then a # a'. A formula ¢ has nesting
depth k if k is the least upper bound on the nesting distance of any path in G,.
Note that such a k may not exist—if it does, then ¢ is said to have a bounded
nesting depth. For instance, the formula ¢1 = vX.([a1]{(a2)p A {a1)[][a1]X) is
bounded, while @3 = uX.(p V ()[a1]{az)X) is not.

Using an argument similar to that for CTL~ and using the same structure
FM?(K) for formulas with nesting depth k, we can obtain a non-elementary
model checking procedure for the fragment of the p~-calculus with bounded
nesting depth. In addition, this fragment can easily encode CTL= , so that it is
non-elementary-hard. Then:

Theorem 5. The model checking problem for a Kripke structure K and a pin-
calculus formula ¢ with nesting depth k is solvable in time exp(|K|,2 x |Al, k).

Also, for every algorithm A for this problem and every i > 1, there is a Kripke
structure K with n states and a formula ¢ such that A runs on K and ¢ in time

2(Tower(n,1i)).

Now consider the model checking problem for nesting-free formulas, i.e., formu-
las with nesting depth 1. Recall that such formulas can express all properties
involving a single agent. Now, given a Kripke structure K and a set of agents A,
construct the structure FM¥?(K) in exponential time; we can interpret nesting-
free pa-calculus formulas on FM¥(K) using the semantics of the classical -
calculus. As above, we can show that K satisfies a nesting-free formula ¢ iff
FM?(K) satisfies ¢.

For a lower bound, we turn to the model of space-bounded private alternating
Turing machines introduced by Reif [13]. Let PALOGSPACE be the class of lan-
guages recognized by such machines using logarithmic space—Reif shows that
PALOGSPACE = EXPTIME. Now recall that the alternation-free modal p-
calculus is complete for PTIME and consequently alternating LOGSPACE [10].
Augmenting this result, and encoding private tapes using the path equivalence
relation induced by a single agent, we can reduce recognition by a PALOGSPACE-
machine to the model checking problem for an alternation-free, single-agent pi~-
calculus formula. The latter problem is thus EXPTIME-hard.

Theorem 6. Model checking nesting-free p~-calculus formulas is
EXPTIME-complete. Model checking single-agent, alternation-free ps-calculus
formulas is EXPTIME-hard.

Weak-equivalence graphs We now turn our attention to the model-checking prob-
lem on weak-equivalence graphs. The solution proceeds via the construction of
FM?(K), a finite state Kripke structure analogical to FM?(K). The model
checking algorithms are again based on state space exploration on the finite
state model FM ¥ (K). For the model checking problem for CTLa" formulas, as
well as for p¥ formulas, the same upper and lower bounds are obtained as those
above for CTL~ and u formulas.

5 Related Work

In some aspects, the logics we introduced are related to logic of knowledge [8].
The main semantic difference is that logics of knowledge are concerned about
what an agent knows, whereas in the logics presented in this paper we are con-
cerned about what an agent has revealed. However, from an intuitive point of
view, it might be possible to capture what an agent a reveals by adding one “ob-
server agent”, who would observe a and record its observations (e.g. outputs and
inputs of a) and then ask about the knowledge of this observer agent. However,
in a finite state setting under the standard semantics for knowledge operators
(the semantics is defined in terms of equivalence relations on states of the Kripke
structure, not the paths), this is not possible.

The idea of introducing an observer agent would work in the case of perfect
recall semantics [8], i.e. when an agent remembers the sequence of its past states.

In this case, our equivalence operator El,¢ can be translated as —Kops, ¢,
where Obs, is the agent introduced to record the observable actions of a. Note
however, that the nonequivalence operator Elzp cannot be expressed in logic
of knowledge with perfect recall, because this logic can express properties that
some or all equivalent nodes have and there is no way to refer to nonequivalent
nodes. In the setting of perfect recall semantics, van der Meyden and Shilov [17]
have considered model checking of LTL with knowledge operators and Shilov and
Garanina [15] consider model checking of CTL and p-calculus with knowledge
operators. The construction of our finite-state model is similar to “k-trees” used
in these papers. However, note that the notions of nesting depths are different,
and that our notion yields better complexity bounds. (In [16], a notion of nesting
depth similar to ours is used, in a context without temporal operators). We
argue that our logics are more suitable for specifying secrecy and information
flow properties than logics of knowledge. First, we showed that it is possible to
specify information flow properties using standard tree logics (CTL, p-calculus),
provided that we enrich the tree model with path equivalences. This approach
can be readily extended to other tree logics, such as ATL [2]. Second, we are also
able to model information flow properties directly, without the need to introduce
an observer agent for each agent in the original system. Third, some information
flow properties can be expressed naturally using the EFI; operator. This is not
possible in logic of knowledge.

For p~-calculus, we have identified an EXPTIME-complete fragment in which
it is possible to specify partial-information adaptive games. For simplicity, we
presented our approach using Kripke structures as a basic model. However, there
are other models, such as alternating transition systems (see [2]), which are better
suited for modeling games. We believe our results can be easily lifted to ATSs.
Note that partial information games have also been studied in the context of
ATL, but were proven undecidable for multiple players.

6 Conclusion

We have introduced a branching-time logics on trees with path equivalences.
We have shown that extending the execution tree by adding equivalence (or
“jump”) edges allows us to specify partial information games and information
flow properties in tree logics (the pa-calculus and CTLa). We have presented
a model checking algorithm for these logics, and identified fragments where the
problem has reasonable complexity (PSPACE for the case of the nesting-free
fragment of CTL~).

The work presented in this paper can be extended in several directions. We
plan to investigate the extension of the logics on trees with path equivalences
with boolean edge formulas (a generalization of (a) and (@) operators). Given
results presented in this paper, we expect that only a (small) fragment of this
generalization will be decidable. However, there are tractable fragments not ex-
plored in this paper in which one can express other information flow properties,
such as noninterference and its generalizations. Another interesting direction is

to investigate automata on trees with path equivalences. We would also like to
find an efficient way of implementing the model checking algorithm presented
in Section 4, such as (SAT-based) bounded model checking. We plan to iden-
tify classes of applications where this implementation would prove useful and
where the specifications involving multiple agents, information flow, and time
are needed. Good candidates include cryptographic protocols and auction pro-
tocols. Furthermore, we would like to investigate the possibilities of extending
this work for verifying information-flow properties for infinite-state systems, e.g.
via abstractions that preserve information-flow properties.

References

1.

2.

10.

11.

12.

13.

14.
15.

16.

17.

R. Alur, P. Cerny, and S. Zdancewic. Preserving secrecy under refinement. In
Proc. of ICALP 06, pages 107-118, 2006.

R. Alur, T. Henzinger, and O. Kupferman. Alternating-time temporal logic. Jour-
nal of the ACM, 49(5):1-42, 2002.

J. Burch, E. Clarke, D. Dill, L. Hwang, and K. McMillan. Symbolic model checking;:
10%° states and beyond. Information and Computation, 98(2):142-170, 1992.

S. Chong and A. Myers. Decentralized robustness. In Proc. of CSFW’02, pages
242-256, 2006.

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella. NuSMV Version 2: An OpenSource Tool for Symbolic
Model Checking. In Proc. of CAV’02, pages 359-364, 2002.

. E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons using

branching time temporal logic. In Proc. Workshop on Logic of Programs, pages
52-71, 1981.

H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997.

R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning About Knowledge. MIT
Press, Cambridge, MA, USA, 1995.

D. Kozen. Results on the propositional p-calculus. Theoretical Computer Science,
27:333-354, 1983.

O. Kupferman, M. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. Journal of the ACM, 47(2):312-360, 2000.

H. Lauchli and Ch. Savioz. Monadic second order definable relations on the binary
tree. J. Symb. Log., 52(1):219-226, 1987.

A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE
Symposium on Foundations of Computer Science, pages 4677, 1977.

J. Reif. Universal games of incomplete information. In Proc. of STOC ’79, pages
288-308, 1979.

F. Schneider, editor. Trust in Cyberspace. National Academy Press, 1999.

N. Shilov and N. Garanina. Model checking knowledge and fixpoints. In Proc. of
FICS’02, pages 25-39, 2002.

R. van der Meyden. Common knowledge and update in finite environments. In-
formation and Computation, 140(2):115-157, 1998.

R. van der Meyden and N. Shilov. Model checking knowledge and time in systems
with perfect recall. In Proc. of FSTTCS’99, pages 432—445, 1999.

