
Robustness Analysis of Networked Systems?

Roopsha Samanta1, Jyotirmoy V. Deshmukh2, and Swarat Chaudhuri3

1 University of Texas at Austin roopsha@cs.utexas.edu
2 University of Pennsylvania djy@cis.upenn.edu

3 Rice University swarat@rice.edu

Abstract. Many software systems are naturally modeled as networks of
interacting elements such as computing nodes, input devices, and output
devices. In this paper, we present a notion of robustness for a networked
system when the underlying network is prone to errors. We model such
a system N as a set of processes that communicate with each other over
a set of internal channels, and interact with the outside world through
a fixed set of input and output channels. We focus on network errors
that arise from channel perturbations, and assume that we are given
a worst-case bound δ on the number of errors that can occur in the
internal channels of N . We say that the system N is (δ, ε)-robust if the
deviation of the output of the perturbed system from the output of the
unperturbed system is bounded by ε.
We study a specific instance of this problem when each process is a Mealy
machine, and the distance metric used to quantify the deviation from the
desired output is either the L1-norm or the Levenshtein distance (also
known as the edit distance). We present efficient decision procedures
for (δ, ε)-robustness for both distance metrics. Our solution draws upon
techniques from automata theory, essentially reducing the problem of
checking (δ, ε)-robustness to the problem of checking emptiness for a
certain class of reversal-bounded counter automata.

1 Introduction

More than ever before, we live in an era where computation does not exist in
a vacuum, but is tightly integrated with networked communication and, often,
interactions with the physical world. The heterogeneous systems that result from
such integration — medical devices, power plants, vehicles and aircrafts — are
often safety-critical. Unsurprisingly, they have long been regarded as important
targets for formal methods.

One aspect of such systems that has received relatively less attention in
the formal methods literature is uncertainty. Uncertainty is pervasive in com-
plex heterogeneous systems—for example, the data generated by sensors in the
system can be inexact or corrupted, or the network channels implementing com-
munication between the components of the system can be corrupt or lose data

? This research was partially supported by CCC-CRA Computing Innovation Fellows
Project, NSF Award 1162076 and NSF CAREER award 1156059.

packets. Left unchecked, such uncertainty can wreak havoc. For a large class
of systems, we often wish to determine to what extent the system behavior is
predictable, when the system faces uncertainty. Traditional system correctness
properties like safety and liveness are qualitative assertions about individual sys-
tem traces, and proof techniques for such properties typically do not provide
any quantitative measure on predictable system execution. In most engineering
disciplines, the core property in reasoning about uncertain system behavior is
robustness: “small perturbations to the operating environment or parameters
of the system does not change the system’s observable behavior substantially.”
This property is differential, in the sense that it relates a range of system traces
possible under uncertainty. Furthermore, proof techniques to prove robustness
demand a departure from traditional correctness checking algorithms as they
require quantitative reasoning about the system behavior.

Given the above, formal reasoning about robustness of systems is a problem
of practical as well as conceptual importance. In well-established areas such as
control theory, robustness has always been a fundamental concern; in fact, there
is an entire sub-area of control — robust control — that extensively studies this
problem. However, as robust control typically involves reasoning about continu-
ous state-spaces, the techniques and results therein are not directly applicable to
cyber-physical systems which contain large amounts of discretized, discontinuous
behavior.

In the context of cyber-physical systems, robustness analysis has only recently
begun to gain attention. While several recent papers explore quantitative formal
reasoning about robustness of software, the problem of reasoning about robust-
ness with respect to errors in networked communication has been largely ignored.
This is unfortunate as communication between different computation nodes is a
fundamental feature of most modern systems. In particular, it is a key feature in
emerging cyber-physical systems [20, 21] where runtime error-correction features
for ruling out uncertainty may not be an option. In this paper, we focus on such
networked systems, and characterize an efficiently verifiable notion of robustness
for them. At a high level, our contributions in this paper are as follows:

1. We present a model for communicating processes that is representative of
the complexity of real systems.

2. We present a model for perturbations in the communication channels in the
network, and formulate a notion of robustness for a networked system in the
presence of these unreliable channels.

3. We present efficient, automata-theoretic, decision procedures for analyzing
the robustness of the networked system with respect to different metrics
characterizing the deviation of the observed behavior of the system.

In this paper, we model a synchronous, networked, system N as a set of
communicating Mealy machines (processes). Processes communicate over a set
of internal channels, and interact with the outside world through a set of ex-
ternal input and output channels. We assume that processes communicate with
each other using symbols from a finite alphabet, and perform computations over

2

strings of such symbols. Each such symbol can be treated as an abstraction
of complex data used for computation and communication in a real-world net-
worked system.

As observed in [9], a critical requirement in networked cyber-physical systems
is for all components of the system to have a common sense of time. This is usu-
ally ensured by protocols that guarantee that the global clock remains consistent
across components. Thus, bearing this observation in mind, and following in the
footsteps of recent papers on wireless control networks [20, 21], classic models
like Kahn process networks [16], and languages like Esterel [3], we assume our
networks to have synchronous communication.

An input to the networked system N is a word capturing the sequence of
symbols appearing on the input channels of N ; the externally observable behav-
ior of N is a sequence of symbols appearing on its output channels. We model
uncertainty by letting each internal channel perturb the data that is sent through
it at any given point. Perturbations can include deletion of symbols and mutat-
ing symbols to other symbols. Deviations from the ideal, unperturbed, system’s
observable behavior are defined using suitable distance metrics on words. In this
paper, we consider two such metrics: Levenshtein distance and the L1-norm.
We define the networked system N to be (δ, ε)-robust if for any given input, the
maximum change to the observable behavior of N is bounded by ε as long as the
number of perturbations introduced by the internal channels of N is bounded
by δ.

Our central technical result is a decision procedure for determining whether
a given system N is (δ, ε)-robust. Our algorithm reduces this problem to the
problem of checking the emptiness of a certain class of reversal-bounded counter
automata. A key step in our algorithm is the construction of automata that
accept pairs of strings (s, t) if and only if the distance between s and t (w.r.t. a
chosen metric) exceeds a specified constant. We present constructions for such
automata for Levenshtein distance and the L1-norm metric. We remark we can
check robustness of a networked system with respect to any metric for which
such automata constructions are possible.

The rest of the paper is organized as follows. In Sec. 2 we define our model
of robust networked systems. In Sec. 3 and Sec. 4, we present the automata
constructions involved in our decision procedure for checking robustness of such
systems. We discuss related work in Sec. 5, and conclude with a discussion of
future work in Sec. 6.

2 Robust Networked Systems

In this section, we present a formal model for a synchronous networked system.
We then introduce a notion of robustness for computations of such networked
systems when the communication channels are prone to errors. In what follows,
we use the following notation. Strings are typically denoted by lowercase letters
s, t etc., with output strings sometimes denoted by primed lowercase letters s′,
t′ etc. We denote the concatenation of strings s and t by s.t, the jth character

3

of string s by s[j], the substring s[i].s[i + 1].s[j] by s[i, j], the length of
the string s by |s|, and the empty string by λ. We sometimes denote vectors
of objects using bold letters such as s and ε, with the jth object in the vector
denoted sj and εj respectively.

2.1 Synchronous Networked System

A networked system, denoted N , can be described as a directed graph (P, C),
with a set of processes P = {P1, . . . , Pn} and a set of communication channels
C. The set of channels consists of internal channels N , external input channels I,
and external output channels O. An internal channel Cij ∈ N connects a source
process Pi to a destination process Pj . An input channel has no source process,
and an output channel has no destination process in N .

Process Definition and Semantics. A process Pi in the networked system is
defined as a tuple (Ini,Out i,Mi), where Ini ⊆ (I ∪ N) is the set of Pi’s input
channels, Out i ⊆ (O∪N) is the set of Pi’s output channels, and Mi is a machine
describing Pi’s input/output behavior. We assume a synchronous model of com-
putation: (1) at each tick of the system, each process consumes an input symbol
from each of its input channels, and produces an output symbol on each its out-
put channels, and (2) message delivery through the channels is instantaneous.
We further assume that a networked system N has a computation alphabet Σ
for describing the inputs and outputs of each process, and for describing commu-
nication over the channels. Please see Fig. 2.1 for an example networked system.
Observe that a process may communicate with one, many or all processes in N
using its output channels. Thus our network model subsumes unicast, multicast
and broadcast communication schemes.

M3

M2
M1

C3,2,
δ2

Cout, ε

C2,1, δ4

C1,3, δ1

Cin C2,3,
δ3

Fig. 2.1: Networked System

In this paper, we focus on processes described as Mealy machines. Recall that
a Mealy machine [19] M is a deterministic finite-state transducer that in each

4

step, reads an input symbol, possibly changes state, and generates an output
symbol. Formally, M is described as a tuple (Σin, Σout, Q, q0, R), where Σin and
Σout are input and output alphabets respectively, Q is a finite, nonempty set
of states, q0 is an initial state, and R ⊆ Q × Σin × Σout × Q is the transition
function.

The operational semantics of M is defined in terms of its run ρ(s) on an
input string s = s[1] . . . s[m]. A run is a sequence of the form (q0, λ), (q1, s

′[1]),
. . ., (qm, s

′[m]), where for each j, 1 ≤ j ≤ m, (qj−1, s[j], s
′[j], q′j) ∈ R. Such a

run ρ(s) of a Mealy machine defines the output function JMK : Σ?
in → Σ?

out,
with JMK(s[1].s[2] . . . s[m]) = s′[1].s′[2].s′[m].

In each tick, a Mealy machine process in a networked system N consumes
a composite symbol (the tuple of symbols on its input channels), and outputs
a composite symbol (the tuple of symbols on its output channels). Thus, the
input alphabet Σin for Mi is Σ|Ini|, and the output alphabet Σout is Σ|Outi|. Let
(Σ|Ini|, Σ|Outi|, Qi, q0i , Ri) be the tuple describing the Mealy machine underlying
process Pi.

Operational Semantics of a Network. We define a network state q as the
tuple (q1, . . . , qn, c1, . . . , c|N |), where for each i, qi ∈ Qi is the state of Pi, and

for each k, ck is the state of the kth internal channel, i.e., the current symbol in
the channel. A transition of N has the following form:

(q1, . . . , qn, c1, . . . , c|N |)

(q′1, . . . , q
′
n, c
′
1, . . . , c

′
|N |)

(a1, . . . , a|I|), (a
′
1, . . . , a

′
|O|)

Here (a1, . . . , a|I|) denote the symbols on the external input channels, and
(a′1, . . . , a

′
|O|) denote the symbols on the external output channels. During a

transition of N , each process Pi consumes a composite symbol (given by the
states of all internal channels in Ini and the symbols in the external input chan-
nels in Ini), changes state from qi to q′i, and outputs a composite symbol. The
generation of an output symbol by Pi causes an update to the states of all in-
ternal channels in Out i and results in the output of a symbol on each output
channel in Out i.

Thus, we can view the networked system N itself as a machine that in each
step, consumes an |I|-dimensional input symbol a from its external input chan-
nels, changes state according to the transition functions Ri of each process, and
outputs an |O|-dimensional output symbol a′ on its external output channels.

Formally, we define the semantics of a computation of N using the tuple
(Σ|I|, Σ|O|, Q,q0, R), where Q = (Q1 × . . .×Qn ×Σ|N |) is the set of states and
R ⊆ (Q×Σ|I|×Σ|O|×Q) is the network transition function. The initial state qo =
(q01, . . . , q0n, c01, . . . , c0|N |) ofN is given by the initial process states and internal
channel states. An execution ρ(s) of N on an input string s = s[1]s[2] . . . s[m]

5

is defined as a sequence of configurations of the form (q0, λ), (q1, s
′[1]), . . . ,

(qm, s
′[m]), where for each j, 1 ≤ j ≤ m, (qj−1, s[j], s′[j],qj) ∈ R. The output

function computed by the networked system JN K : (Σ|I|)
? → (Σ|O|)

?
is then

defined such that JN K(s[1].s[2] . . . s[m]) = s′[1].s′[2] . . . s′[m].

2.2 Channel Perturbations and Robustness

An execution of a networked system is said to be perturbed if one or more of
the internal channels are perturbed one or more times during the execution. A
channel perturbation can be modeled as a deletion or substitution of the current
symbol in the channel. To model symbol deletions4, we extend the alphabet of
each internal channel to Σλ = Σ∪λ. A perturbed execution includes transitions
corresponding to channel perturbations, of the form:

(q1, . . . , qn, c1, . . . , c|N |)

(q′1, . . . , q
′
n, c
′
1, . . . , c

′
|N |),

λ,λ

Here, for each i, the states q′i and qi are identical, and for some k, ck 6= c′k.
Such transitions, termed τ -transitions5, do not consume any input symbol and
model instantaneous channel errors. We say that the kth internal channel is
perturbed in a τ -transition if ck 6= c′k. We denote the perturbed version of the
networked system N by Nτ . Nτ is given by the tuple (Σ|I|, Σ|O|, Q,q0, Rτ),
where Rτ includes R and all possible τ -transitions from each state. We require
the set of states of Nτ to be the same as that of N , to enable N to proceed with a
(unperturbed) transition from each network state resulting from a τ -transition.
Thus, a perturbed network execution ρτ (s) on an input string s = s[1]s[2] . . . s[m]
is a sequence of configurations (q0,λ), . . . , (qτ , s

′[m]), where for any j either
(qj−1, s[`], s′[`],qj) ∈ R or (qj−1,λ,λ,qj) is a τ -transition.

Note that there can be several possible perturbed executions of N on a
string s which differ in their exact instances of τ -transitions and the chan-
nels perturbed in each instance. Each such perturbed execution generates a
different perturbed output. For a specific perturbed execution ρτ (s) of the form
(q0,λ), (q1, s

′[1]), . . . , (qτ , s
′[m]), we denote the string s′ = s′[1].s′[2] . . . s′[m]

output by N along that execution by Jρτ K(s). We denote by JNτ K(s) the set

4 Note that though a perturbation can cause a symbol on an internal channel to get
deleted in a given step, we expect that the processes reading from this channel will
output a nonempty symbol in that step. In this sense, we treat an empty input
symbol simply as a special symbol, and assume that each process can handle such a
symbol.

5 Note that a network transition of the form ((q1, . . . , qn, c1, . . . , c|N|), λ, a′,
(q′1, . . . , q

′
n, c

′
1, . . . , c

′
|N|)) where for some i, qi 6= q′i is not considered a τ -transition:

such a transition involves a state change by some process on an empty input symbol
along with the generation of a nonempty output symbol.

6

of all possible perturbed outputs corresponding to the input string s. Formally,
JNτ K(s) is the set {s′ | ∃ρτ (s) s.t. s′ = Jρτ K(s)}.

Robustness. A distance metric d : Σ∗ × Σ∗ → R over a set Σ∗ of strings
is a function with the following properties: ∀s, t, u ∈ Σ∗: (1) d(s, t) = 0 iff
s = t, (2) d(s, t) = d(t, s), and (3) d(s, u) ≤ d(s, t) + d(t, u). Let d be such a
distance metric over strings. We extend the metric to vectors of strings in the
standard fashion. Let w = (w1, . . . , wL) be a vector of strings; then d(w,v) =
(d(w1, v1), . . . , d(wL, vL)).

Let τk denote the number of perturbations in the kth internal channel in
ρτ (s). Then, the channel-wise perturbation count in ρτ (s), denoted ‖ρτ (s)‖ is
given by the vector (τ1, . . . , τ|N |). We define robustness of a networked system
as follows.

Definition 2.1 (Robust networked system).
Given an upper bound δ = {δ1, . . . , δ|N |} on the number of possible perturbations
in each internal channel, and an upper bound ε = (ε1, . . . , ε|O|) on the acceptable
error in each external output channel of a networked system N , we say that N
is (δ, ε)-robust if:

∀s ∈ (Σ|I|)
?
,∀ρτ (s) : ‖ρτ (s)‖≤ δ =⇒ d(JN K(s), Jρτ K(s))≤ ε

3 Distance Tracking Automata

The above formulation of the robustness problem is independent of the metric
used to measure the distance between strings in the output channels. In this
paper, we focus on distance metrics such as the Levenshtein distance and L1-
norm that are the most prevalent metrics used in practice to measure distances
between strings. In Sec. 4, we show that the robustness problem with respect to
each of these metrics is efficiently analyzable by reducing it to the problem of
checking language emptiness of a suitably constructed reversal-bounded counter
machine. But first, we briefly review reversal-bounded counter machines, as we
use them extensively in the rest of the paper.

3.1 Review: Reversal-bounded Counter Machines [14, 15]

A (one-way, nondeterministic) h-counter machine A is a (one-way, nondetermin-
istic) finite automaton, augmented with h integer counters. Let G be a finite set
of integer constants (including 0). In each step, A may read an input symbol,
perform a test on the counter values, change state, and increment each counter
by some constant g ∈ G. A test on a set of integer counters Z = {z1, . . . , zh} is a
Boolean combination of tests of the form zθg, where z ∈ Z, θ ∈ {≤,≥,=, <,>}
and g ∈ G. Let TZ be the set of all such tests on counters in Z.

Formally, A is defined as a tuple (Σin, X, x0, Z,G,E, F) where Σin, X, xo,
F , are the input alphabet, set of states, initial state, and final states respectively.

7

Z is a set of h integer counters, and E ⊆ X × (Σin ∪ λ) × TZ × X × G|Z| is
the transition relation. Each transition (x, σ, t, x′, g1, . . . , gh) denotes a change
of state from x to x′ on symbol σ ∈ Σin ∪λ, with t ∈ TZ being the enabling test
on the counter values, and gk ∈ G being the amount by which the kth counter
is incremented.

A configuration of a one-way multi-counter machine is defined as the tuple
(x, σ, z1, . . . , zh), where x is the state of the automaton, σ is a symbol of the input
string being read by the automaton and z1, . . . , zh are the values of the coun-
ters. We define a move relation →A on the configurations: (x, σ, z1, . . . , zh) →A
(x′, σ′, z′1, . . . , z

′
h) iff (x, σ, t(z1, . . . , zh), x′, g1, . . . , gh) ∈ E, where, t(z1, . . . , zh)

is true, ∀k: z′k = zk + gk, and σ′ is the next symbol in the input string be-
ing read. A path is a finite sequence of configurations µ1 . . . , µm where for all
j : µj →A µj+1. A string s ∈ Σ?

in is accepted by A if there exists a path from
(x0, s0, 0, . . . 0) to (x, sj , z1, . . . , zh) for some x ∈ F and j ≤ |s|. The set of strings
(language) accepted by A is denoted L(A).

In general, multi-counter machines do not possess good algorithmic proper-
ties as they can simulate actions of Turing machines (even with just 2 counters).
In [14], the author presents a class of counter machines that with certain restric-
tions on the counters possess efficiently decidable properties. We now briefly
review these machines.

A counter is said to be in the increasing mode between two successive con-
figurations if the value of the counter increases, and in the decreasing mode if
the value of the counter decreases. We say that a counter changes mode if for
(three) successive configurations, it goes from the increasing mode to the de-
creasing mode or vice versa. We say that a counter is r-reversal bounded if the
maximum number of times it changes mode along any path is r. We say that a
one-way multi-counter machine A is r-reversal bounded if each of its counters is
at most r-reversal bounded. We denote the class of h-counter, r-reversal-bounded
machines by NCM(h, r).

Lemma 3.1. [12] The nonemptiness problem for a NCM(h, r) A can be solved
in time polynomial in the size of A.

In Sec. 4, we show how we can algorithmically construct composite machines
that can check robustness of networked systems. A key component of these
constructions are machines that accept a pair of strings iff the two strings are
more than ε distance apart according to the chosen metric. We now present
the construction of a deterministic finite automaton (dfa) Dε

Lev that accepts a
pair of strings iff their Levenshtein distance is greater than ε, followed by the
construction of a reversal-bounded counter automaton Dε

L1
that accepts a pair

of strings iff their L1-norm is greater than ε. In what follows, we assume that
for all i > |s|, si = #, where # is a special end-of-string symbol not in Σ. Let
Σ# = Σ ∪ {#}.

8

3.2 Automaton for Tracking Levenshtein Distance

Levenshtein distance. The Levenshtein distance dLev(s, t) between strings s
and t is the minimum number of symbol insertions, deletions and substitutions
required to transform one string into another. The Levenshtein distance, or edit
distance, is also defined by the following recurrence relations, for i, j ≥ 1, and
s[0] = t[0] = λ:

dLev(s[0], t[0]) = 0, dLev(s[0, i], t[0]) = i, dLev(s[0], t[0, j]) = j
dLev(s[0, i], t[0, j]) = min(dLev (s[0, i-1], t[0, j-1]) + diff(s[i], t[j]),

dLev (s[0, i-1], t[0, j]) + 1,
dLev (s[0, i], t[0, j-1]) + 1)

(1)

Here, diff(a, b) is defined to be 0 if a = b and 1 otherwise. The first three
relations, that involve empty strings, are obvious. The edit distance between
the nonempty prefixes, s[0, i] and t[0, j], is the minimum of three distances: (1)
the distance corresponding to editing s[0, i-1] into t[0, j-1] and substituting s[i]
for t[j] if they are different symbols, (2) the distance corresponding to editing
s[0, i-1] into t[0, j] and deleting s[i], and, (3) the distance corresponds to editing
s[0, i] into t[0, j-1] and inserting t[j].

In [11], the authors show that for a given integer k, a relation R ⊆ Σ? ×Σ?

is rational if and only if for every (s, t) ∈ R, |s| − |t| < k. It is known from
[10], that a subset is rational iff it is the behavior of a finite automaton. Thus,
it follows from the above results that there exists a dfa that accepts the set of
pairs of strings that are within bounded edit distance from each other. However,
these theorems do not provide a constructive procedure for such an automaton.
In what follows, we present a novel construction for a dfa Dε

Lev that accepts a
pair of strings (s, t) iff dLev(s, t) > ε.

The standard algorithm for computing the Levenshtein distance dLev(s, t)
uses a dynamic programming-based approach that uses the above recurrence re-
lations. This algorithm organizes the bottom-up computation of the Levenshtein
distance with the help of a table tab of height |s| and width |t|. The 0th row and
column of tab account for the base case of the recursion. The tab(i, j) entry
stores the Levenshtein distance of the strings s[0, i] and t[0, j]. In general, the
entire table has to be populated in order to compute dLev(s, t). However, when
one is only interested in some bounded distance ε, then for every i, the algorithm
only needs to compute values for the cells from tab(i, i− ε) to tab(i, i+ ε) [13].
We call this region the ε-diagonal of tab, and use this observation to construct
the finite-state automaton Dε

Lev.
The dfa Dε

Lev is defined to run on a pair of strings (s, t), and accept iff
dLev(s, t) > ε. In each step, Dε

Lev reads a pair of input symbols and changes state
to mimic the bottom-up edit distance computation by the dynamic programming
algorithm. We illustrate the operation of Dε

Lev with an example.

Example Run. A run of Dε
Lev on the string pair (s, t) that checks if dLev(s, t) > ε,

for ε = 2 is shown in Fig. 3.1. After reading the ith input symbol pair, Dε
Lev uses

9

a

c

b

c

d

#

0

1

2

3

4

5

6

c c f f # #

0 1 2 3 4 5 6

0

1 1

1 2

2

112

>
2

222

>
>
>>2

>
>
>>>

>
>
>>>

(λ, λ, 〈⊥,⊥, 0,⊥,⊥〉)

(a, c, 〈⊥, 1, 1, 1,⊥〉)

(ac, cc, 〈2, 1, 1, 2, 2〉)

(cb, cf, 〈2, 2, 2, 2,>〉)

(bc, ff, 〈2,>,>,>,>〉)

(cd, f#, 〈>,>,>,>,>〉)

accept

(a, c)

(c, c)

(b, f)

(c, f)

(d, #)

(#, #)

Fig. 3.1: Dynamic programming table emulated by Dε
Lev. The table tab filled by

the dynamic programming algorithm is shown to the left, and a computation of
Dε
Lev on the strings s = acbcd and t = ccff is shown to the right. Here, ε = 2.

its state to remember the last ε = 2 symbols of s and t that it has read, and
transitions to a state that contains the values of tab(i, i) and the cells within
the ε-diagonal, above and to the left of tab(i, i).

Formally, Dε
Lev is defined as a tuple (Σ#×Σ#, QLev,q0Lev, RLev, FLev), where

(Σ#×Σ#), QLev, q0Lev, RLev, FLev are the input alphabet, the set of states, the
initial state, the transition relation and the set of final states respectively. FLev =
{accLev} is a singleton set. In what follows, we define the other components.

We first note that as indicated earlier, Dε
Lev synchronously runs on a pair of

strings, i.e., in each step it reads a symbol from (Σ#×Σ#). We assume that each
string is well-formed, i.e., each string is an element of Σ∗.#∗. A state of Dε

Lev is
defined as the tuple (x, y, e), where x and y are strings of length at most ε and
e is a vector containing 2ε+ 1 entries, with at most ε+ 3 possible values for each
entry. A state of Dε

Lev maintains the invariant that if i symbol pairs have been
read, then x = s[i-ε+1, i], y = t[i-ε+1, i] and the entries in e correspond to the
values {tab(i, j) | j ∈ [i-ε, i-1]}, {tab(j, i) | j ∈ [i-ε, i-1]}, and tab(i, i). The
values in these cells greater than ε are replaced by >. The initial state of Dε

Lev

is q0Lev = (λ, λ, 〈⊥, . . . ,⊥, 0,⊥, . . . ,⊥〉), where λ denotes the empty string, ⊥
is a special symbol denoting an undefined value, and the value 0 corresponds to
entry tab(0, 0).

Upon reading the ith input symbol pair, the transition of Dε
Lev from state

qi-1 to qi is as shown in Fig. 3.2. Note that to compute values in e corresponding
to the ith row, we need the substring t[i-ε, i-1], the values tab(i-1-ε, i-1) to
tab(i-1, i-1), and the symbol si. From the invariant on the state, it follows that
the values of the required cells from tab and the required substring t[i-ε, i-1]
are present in qi-1 and the input symbol. Similarly, to compute tab(j, i), where
j ∈ [i-1-ε, i] the string in y, values in e of qi−1 and the input symbol suffice.
Thus, given any state of Dε

Lev and an input symbol pair, we can construct the
unique next state that satisfies the state-invariant.

10

s[i-ε, i-1], t[i-ε, i-1], tab

(i-1-ε, i-1) (i-1, i-1)

(i-1, i-ε-1)

s[i], t[i]

s[i-ε, i], t[i-ε, i],

(i-ε+1, i) (i, i)

(i, i-ε+1)

tab

Fig. 3.2: A transition of Dε
Lev

Recall that for strings s,t, the value of dLev(s, t) is stored in the entry
tab(|s|, |t|) of tab. Keeping this in mind, upon reading the symbol (#, #), we
add transitions to the accepting state accLev iff:

– |s| = |t|, i.e., x and y do not contain #, and the (ε+ 1)th entry in e is >, or,
– |s| = |t|+ `, i.e., y contains ` #’s, x contains no #, and the (ε+ 1− `)th entry

in e is >, or,
– |t| = |s|+ `, i.e., x contains ` #’s, y contains no #, and the (ε+ 1 + `)th entry

in e is >.

This shows how we can construct a Dε
Lev that exactly mimics the dynamic

programming algorithm. The following lemma states the correctness of this con-
struction. The proof follows from the state-invariant maintained by Dε

Lev and its
acceptance condition.

Lemma 3.2. Dε
Lev accepts a pair of strings (s, t) iff dLev(s, t) > ε.

3.3 Automaton for Tracking L1-norm

The L1-norm measures the number of positions in which two strings differ. As
before, let s[0] = t[0] = λ. Formally, we define dL1(s, t) using the following
recurrence relations:

dL1(s[0], t[0]) = 0 dL1(s[0, j], t[0, j]) = dL1(s[0, j-1], t[0, j-1]) + diff(s[j], t[j])

We now define the automaton Dε
L1

that accepts pairs of strings (s, t) such
that dL1

(s, t) > ε. The automaton Dε
L1

is a 1-reversal-bounded 1-counter machine

11

(i.e., in NCM(1,1)), defined as a tuple (Σ# × Σ#, XL1 , x0L1
, Z,GL1 , EL1 , FL1),

where (Σ#×Σ#) is its input alphabet, XL1
= {x0L1

, xL1
, accL1

}, is a set of three
states, x0L1

is the initial state, Z = {z} is a single 1-reversal-bounded counter,
GL1

= {ε, 0,−1} is a set of integers, and FL1
= {accL1

} is the singleton set of
final states. The transition relation contains the following types of transitions:

1. The transition (x0L1
, (λ, λ), true, xL1

, ε) is an initialization transition that
sets the counter to ε.

2. The transition (xL1 , (a, a), z ≥ 0, xL1 , 0) keeps the state and counter of Dε
L1

unchanged upon reading a pair of the same symbols.
3. Transitions of the form (xL1

, (a, b), z > 0, xL1
,−1), for a 6= b, decrement

the counter by 1 upon reading a pair of distinct symbols. These transitions
essentially count the number of differing positions of the two strings.

4. The transition (xL1
, (a, b), z = 0, accL1

, 0), for a 6= b, moves Dε
L1

to an ac-

cepting state when it finds the (ε + 1)th differing position. This indicates
that the L1-norm between the strings being read is greater than ε.

Lemma 3.3. Dε
L1

accepts a pair of strings (s, t) iff dL1(s, t) > ε.

Remark: The construction of Dε
Lev is significantly more involved than that of

Dε
L1

. This is perhaps clear from the difference in the complexity of the respective
recurrence relations. Unlike the L1-norm, for edit distance computation, it is not
sufficient to focus on the positions of edits in each string. One must also obtain
the optimal alignment or matching between strings s and t. For instance, the
L1-norm between the strings shin and hind is 4, while the edit distance is only
2 (delete s, align/match hin, insert d).

4 Analyzing Robustness of a Networked System

In this section, we present an automata-theoretic framework for checking robust-
ness of a networked system in the presence of bounded channel perturbations.
Checking if a networked system N is (δ, ε)-robust is equivalent to checking if,
for each output channel o` ∈ O (with an error bound of ε`), N is (δ, ε`)-robust.
Thus, in what follows, we focus on the problem of checking robustness of the
networked system N for a single output channel. Rephrasing the robustness defi-
nition from before, we need to check if for all input strings s ∈ (Σ|I|)?.(#|I|)?, and
all runs ρτ (s) of N , ‖ρτ (s)‖ ≤ δ implies that d(JN K|`(s), Jρτ K|`(s)) ≤ ε`. Here,
JN K|`(s), Jρτ K|`(s) respectively denote the projections of JN K(s) and Jρτ K(s) on
the `th output channel. For simplicity in notation, henceforth, we drop the ` in
the error bound on the channel, and denote it simply by ε.

In what follows, we define composite machines A that accept input strings
certifying the non-robust behavior of a given networked system N . In other
words, A accepts a string s ∈ (Σ|I|)?.(#|I|)? iff there exists a perturbed execution
ρτ (s) of Nτ such that: ‖ρτ (s)‖ ≤ δ and d(JN K|`(s), Jρτ K|`(s)) > ε. Thus, the
networked system N is (δ, ε)-robust iff L(A) is empty.

12

4.1 Robustness Analysis for the Levenshtein Distance Metric

The composite machine Aδ,ε
Lev, certifying non-robustness with respect to the Lev-

enshtein distance metric, is a nondeterministic 1-reversal-bounded |N |-counter

machine, i.e., in the class NCM(|N |,1). In each run on an input string s, Aδ,ε
Lev si-

multaneously does the following: (a) it simulates an unperturbed execution ρ(s)
of N and a perturbed execution ρτ (s) of Nτ , (b) keeps track of all the inter-
nal channel perturbations along ρτ (s), and (c) tracks the Levenshtein distance
between the outputs generated along ρ(s) and ρτ (s).

Similar to the semantics of a networked system N with multiple output chan-
nels, we can define the semantics of N for the `th output channel using the tuple
(Σ|I|, Σ,Q,q0, R|`). Here, R|` denotes the projection of the transition relation
R of N onto the `th output channel. To incorporate the addition of # sym-
bols at the end of strings, the semantics of N is further modified to the tuple
(Σ|I| ∪ {#|I|}, Σ#, Q,q0, R

#), where R# = R|` ∪ {(q, ((#, . . . , #), #),q) : q ∈ Q}.
Similarly, the tuple defining Nτ is modified to (Σ|I| ∪ {#|I|}, Σ#, Q,q0, R

#
τ),

where R#
τ includes R# and all the τ -transitions from each state as before. Also

recall from Sec. 3, that the automaton Dε
Lev, accepting pairs of strings with

edit distance greater than ε from each other, is defined by the tuple ((Σ# ×
Σ#), QLev,q0Lev, RLev, FLev). Formally, Aδ,ε

Lev, in the class NCM(|N |,1), is de-
fined as the tuple (Σ|I| ∪ {#|I|}, X,x0, Z,G,E, F), where X,x0, Z,G,E, F are
respectively the set of states, initial state, set of counters, a finite set of integers,
the transition relation and the final states of Aδ,ε

Lev. We define these below.
The set of states X = Y ∪{acc, rej}, where Y ⊆ (Q×Q×QLev). Each state

x ∈ Y of Aδ,ε
Lev is a tuple (q, r,qLev), where the component labeled q tracks the

state of the unperturbed network N , the component r tracks the state of the
perturbed network Nτ , and qLev is a state in Dε

Lev.

The initial state of Aδ,ε
Lev, x0, is given by the tuple (q0,q0,q0Lev). The set of

counters Z = {z1, . . . , z|N |} tracks the number of perturbations in each internal
channel of N . The initial value of each counter is 0. G = {0,−1, δ1, δ2, . . . , δ|N |}
is the set of all integers that can be used in tests on counter values, or by which
any counter in Z can be incremented. The set of final states is the singleton set
{acc}.

The transition relation E of Aδ,ε
Lev is constructed using the following steps:

1. Initialization transition:
From the initial state x0, we add a single transition of the form:(

(q0,q0,q0Lev), λ,
∧
k

zk = 0, (q0,q0,q0Lev), (+δ1, . . . ,+δ|N |)

)

In this transition, Aδ,ε
Lev sets each counter zk to the error bound δk on the

kth internal channel, without consuming an input symbol or changing state.
Note that the counter test ensures that this transition can be taken only
once from x0.

13

2. Unperturbed network transitions:
For each pair of transitions in R# and R#

τ on the same input symbol from
the same state, i.e., (q,a, b,q′) ∈ R# and (r,a, b′, r′) ∈ R#

τ , and transitions
of the form (qLev, (b, b′), q′Lev) ∈ RLev, we add a transition of the following

form to Aδ,ε
Lev:(

(q, r,qLev), a,
∧
k

zk ≥ 0, (q′, r′,q′Lev), 0

)
In each such transition, Aδ,ε

Lev consumes an input symbol a ∈ Σ|I|∪{#|I|} and
simulates a pair of unperturbed transitions on a in the first two components
of its state. The distance between the corresponding outputs of N (b and b′

above) is tracked by the third component. Note that in such transitions, all
counter values are required to be non-negative in the source state and are
not modified.

3. Perturbed network transitions:
From each state x ∈ Y , we add transitions of the form:(

(q, r,qLev), λ,
∧
k

zk ≥ 0, (q, rτ ,qLev), g

)
In each such transition, Aδ,ε

Lev simulates a τ -transition of the form (r,λ,λ, rτ) ∈
R#
τ . In the transition, g denotes a vector with entries in {0,−1}, where

gk = −1 iff the kth internal channel is perturbed in (r,λ,λ, rτ). Thus, we
model a perturbation on the kth internal channel by decrementing the (non-

negative) zk counter of Aδ,ε
Lev. Note that in these transitions, no input symbol

is consumed, and the first and third components, i.e. q and qLev remain
unchanged.

4. Rejecting transitions:
From each state x ∈ Y , we add transitions of the form:(

(q, r,qLev), λ,
∨
k

zk < 0, rej, 0

)
From the state rej, for all a ∈ Σ|I|, we add a transition: (rej,a, true, rej,0).

We add a transition to a designated rejecting state whenever the value of
some counter zk goes below 0, i.e., whenever the perturbation count in some
kth internal channel exceeds the error bound δk. Once in the state rej, Aδ,ε

Lev

ignores any further input read, and remains in that state.

5. Accepting transitions:
Finally, from each state (q, r, accLev) ∈ Y , we add transitions of the form:(

(q, r,qLev), λ,
∧
k

zk ≥ 0, acc, 0

)

14

We add a transition to the unique accepting state whenever qLev = accLev
and

∧
k zk ≥ 0. The first criterion ensures that d(JN K|`(s), Jρτ K|`(s)) > ε

(as indicated by reaching the accepting state in Dε
Lev). The second criterion

ensures that ‖ρτ (s)‖ ≤ δ, i.e., the run ρτ (s) of N on s models perturbations
on the network that respect the internal channel error bounds.

Theorem 4.1. Given an upper bound δ on the number of perturbations in the
internal channels, and an upper bound ε on the acceptable error for a particular
output channel, the problem of checking if the networked system N is (δ, ε)-robust
with respect to the Levenshtein distance is polynomial in the network states |Q|,
perturbed network transitions |R#

τ | and δ, and is O(εε).

Proof. We first note that the construction of Aδ,ε
Lev reduces the problem of check-

ing (δ, ε)-robustness ofN (w.r.t. the Levenshtein distance) to checking emptiness

of Aδ,ε
Lev. As Aδ,ε

Lev belongs to the class NCM(|N |, 1) from Lemma 3.1, we know

that checking emptiness of Aδ,ε
Lev is polynomial in the size of Aδ,ε

Lev, which includes

the states, transitions, counters and the set G of integer constants of Aδ,ε
Lev. The

complexity then follows from the constructions of Aδ,ε
Lev and Dε

Lev.

4.2 Robustness Analysis for the L1-norm Distance Metric

The composite machine Aδ,ε
L1

certifying non-robustness with respect to the L1-
norm metric, is a nondeterministic, 1-reversal-bounded (|N | + 1)-counter ma-

chine, i.e., in the class NCM(|N |+ 1, 1). Similar to Aδ,ε
Lev, the machine Aδ,ε

L1
also

simultaneously simulates an unperturbed execution of N and perturbed execu-
tion of Nτ , while tracking the L1-norm between the outputs generated along
both the runs.

Recall from Sec. 3, that the automaton Dε
L1

, accepting pairs of strings with
L1-norm greater than ε from each other, is in the class NCM(1,1), and is defined

by the tuple (Σ#×Σ#, XL1
, x0L1

, Z,GL1
, EL1

, FL1
). Formally, the machine Aδ,ε

L1
,

in the class NCM(|N |+1, is defined as the tuple (Σ|I|∪{#|I|}, X,x0, Z,G,E, F),
where all components have their usual meaning. The set of states X = Y ∪
{acc, rej}, where Y ⊆ (Q×Q×XL1). The initial state x0 is (q0,q0, x0L1). The
set of counters Z = {z1, . . . , z|N |}∪{z}, where z is an additional counter used to
track the L1-norm for the output strings. The set G = {0,−1, δ1, δ2, . . . , δ|N |, ε},
the set F of final states is the singleton set {acc}.

We add transitions to E in a step-wise fashion similar to that for Aδ,ε
Lev:

1. Initialization transition:
We add a single transition of the form:(

(q0,q0, x0L1), λ,
∧
k

zk = 0 ∧ z = 0, (q0,q0, x0L1), (+δ1, . . . ,+δ|N |, +ε)

)
In addition to initializing the counters for tracking the internal channel error
bounds, this transition also initializes the counter for tracking the L1-norm
of the output strings.

15

2. Unperturbed network transitions:
For each pair of transitions in R# and R#

τ from the same state, with the same
input symbol and output symbol, i.e., (q,a, b,q′) ∈ R# and (r,a, b, r′) ∈
R#
τ , and transitions of the form (xL1

, (b, b), z ≥ 0, xL1
, 0) in EL1

, we add a

transition of the following form to Aδ,ε
L1

:(
(q, r, xL1), a,

∧
zk ≥ 0 ∧ z ≥ 0, (q′, r′, xL1), (0, . . . , 0, 0)

)
.

For each pair of transitions in R# and R#
τ from the same state, with the

same input symbol and different output symbols, i.e., (q,a, b,q′) ∈ R# and
(r,a, b′, r′) ∈ R#

τ , and transitions of the form (xL1
, (b, b′), z > 0, xL1

,−1) in

EL1
, we add a transition of the following form to Aδ,ε

L1
:(

(q, r, xL1
), a,

∧
zk ≥ 0 ∧ z > 0, (q′, r′, xL1

), (0, . . . , 0,−1)
)
.

For each pair of transitions in R# and R#
τ from the same state, with the

same input symbol and different output symbols, i.e., (q,a, b,q′) ∈ R# and
(r,a, b′, r′) ∈ R#

τ , and transitions of the form (xL1 , (b, b
′), z = 0, accL1 , 0) in

EL1
, we add transitions of the following form to Aδ,ε

L1
:(

(q, r, xL1
), a,

∧
zk ≥ 0 ∧ z = 0, (q′, r′, accL1

), (0, . . . , 0, 0)
)
.

The perturbed network transitions, rejecting transitions, and accepting tran-
sitions are added in a similar fashion to Aδ,ε

Lev, (substitute qLev in all transitions

for Aδ,ε
Lev by xL1

).

Theorem 4.2. Given an upper bound δ on the number of perturbations in the
internal channels, and an upper bound ε on the acceptable error for a particular
output channel, the problem of checking if the networked system N is (δ, ε)-robust
with respect to the L1-norm is polynomial in the network states |Q|, perturbed
network transitions |R#

τ |, δ and ε.

Proof. We note that the construction of Aδ,ε
L1

reduces the problem of checking

(δ, ε)-robustness for N (w.r.t. the L1-norm) to checking emptiness of Aδ,ε
L1

. As

Aδ,ε
L1

belongs to the class NCM(|N |+1,1), from Lemma 3.1, we know that checking

emptiness of Aδ,ε
L1

is polynomial in the size of Aδ,ε
L1

, which includes the states,

transitions, counters and the set G of integer constants of Aδ,ε
L1

. The complexity

then follows from the constructions of Aδ,ε
L1

and Dε
L1

.

5 Related Work

There is a growing interest in the study of robustness in the formal methods and
software engineering communities. The initial papers by Majumdar and Saha [17]
and by Chaudhuri et al [5–7] consider robustness of infinite-state programs. The

16

programs considered in these papers are essentially functional; their scope does
not extend to concurrent systems with channel errors like ours.

More recent papers have aimed to develop a notion of robustness for reactive
systems. In [22], the authors propose a comprehensive notion of input-output
stability of finite-state transducers that bounds both the deviation of the out-
put from disturbance-free behaviour under bounded disturbance, as well as the
persistence of the effect on the output of a sporadic disturbance. The deviations
are measured using cost functions that map strings to nonnegative integers. The
authors present polynomial-time algorithms for the analysis and synthesis of ro-
bust transducers. Exploring extensions of techniques presented in our paper to
address persistence of a sporadic disturbance would be interesting.

In [18, 4, 2], the authors develop different notions of robustness for reactive
systems, with ω-regular specifications, interacting with uncertain environments.
In [18], the authors present metric automata, which are automata equipped with
a metric on states. The authors assume that at any step, the environment can
perturb any state q to a state at most γ(q) distance away, where γ is some
function mapping states to real numbers. A winning strategy for a finite-state
or Büchi automaton A is a strategy that satisfies the corresponding acceptance
condition (stated as reachability of states in F or as infinitely often visiting states
in F respectively). Such a winning strategy is defined to be σ-robust if it is a
winning strategy for A where the set F ′ characterizing the acceptance condition
includes all states at most σ.supq∈F γ(q) distance away from the F . We note that
while there are some similarities in how a disturbance is modeled, our approach
is quite different, as we quantify and analyze the effect of errors over time, and
do not associate metrics with individual states.

In [8], the authors study robustness of sequential circuits w.r.t. a common
suffix distance metric. Their notion of robustness essentially bounds the persis-
tence of the effect of a sporadic disturbance in the input of a sequential circuit.
To be precise, a circuit is said to be robust iff the position of the last mismatch
in any pair of output sequences is a bounded number of positions from the last
mismatch position in the corresponding pair of input sequences. The authors
present a polynomial-time algorithm to decide robustness of sequential circuits
modeled as (single) Mealy machines. The metric and its subsequent treatment
developed in this paper is useful for analyzing circuits; however, for networked
systems communicating via strings, metrics such as edit distance and the L1-
norm provide a more standard way to measure the effect of errors.

In [9], the authors present modeling techniques for cyber-physical systems.
Further, the authors also discuss the challenges of including a network in a cyber-
physical system. A key observation is that to maintain discrete-event semantics
of components in such a system, it is important to have a common sense of time
across all components. A critical requirement in such systems is that the commu-
nication remain synchronized, which is typically fulfilled by using protocols that
bound the allowed drift in the value of the global clock. In our model, we do not
analyze such details, and abstract them away, assuming that some underlying
protocol ensures synchronous communication.

17

Work in the area of robust control seeks to analyze and design networked
control systems where communication between sensors, the controller, and ac-
tuators occurs over unreliable networks such as wireless networks [1]. On the
other hand, work on wireless control networks [20, 21] focuses on design of dis-
tributed controllers where the components of the controller communicate over
unreliable wireless networks. In such applications, robustness typically means
desirable properties of the control loop such as stability. We note that these pa-
pers typically assume a synchronous communication schedule as supported by
wireless industrial control protocols such as ISA 100 and WirelessHART.

6 Discussion

We have presented a framework for the analysis of robustness of networked
systems in the presence of bounded channel perturbations. There are a few
directions in which this framework can be developed further. The first is a more
extensive treatment of distance metrics. We observe that the symbol sequences
(in Σ∗) in a networked cyber-physical system could represent a wide range of
digital signals. To accurately model the deviation of such signals in an error-
prone network from their error-free counterparts, one must track the magnitude
of the signals. This necessitates defining and computing distances that are based
on mapping individual symbols or symbol sequences to numbers [22].

The second direction is a generalization of the error model and subsequently,
the robustness definition. In this work, we only focus on internal channel errors
in a network, and assume that the input and output channels are error-free.
However, in a real-world scenario, there can be multiple sources of uncertainty
such as sensor and actuator noise, modeling errors and process failures. A com-
prehensive robustness analysis should thus check if small disturbances in the
inputs or internal channels or processes result in small deviations in the system
behaviour.

Finally, we also wish to investigate the extension of our current techniques
to the design of robust networks.

References

1. Alur, R., D’Innocenzo, A., Johansson, K.H., Pappas, G.J., Weiss, G.: Composi-
tional Modeling and Analysis of Multi-Hop Control Networks. IEEE Transactions
on Automatic Control 56(10), 2345–2357 (2011)

2. Bloem, R., Greimel, K., Henzinger, T., Jobstmann, B.: Synthesizing Robust Sys-
tems. In: Proceedings of Formal Methods in Computer Aided Design (FMCAD).
pp. 85–92 (2009)

3. Boussinot, F., De Simone, R.: The ESTEREL language. Proceedings of the IEEE
79(9), 1293–1304 (1991)

4. Cerny, P., Henzinger, T., Radhakrishna, A.: Simulation Distances. In: Proceedings
of CONCUR. pp. 253–268 (2010)

5. Chaudhuri, S., Gulwani, S., Lublinerman, R.: Continuity Analysis of Programs. In:
Proceedings of Principles of Programming Languages (POPL). pp. 57–70 (2010)

18

6. Chaudhuri, S., Gulwani, S., Lublinerman, R.: Continuity and Robustness of Pro-
grams. Communications of the ACM (2012)

7. Chaudhuri, S., Gulwani, S., Lublinerman, R., Navidpour, S.: Proving Programs Ro-
bust. In: Proceedings of Foundations of Software Engineering. pp. 102–112 (2011)

8. Doyen, L., Henzinger, T.A., Legay, A., Ničković, D.: Robustness of Sequential
Circuits. In: Proceedings of Application of Concurrency to System Design (ACSD).
pp. 77–84 (2010)

9. Eidson, J.C., Lee, E.A., Matic, S., Seshia, S.A., Zou, J.: Distributed Real-Time
Software for Cyber-Physical Systems. Proceedings of the IEEE (special issue on
CPS) 100(1), 45–59 (2012)

10. Eilenberg, S.: Automata, Languages, and Machines, vol. A. Academic Press New
York (1974)

11. Frougny, C., Sakarovitch, J.: Rational Relations with Bounded Delay. In: Proceed-
ings of Symposium on Theoretical Aspects of Computer Science (STACS). pp.
50–63 (1991)

12. Gurari, E.M., Ibarra, O.H.: The Complexity of Decision Problems for Finite-Turn
Multicounter Machines. In: Proceedings of the International Colloquium on Au-
tomata Languages and Programming (ICALP). pp. 495–505 (1981)

13. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University
Press (1997)

14. Ibarra, O.H.: Reversal-Bounded Multicounter Machines and Their Decision Prob-
lems. Journal of the ACM 25(1), 116–133 (1978)

15. Ibarra, O.H., Su, J., Dang, Z., Bultan, T., Kemmerer, R.A.: Counter Machines:
Decidable Properties and Applications to Verification Problems. In: Proceedings
of Mathematical Foundations of Computer Science (MFCS). pp. 426–435 (2000)

16. Kahn, G.: The Semantics of Simple Language for Parallel Programming. In: IFIP
Congress. pp. 471–475 (1974)

17. Majumdar, R., Saha, I.: Symbolic Robustness Analysis. In: 30th IEEE Real-Time
Systems Symposium. pp. 355–363 (2009)

18. Majumdar, R., Render, E., Tabuada, P.: A Theory of Robust Software Synthesis.
CoRR abs/1108.3540 (2011)

19. Mealy, G.H.: A Method for Synthesizing Sequential Circuits. Bell Systems Techni-
cal Journal pp. 1045–1079 (1955)

20. Pajic, M., Sundaram, S., Pappas, G.J., Mangharam, R.: The Wireless Control
Network : A New Approach for Control Over Networks. IEEE Transactions on
Automatic Control 56(10), 2305–2318 (2011)

21. Pappas, G.J.: Wireless Control Networks: Modeling, Synthesis, Robustness, Secu-
rity. In: Proceedings of Hybrid Systems: Computation and Control (HSCC). pp.
1–2 (2011)

22. Tabuada, P., Balkan, A., Caliskan, S.Y., Shoukry, Y., Majumdar, R.: Input Out-
put Stability for Discrete Systems. In: Proceedings of International Conference on
Embedded Software (EMSOFT) (2012)

19

