
394C, Spring 2013	

Sept 4, 2013	

Tandy Warnow	

DNA Sequence Evolution

AAGACTT

TGGACTT AAGGCCT

-3 mil yrs

-2 mil yrs

-1 mil yrs

today

AGGGCAT TAGCCCT AGCACTT

AAGGCCT TGGACTT

TAGCCCA TAGACTT AGCGCTT AGCACAA AGGGCAT

AGGGCAT TAGCCCT AGCACTT

AAGACTT

TGGACTT AAGGCCT

AGGGCAT TAGCCCT AGCACTT

AAGGCCT TGGACTT

AGCGCTT AGCACAA TAGACTT TAGCCCA AGGGCAT

Phylogeny Problem

TAGCCCA TAGACTT TGCACAA TGCGCTT AGGGCAT

U V W X Y

U

V W

X

Y

1.  Heuristics for NP-hard optimization criteria (Maximum
Parsimony and Maximum Likelihood)

Phylogenetic reconstruction methods

Phylogenetic trees

Cost

Global optimum

Local optimum

2.  Polynomial time distance-based methods: Neighbor
Joining, FastME, etc.

3. Bayesian MCMC methods.

Today	

•  Newick Representations of trees	

•  Characterizations of trees using distances,

clades, splits (bipartitions), and quartets	

•  Computing trees from dissimilarity

matrices: the “naïve” quartet method	

•  (Hints) Connections to estimation of

phylogenies from empirical data	

Newick representations	

•  For a rooted tree, we represent a graph with a
string with the taxa, commas, and nested
parentheses.	

•  For example, what tree is represented by
(a,(b,(c,((d,e),(f,g))))))?	

•  How do we represent an unrooted tree? (Easy -
root it somewhere, and write down the Newick
representation of the rooted version.	

Rooted vs. unrooted	

•  Task: be able to move between rooted and
unrooted representations of trees	

•  Task: be able to compare two trees and see
if they are different or the same	

Clades	

•  Definition: Let T be a rooted tree leaf-labelled by
S, let v an internal node in T, and let Xv be the set
of leaves in T below v. Let 	

 	

 	

	

	

Clades(T) = {Xv: v in V(T)}. 	

 	

	

Note: Xv is also called the “cluster” at node v,

so this is sometimes called Clusters(T).	

	

•  Question: Given Clades(T), can we compute T?	

Bipartitions	

•  Given an edge e in a leaf-labelled unrooted
tree T, the removal of the edge e (but not its
endpoints) defines a bipartition on the
leaves of the tree T. We denote by ce the
bipartition defined by the edge e. We let 	

	

C(T)={ce: e in E(T)}.	

	

•  Questions: Given C(T), can we compute T? 	

Quartet subtrees	

•  Given tree T leaf-labelled by S, and quartet
a,b,c,d of leaves, we let T|{a,b,c,d} denote
the minimal homeomorphic subtree of T
restricted to {a,b,c,d}. We let Q(T) denote
{T|X: X is a four taxon subset of S}.	

•  Question: Given Q(T), can we compute T?	

Computing trees	

•  Given Q(T) (the quartet subtrees of T), can
we determine T?	

•  Given C(T) (the bipartitions of S defined by
the edges of T), can we determine T?	

•  Given Clades(T) (the sets of leaves defined
by internal nodes in the rooted tree T), can
we determine T?	

Quartet-based reconstruction	

•  Definition: Let T be a tree leaf-labelled by a
set S, and let Q(T) be the set of quartet
subtrees of T (derived from each of the
four-taxon subsets of S).	

Question: can we reconstruct T from Q(T)?	

Computing T from Q(T): ���
Naïve Quartet Method	

•  Given Q(T):	

– Find a sibling pair A, B (a pair of leaves which

are always together in every quartet in which
they both appear)	

– Compute the tree T’ for S-{A} by recursing on
the subset of Q(T) that doesn’t include taxon A	

–  Insert A into T’ by making A sibling to B, and
return the tree obtained	

Analysis of the algorithm	

Questions: 	

•  Accuracy?	

•  Running time?	

•  But: how are we to compute quartet

subtrees?	

Clade compatibility	

•  Definition: Let T be a rooted tree leaf-labelled by
S, v an internal node in T, and Xv the leaves in T
below v. Let Clades(T)={Xv: v in V(T)}.	

•  Theorem: Let X be a set of subsets of S. Then
there exists a tree T leaf-labelled by S such that
X = Clades(T) if and only if for all A, B in X,
either A and B are disjoint, or one contains the
other.	

Proof of the theorem	

•  One direction is easy	

•  The other direction is a proof by

construction!	

Computing rooted trees from clades	

•  Partially order the set of clades by
containment, add in the full set S, and
compute the Hasse Diagram of the resultant
poset	

Tree construction from clades	

Questions: 	

•  Accuracy?	

•  Running time?	

•  But, how are we to compute clades?	

Bipartition compatibility	

•  Definition: Let X be a set of bipartitions on
a set S. Then X is said to be compatible if
there exists a tree T leaf-labelled by S such
that X = C(T), where C(T) = {ce: e in E(T)}.	

	

Question: Can we construct the tree T from

C(T)?	

Computing trees from bipartitions	

Given the set of bipartitions on the leaf-set
induced by the edges of a tree T, how can
we compute the tree T?	

Hint: “root” the tree T by picking it up at a
leaf, and then consider the set of bipartitions
as a set of “clades”, and apply the previous
algorithm. (Note: the choice of leaf does not
matter!)	

Computing trees from
bipartitions	

•  Questions: 	

 	

 	

 	

 	

 	

	

How are we to obtain bipartitions?	

Additive Distance Matrices	

Four-point condition	

Theorem (Buneman and others): A matrix D is

additive if and only if for every four indices i,j,k,l,
the maximum and median of the three pairwise
sums are identical	

 Dij+Dkl < Dik+Djl = Dil+Djk	

	

Proof: one direction is easy. The other direction

requires some work!	

Four-point method	

•  The Four-Point Method computes trees on quartets using

the ideas in the Four-point condition 	

•  Given a “dissimilarity” matrix D (may not satisfy the

triangle inequality, but will be symmetric and zero on the
diagonal), we compute a tree on four leaves si,sj,sk,sl as
follows:	

•  If	

 Dij+Dkl is less than both Dik+Djl, and Dil+Djk 	

 	

 then set the tree to be ((si,sj),(sk,sl)).	

	

	

So?	

•  We can compute a tree from its set of clades,

bipartitions, or quartets. But how do we get these sets?	

–  Primary data are generally characters (columns within

alignments of biomolecular sequences, morphological features,
or other such features). These don’t directly produce clades,
bipartitions, or quartets.	

•  We can compute a tree from an additive distance matrix.
But how do we get these distances?	

–  Evolutionary biologists have techniques for estimating
“evolutionary distances” between taxa. How do they do this?	

Comparing two trees using
bipartition sets 	

•  To see if two trees T and T’ are the same, write
down C(T) and C(T’) and see if they are the same
set.	

•  When computing the error in an estimated tree T
with respect to a true tree T*, we set 	

–  C(T)-C(T*) = false positives, and 	

–  C(T*)-C(T) = false negatives (missing branches)	

Consensus Trees	

•  Given a set of trees, we compute consensus
trees to represent what they have in
common. For example:	

– The strict consensus	

– The majority consensus	

– The maximum agreement subtree	

– The maximum compatible subset tree	

•  Not all of these problems are solvable in
polynomial time.	

Compatibility trees	

•  The compatibility tree of a set of trees (all
on the same set of leaves) is the minimal
common refinement, if it exists.	

•  Determining if a set of trees have a common
refinement is solvable in polynomial time.	

Homework assignments	

•  Wednesday, Sept 11, Read Chapters 2-5. Do

problems 2.3(2), 2.5(1), 2.5(2), 2.5(3), 2.5(5),
and 2.7(1).

•  Wednesday, Sept 18: Do problems 5.2(1), 5.2(3),
5.2(4), and 5.2(5). Extra credit: 5.2(6) and
5.2(7).

Undergrads or biology students: you have the
option of replacing any problems above with
other problems (see webpage).

