
394C: Algorithms for
Computational Biology	

Tandy Warnow	

Sept 9, 2013	

1.  Hill-climbing heuristics for hard optimization criteria
(Maximum Parsimony and Maximum Likelihood)

Phylogenetic reconstruction methods

Phylogenetic trees

Cost

Global optimum

Local optimum

2.  Polynomial time distance-based methods: UPGMA,
Neighbor Joining, FastME, Weighbor, etc.

Performance criteria	

	

•  Running time.	

•  Space.	

•  Statistical performance issues (e.g., statistical

consistency) with respect to a Markov model of
evolution.	

•  “Topological accuracy” with respect to the
underlying true tree. Typically studied in
simulation.	

•  Accuracy with respect to a particular criterion
(e.g. tree length or likelihood score), on real data.	

How can we infer evolution?	

While there are more than two taxa, DO	

•  Find the “closest” pair of taxa and make

them siblings	

•  Replace the pair by a single taxon	

	

Note: the input is a dissimilarity matrix, and
you need to specify how to update the matrix
after you replace two taxa by one taxon.	

Updating the matrix	

•  How do we update the dissimilarity matrix,
after we make two nodes x and y siblings?	

•  Various options, but here’s one:	

– Replace the pair of siblings by a new node

“xy”.	

– For each remaining taxon v in the matrix, set

D(xy,v) = ½ (D(x,v) + D(y,v))	

That was called “UPGMA”	

•  Advantages: UPGMA is polynomial time and
works well under the “strong molecular clock”
hypothesis.	

•  Disadvantages: UPGMA does not work well in
simulations, perhaps because the molecular clock
hypothesis does not generally apply. 	

•  Other polynomial time methods, also distance-
based, work better. One of the best of these is
Neighbor Joining.	

Quantifying Error	

FN: false negative
 (missing edge)
FP: false positive
 (incorrect edge)

50% error rate

FN

FP

Neighbor joining has poor performance on large
diameter trees [Nakhleh et al. ISMB 2001]	

	

Simulation study based

upon fixed edge
lengths, K2P model of
evolution, sequence
lengths fixed to 1000
nucleotides.	

Error rates reflect
proportion of incorrect
edges in inferred trees.	

NJ

0 400 800 1600 1200
No. Taxa

0

0.2

0.4

0.6

0.8

Er
ro

r R
at

e

•  Other standard polynomial time methods
don’t improve substantially on NJ (and have
the same problem with large diameter
datasets).	

	

•  What about other approaches?	

Maximum Parsimony

•  Input: Set S of n aligned sequences of length k
•  Output:

–  A phylogenetic tree T leaf-labeled by sequences in S
–  additional sequences of length k labeling the internal

nodes of T

such that

is minimized, where H(i,j) denotes the Hamming

distance between sequences at nodes i and j

∑
∈)(),(

),(
TEji

jiH

Maximum parsimony (example)

•  Input: Four sequences
– ACT
– ACA
– GTT
– GTA

•  Question: which of the three trees has the
best MP scores?

Maximum Parsimony

ACT

GTT ACA

GTA ACA ACT

GTA GTT

ACT

ACA

GTT

GTA

Maximum Parsimony

ACT

GTT

GTT GTA

ACA

GTA

1
2

2

MP score = 5

ACA ACT

GTA GTT

ACA ACT
3 1 3

MP score = 7

ACT

ACA

GTT

GTA
ACA GTA
1 2 1

MP score = 4

Optimal MP tree

Maximum Parsimony: computational
complexity

ACT

ACA

GTT

GTA
ACA GTA

1 2 1

MP score = 4

Finding the optimal MP tree is NP-hard

Optimal labeling can be
computed in linear time O(nk)

Dynamic Programming	

•  Fixed tree maximum parsimony has
dynamic programming solutions – a simple
one for unweighted maximum parsimony,
and a slightly more complicated one for
weighted maximum parsimony.	

•  What is dynamic programming?	

Fibonacci numbers	

•  F(1) = F(2) = 1	

•  F(x) = F(x-1)+F(x-2) if x>2	

Calculating F(x) using recursion is
exponential, but calculating F(x) using
dynamic programming is O(x) time.	

DP algorithm	

•  Dynamic programming algorithms on trees
are common – there is a natural ordering on
the nodes given by the tree.	

•  Example: computing the longest leaf-to-leaf
path in a tree can be done in linear time,
using dynamic programming (bottom-up).	

DP algorithm for unweighted MP	

•  When all substitutions have the same cost,
then there is a simple DP method for
calculating the MP score on a fixed tree.	

•  Example: DNA sequences, so 4 letters
(A, C, T, G). Let “Set(v)” denote the set of
optimal nucleotides at node v (for an MP
solution to the subtree rooted at v).	

Special case for unweighted MP	

•  Let “Set(v)” denote the set of optimal
nucleotides at node v. Then:	

–  If v is a leaf, then Set(v) is {state(v)}.	

– Else we let the two children of v be w and x. 	

•  If Set(w) and Set(x) are disjoint, then 	

	

Set(v) = Set(w) union Set(x)	

•  Else Set(v) = Set(w) intersection Set(x)	

•  After you assign values to Set(v) for all v,
you go to Phase 2 (picking actual states)	

Special case for unweighted MP	

•  Assume we have computed values to Set(v)
for all v. Note that Set(v) is not empty.	

•  Start at the root r of the tree. Pick one
nucleotide from Set(r) for the state at r.	

•  Now visit the children x,y of r, and pick
states. If the state of the parent is in Set(x),
the use that state; otherwise, pick any
element of Set(x).	

DP for weighted MP	

Single site solution for input tree T.	

Root tree T at some internal node. Now, for every
node v in T and every possible letter X, compute	

Cost(v,X) := optimal cost of subtree of T rooted at v,
given that we label v by X.	

Base case: easy	

General case?	

DP algorithm (con’t)	

Cost(v,X) = 	

	

minY{Cost(v1,Y)+cost(X,Y)} +
minY{Cost(v2,Y)+cost(X,Y)} 	

where v1 and v2 are the children of v, and Y
ranges over the possible “states”, and
cost(X,Y) is an arbitrary cost function.	

	

DP algorithm (con’t)	

We compute Cost(v,X) for every node v and every

state X, from the “bottom up”.	

	

The optimal cost is	

 minX{Cost(root,X)}	

	

We can then pick the best states for each node in a

top-down pass (just like the algorithm for
unweighted MP).	

	

DP algorithm (con’t)	

	

Running time? Accuracy?	

How to extend to many sites?	

	

Maximum Compatibility	

Maximum Compatibility is another approach to phylogeny
estimation, often used with morphological traits instead of
molecular sequence data. (And used in linguistics as well as
in biology.)	

Input: matrix M where Mij denotes the state of the species si
	

for character j.	

Output: tree T on which a maximum number of characters are
	

compatible.	

Characters	

•  A character is a partition of the set of taxa,
defined by the states of the character	

•  Morphological examples: presence/absence
of wings, presence/absence of hair, number
of legs	

•  Molecular examples: nucleotide or residue
(AA) at a particular site within an alignment	

Character Compatibility	

•  A character c is compatible on a tree T if the
states at the internal nodes of T can be set so
that for every state, the nodes with that state
form a connected subtree of T.	

•  Equivalently, c is compatible on T if the
maximum parsimony score for c on T is
k-1, where c has k states at the leaves of T.	

Computing the compatibility
score on a tree	

•  Given a matrix M of character states for a
set of taxa, and given a tree T for that input,
how do we calculate the compatibility
score?	

•  One approach: run maximum parsimony on
the input, and determine which characters
are compatible.	

Character compatibility	

•  More general problem: given matrix M of
character states for a set S of taxa, find the
tree with the highest character compatibility
score.	

•  This is NP-hard, even for binary (presence/
absence) characters!	

Binary character compatibility	

•  Here the matrix is 0/1. Thus, each character
partitions the taxa into two sets: the 0-set
and the 1-set.	

•  Note that a binary character c is compatible
on a tree T if and only if the tree T has an
edge e whose bipartition is the same as c.	

Solving binary character
compatibility	

•  Input: matrix M of 0/1.	

•  Output: tree T that maximizes character

compatibility	

•  Graph-based Algorithm: 	

– Vertex set: one node vc for each character c	

– Edge set: (vc,vc’) if c and c’ are compatible as

bipartitions (can co-exist in some tree)	

Solving maximum binary
character compatibility	

•  Vertex set: one node vc for each character c	

•  Edge set: (vc,vc’) if c and c’ are compatible

as bipartitions (can co-exist in some tree)	

•  Note: Every clique in the graph defines a set

of compatible characters. 	

•  Hence, finding a maximum sized clique

solves the maximum binary character
compatibility problem.	

Solution to binary character
compatibility	

•  Max Clique is NP-hard, so this is not a fast
algorithm. This algorithm shows that
Maximum Character Compatibility reduces
to Max Clique – not the converse. 	

•  But the converse is also true. So Maximum
Character Compatibility is NP-hard.	

Solving NP-hard problems
exactly is … unlikely	

•  Number of
(unrooted) binary
trees on n leaves is
(2n-5)!!	

•  If each tree on
1000 taxa could be
analyzed in 0.001
seconds, we would
find the best tree in	

 2890 millennia	

#leaves	

 #trees	

4	

 3	

5	

 15	

6	

 105	

7	

 945	

8	

 10395	

9	

 135135	

10	

 2027025	

20	

 2.2 x 1020	

100	

 4.5 x 10190	

1000	

 2.7 x 102900	

1.  Hill-climbing heuristics (which can get stuck in local optima)
2.  Randomized algorithms for getting out of local optima
3.  Approximation algorithms for MP (based upon Steiner Tree

approximation algorithms).

Approaches for “solving” MP/MC/ML

Phylogenetic trees

Cost

Global optimum

Local optimum

MP = maximum parsimony, MC = maximum compatibility, 	

ML = maximum likelihood	

Problems with current techniques for MP

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 4 8 12 16 20 24

Hours

Average MP
score above

optimal, shown as
a percentage of

the optimal

Shown here is the performance of a heuristic maximum parsimony analysis on a real
dataset of almost 14,000 sequences. (“Optimal” here means best score to date, using
any method for any amount of time.) Acceptable error is below 0.01%.

Performance of TNT with time

Observations	

•  The best heuristics cannot get acceptably
good solutions within 24 hours on most of
these large datasets. 	

•  Large datasets may need months (or years)
of further analysis to reach reasonable
solutions.	

•  Apparent convergence can be misleading.	

What happens after the analysis?	

•  The result of a phylogenetic analysis is
often thousands (or tens of thousands) of
equally good trees. What to do?	

•  Biologists use consensus methods, as well
as other techniques, to try to infer what is
likely to be the characteristics of the “true
tree”. 	

Supertree methods	

•  Input: collection of trees (generally
unrooted) on subsets of the taxa	

•  Output: tree on the entire set of taxa	

Basic questions: 	

§  is the set of input trees compatible? 	

§  can we find a tree satisfying a maximum

number of input trees?	

Triplet-based methods	

•  Triplet Compatibility: does a tree exist that
satisfies all the input triplets? If so, find it.
Polynomial time solvable!	

•  Aho, Sagiv, Szymanski, and Ullman
algorithm (works on any input)	

Quartet-based methods	

•  Quartet Compatibility: does there exist a tree
compatible with all the input quartet trees? If so,
find it. (NP-hard)	

•  Naïve Quartet Method solves Quartet
Compatibility (must have a tree on every quartet)	

Tree compatibility	

•  Unrooted trees: NP-hard	

•  Rooted trees: Polynomial	

But rooted trees are even harder to get exactly
correct than unrooted trees!	

Real data	

•  Cannot reliably obtain accurate rooted
triplets	

•  Cannot reliably obtain accurate quartet trees	

•  All input trees will have some error	

•  “Supertree” methods need to be able to

handle error in the input trees	

Quartet-based methods	

•  Maximum Quartet Compatibility: find a tree
satisfying a maximum number of quartet trees
(NP-hard)	

•  PTAS for case where the set contains a tree for
every four leaves (Jiang et al.)	

•  Heuristics (Quartets MaxCut by Snir and Rao,
Weight Optimization by Ranwez and Gascuel,
Quartet Cleaning by Berry et al., etc.)	

MRP	

•  Matrix Representation with Parsimony	

•  Encode each input source tree as a matrix

with entries from {0,1,?}, and run
maximum parsimony	

•  Solves “tree compatibility” exactly!	

SuperFine	

•  Swenson et al., Systematic Biology 2012	

•  Supertree method “booster”	

•  Two-step procedure: first construct a

“constraint” tree (using the strict consensus
merger), then refine each polytomy using
the preferred supertree method	

•  Improves MRP and other supertree methods	

False Negative Rate	

Scaffold Density (%)

False Negative Rate	

Scaffold Density (%)

Running Time	

SuperFine vs. MRP	

 MRP 8-12 sec.
SuperFine 2-3 sec.

Scaffold Density (%) Scaffold Density (%) Scaffold Density (%)

Homework (due 9/18)	

•  Find some paper related to supertree or quartet-based tree

estimation, read it, and write a 1-2 page discussion of what
is in the paper – its claims, whether it’s important, and
whether you agree with the conclusions (i.e., critique the
paper, don’t just summarize it).	

•  This can be a paper that describes a new method, a paper
that evaluates such a method on some data, or a paper that
uses any such method to analyze some data (e.g., a
biological dataset analysis).	

•  Google Scholar is one way to look for papers; you
probably have others.	

Some Quartet Tree papers to read	

•  “Quartets Max Cut…”, by Snir and Rao, IEEE/ACM TCBB, vol. 7, no. 4, pp. 704-708	

•  “Quartet-based phylogenetic inference: improvements and limits”, by Ranwez and

Gascuel, http://mbe.oxfordjournals.org/content/18/6/1103.full.pdf	

•  “Short Quartet Puzzling…”, by Snir and Warnow.

Journal of Computational Biology, Vol. 15, No. 1, January 2008, pp. 91-103.	

•  “An experimental study of Quartets MaxCut and other supertree methods” by Swenson

et al. Journal of Algorithms for Molecular Biology 2011, 6(7),	

•  “A polynomial time approximation scheme for inferring evolutionary trees from quartet

topologies and its applications” by Jiang, Kearney, and Li, SICOMP 2001,
http://dl.acm.org/citation.cfm?id=586889	

•  "Performance study of phylogenetic methods: (unweighted) quartet methods and
neighbor-joining,” Proceedings SODA 2001 and J. of Algorithms, 48, 1 (2003),
173-193 . (PDF)	

•  “Quartet Cleaning…” by Berry et al, ESA 1999, LNCS Vol. 1643, pp.
313-324.	

SuperFine papers	

•  Swenson et al. 2012,
Systematic Biology (2012) 61(2):214-227	

•  Nguyen, Mirarab, and Warnow, MRL and
SuperFine+MRL: new supertree methods."
Journal Algorithms for Molecular Biology 7:3,
2012.	

 	

The literature on supertree methods is enormous –

look for something recent (last 3 years).	

