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Phylogeny Problem 
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1.  Heuristics for NP-hard optimization criteria (Maximum 
Parsimony and Maximum Likelihood) 

Phylogenetic reconstruction methods 

Phylogenetic trees 

Cost 

Global optimum 

Local optimum 

2.  Polynomial time distance-based methods: Neighbor 
Joining, FastME, etc. 

3.     Bayesian MCMC methods. 



Today	



•  Newick Representations of trees	


•  Characterizations of trees using distances,  

clades, splits (bipartitions), and quartets	


•  Computing trees from dissimilarity 

matrices: the “naïve” quartet method	


•  (Hints) Connections to estimation of 

phylogenies from empirical data	





Newick representations	



•  For a rooted tree, we represent a graph with a 
string with the taxa, commas, and nested 
parentheses.	



•  For example, what tree is represented by                    
(a,(b,(c,((d,e),(f,g))))))?	



•  How do we represent an unrooted tree? (Easy - 
root it somewhere, and write down the Newick 
representation of the rooted version.	





Rooted vs. unrooted	



•  Task: be able to move between rooted and 
unrooted representations of trees	



•  Task: be able to compare two trees and see 
if they are different or the same	





Clades	



•  Definition: Let T be a rooted tree leaf-labelled by 
S, let v an internal node in T, and let Xv be the set 
of leaves in T below v.  Let 	

 	

 	

	


	

Clades(T) = {Xv: v in V(T)}. 	

 	


	

Note: Xv is also called the “cluster” at node v, 

so this is sometimes called Clusters(T).	


	


•  Question: Given Clades(T), can we compute T?	





Bipartitions	



•  Given an edge e in a leaf-labelled unrooted 
tree T, the removal of the edge e (but not its 
endpoints) defines a bipartition on the 
leaves of the tree T.  We denote by ce the 
bipartition defined by the edge e.  We let 	


	

C(T)={ce: e in E(T)}.	



	


•  Questions: Given C(T), can we compute T? 	





Quartet subtrees	



•  Given tree T leaf-labelled by S, and quartet 
a,b,c,d of leaves, we let T|{a,b,c,d} denote 
the minimal homeomorphic subtree of T 
restricted to {a,b,c,d}.  We let Q(T) denote 
{T|X: X is a four taxon subset of S}.	



•  Question: Given Q(T), can we compute T?	





Computing trees	



•  Given Q(T) (the quartet subtrees of T), can 
we determine T?	



•  Given C(T) (the bipartitions of S defined by 
the edges of T), can we determine T?	



•  Given Clades(T) (the sets of leaves defined 
by internal nodes in the rooted tree T), can 
we determine T?	





Quartet-based reconstruction	



•  Definition: Let T be a tree leaf-labelled by a 
set S, and let Q(T) be the set of quartet 
subtrees of T (derived from each of the 
four-taxon subsets of S).	



Question: can we reconstruct T from Q(T)?	





Computing T from Q(T): ���
Naïve Quartet Method	



•  Given Q(T):	


– Find a sibling pair A, B (a pair of leaves which 

are always together in every quartet in which 
they both appear)	



– Compute the tree T’ for S-{A} by recursing on 
the subset of Q(T) that doesn’t include taxon A	



–  Insert A into T’ by making A sibling to B, and 
return the tree obtained	





Analysis of the algorithm	



Questions: 	


•  Accuracy?	


•  Running time?	


•  But: how are we to compute quartet 

subtrees?	





Clade compatibility	



•  Definition: Let T be a rooted tree leaf-labelled by 
S, v an internal node in T, and Xv the leaves in T 
below v.  Let Clades(T)={Xv: v in V(T)}.	



•  Theorem: Let X be a set of subsets of S. Then 
there exists a tree T leaf-labelled by S such that   
X = Clades(T) if and only if for all A, B in X, 
either A and B are disjoint, or one contains the 
other.	





Proof of the theorem	



•  One direction is easy	


•  The other direction is a proof by 

construction!	





Computing rooted trees from clades	



•  Partially order the set of clades by 
containment, add in the full set S, and 
compute the Hasse Diagram of the resultant 
poset	





Tree construction from clades	



Questions: 	


•  Accuracy?	


•  Running time?	


•  But, how are we to compute clades?	





Bipartition compatibility	



•  Definition: Let  X be a set of bipartitions on 
a set S.  Then X is said to be compatible if 
there exists a tree T leaf-labelled by S such 
that X = C(T), where C(T) = {ce: e in E(T)}.	



	


Question: Can we construct the tree T from 

C(T)?	





Computing trees from bipartitions	



Given the set of bipartitions on the leaf-set 
induced by the edges of a tree T, how can 
we compute the tree T?	



Hint: “root” the tree T by picking it up at a 
leaf, and then consider the set of bipartitions 
as a set of “clades”, and apply the previous 
algorithm. (Note: the choice of leaf does not 
matter!)	





Computing trees from 
bipartitions	



•  Questions: 	

 	

 	

 	

 	

 	


	

How are we to obtain bipartitions?	





Additive Distance Matrices	





Four-point condition	


Theorem (Buneman and others): A matrix D is 

additive if and only if for every four indices i,j,k,l, 
the maximum and median of the three pairwise 
sums are identical	



             Dij+Dkl < Dik+Djl = Dil+Djk	


	


Proof: one direction is easy. The other direction 

requires some work!	





Four-point method	


•  The Four-Point Method computes trees on quartets using 

the ideas in the Four-point condition 	


•  Given a “dissimilarity” matrix D (may not satisfy the 

triangle inequality, but will be symmetric and zero on the 
diagonal), we compute a tree on four leaves si,sj,sk,sl as 
follows:	



•  If	


             Dij+Dkl is less than both Dik+Djl, and Dil+Djk   	


     	



     then set the tree to be ((si,sj),(sk,sl)).	


	


	





So?	


•  We can compute a tree from its set of clades, 

bipartitions, or quartets.  But how do we get these sets?	


–  Primary data are generally characters (columns within 

alignments of biomolecular sequences, morphological features, 
or other such features).  These don’t directly produce clades, 
bipartitions, or quartets.	



•  We can compute a tree from an additive distance matrix. 
But how do we get these distances?	


–  Evolutionary biologists have techniques for estimating 
“evolutionary distances” between taxa.  How do they do this?	





Comparing two trees using 
bipartition sets 	



•  To see if two trees T and T’ are the same, write 
down C(T) and C(T’) and see if they are the same 
set.	



•  When computing the error in an estimated tree T 
with respect to a true tree T*, we set 	


–  C(T)-C(T*) = false positives, and 	


–  C(T*)-C(T) = false negatives (missing branches)	





Consensus Trees	



•  Given a set of trees, we compute consensus 
trees to represent what they have in 
common. For example:	


– The strict consensus	


– The majority consensus	


– The maximum agreement subtree	


– The maximum compatible subset tree	



•  Not all of these problems are solvable in 
polynomial time.	





Compatibility trees	



•  The compatibility tree of a set of trees (all 
on the same set of leaves) is the minimal 
common refinement, if it exists.	



•  Determining if a set of trees have a common 
refinement is solvable in polynomial time.	





Homework assignments	


•  Wednesday, Sept 11, Read Chapters 2-5. Do 

problems 2.3(2), 2.5(1), 2.5(2), 2.5(3), 2.5(5), 
and 2.7(1). 

•  Wednesday, Sept 18: Do problems 5.2(1), 5.2(3), 
5.2(4), and 5.2(5). Extra credit: 5.2(6) and 
5.2(7).  

Undergrads or biology students: you have the 
option of replacing any problems above with 
other problems (see webpage). 


