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1.  Hill-climbing heuristics for hard optimization criteria 
(Maximum Parsimony and Maximum Likelihood) 

Phylogenetic reconstruction methods 

Phylogenetic trees 

Cost 

Global optimum 

Local optimum 

2.  Polynomial time distance-based methods: UPGMA, 
Neighbor Joining, FastME, Weighbor, etc. 



Performance criteria	


	


•  Running time.	


•  Space.	


•  Statistical performance issues (e.g., statistical 

consistency) with respect to a Markov model of 
evolution.	



•  “Topological accuracy” with respect to the 
underlying true tree.  Typically studied in 
simulation.	



•  Accuracy with respect to a particular criterion 
(e.g. tree length  or likelihood score), on real data.	





How can we infer evolution?	



While there are more than two taxa, DO	


•  Find the “closest” pair of taxa and make 

them siblings	


•  Replace the pair by a single taxon	


	


Note: the input is a dissimilarity matrix, and 
you need to specify how to update the matrix 
after you replace two taxa by one taxon.	





Updating the matrix	



•  How do we update the dissimilarity matrix, 
after we make two nodes x and y siblings?	



•  Various options, but here’s one:	


– Replace the pair of siblings by a new node 

“xy”.	


– For each remaining taxon v in the matrix, set 

D(xy,v) = ½ (D(x,v) + D(y,v))	





That was called “UPGMA”	



•  Advantages: UPGMA is polynomial time and 
works well under the “strong molecular clock” 
hypothesis.	



•  Disadvantages: UPGMA does not work well in 
simulations, perhaps because the molecular clock 
hypothesis does not generally apply.  	



•  Other polynomial time methods, also distance-
based, work better.  One of the best of these is 
Neighbor Joining.	





Quantifying Error	



FN: false negative 
      (missing edge) 
FP: false positive 
      (incorrect edge) 
 
50% error rate 

FN 

FP 



Neighbor joining has poor performance on large 
diameter trees [Nakhleh et al. ISMB 2001]	



	


Simulation study based 

upon fixed edge 
lengths, K2P model of 
evolution, sequence 
lengths fixed to 1000 
nucleotides.	



Error rates reflect 
proportion of incorrect 
edges in inferred trees.	
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•  Other standard polynomial time methods 
don’t improve substantially on NJ (and have 
the same problem with large diameter 
datasets).	



	


•  What about other approaches?	





Maximum Parsimony 

•  Input: Set S of n aligned sequences of length k 
•  Output:  

–  A phylogenetic tree T leaf-labeled by sequences in S 
–  additional sequences of length k labeling the internal 

nodes of T 

such that                       
 
is minimized, where H(i,j) denotes the Hamming 

distance between sequences at nodes i and j 
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Maximum parsimony (example) 

•  Input: Four sequences 
– ACT 
– ACA 
– GTT 
– GTA 

•  Question: which of the three trees has the 
best MP scores? 



Maximum Parsimony 
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GTA ACA ACT 

GTA GTT 
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MP score = 5 
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Optimal MP tree 



Maximum Parsimony: computational 
complexity 

ACT 

ACA 

GTT 

GTA 
ACA GTA 

1 2 1 

MP score = 4 

Finding the optimal MP tree is NP-hard 

Optimal labeling can be 
computed in linear time O(nk) 



Dynamic Programming	



•  Fixed tree maximum parsimony has 
dynamic programming solutions – a simple 
one for unweighted maximum parsimony, 
and a slightly more complicated one for 
weighted maximum parsimony.	



•  What is dynamic programming?	





Fibonacci numbers	



•  F(1) = F(2) = 1	


•  F(x) = F(x-1)+F(x-2) if x>2	



Calculating F(x) using recursion is 
exponential, but calculating F(x) using 
dynamic programming is O(x) time.	





DP algorithm	



•  Dynamic programming algorithms on trees 
are common – there is a natural ordering on 
the nodes given by the tree.	



•  Example: computing the longest leaf-to-leaf 
path in a tree can be done in linear time, 
using dynamic programming (bottom-up).	





DP algorithm for unweighted MP	



•  When all substitutions have the same cost, 
then there is a simple DP method for 
calculating the MP score on a fixed tree.	



•  Example: DNA sequences, so 4 letters     
(A, C, T, G). Let “Set(v)” denote the set of 
optimal nucleotides at node v (for an MP 
solution to the subtree rooted at v).	





Special case for unweighted MP	



•  Let “Set(v)” denote the set of optimal 
nucleotides at node v. Then:	


–  If v is a leaf, then Set(v) is {state(v)}.	


– Else we let the two children of v be w and x. 	



•  If Set(w) and Set(x) are disjoint, then 	


	

Set(v) = Set(w) union Set(x)	



•   Else Set(v) = Set(w) intersection Set(x)	



•  After you assign values to Set(v) for all v, 
you go to Phase 2 (picking actual states)	





Special case for unweighted MP	



•  Assume we have computed values to Set(v) 
for all v. Note that Set(v) is not empty.	



•  Start at the root r of the tree. Pick one 
nucleotide from Set(r) for the state at r.	



•  Now visit the children x,y of r, and pick 
states. If the state of the parent is in Set(x), 
the use that state; otherwise, pick any 
element of Set(x).	





DP for weighted MP	


Single site solution for input tree T.	



Root tree T at some internal node. Now, for every 
node v in T and every possible letter X, compute	



Cost(v,X) := optimal cost of subtree of T rooted at v, 
given that we label v by X.	



Base case: easy	



General case?	





DP algorithm (con’t)	



Cost(v,X) = 	


	

minY{Cost(v1,Y)+cost(X,Y)}  + 
minY{Cost(v2,Y)+cost(X,Y)} 	



where v1 and v2 are the children of v, and Y 
ranges over the possible “states”, and 
cost(X,Y) is an arbitrary cost function.	



	





DP algorithm (con’t)	


We compute Cost(v,X)  for every node v and every 

state X, from the “bottom up”.	


	


The optimal cost is	


      minX{Cost(root,X)}	


	


We can then pick the best states for each node in a 

top-down pass (just like the algorithm for 
unweighted MP).	



	





DP algorithm (con’t)	


	


Running time? Accuracy?	


How to extend to many sites?	


	





Maximum Compatibility	


Maximum Compatibility is another approach to phylogeny 
estimation, often used with morphological traits instead of 
molecular sequence data. (And used in linguistics as well as 
in biology.)	



Input: matrix M where Mij denotes the state of the species si 
	

for character j.	



Output: tree T on which a maximum number of characters are 
	

compatible.	





Characters	



•  A character is a partition of the set of taxa, 
defined by the states of the character	



•  Morphological examples: presence/absence 
of wings, presence/absence of hair, number 
of legs	



•  Molecular examples: nucleotide or residue 
(AA) at a particular site within an alignment	





Character Compatibility	



•  A character c is compatible on a tree T if the 
states at the internal nodes of T can be set so 
that for every state, the nodes with that state 
form a connected subtree of T.	



•  Equivalently, c is compatible on T if the 
maximum parsimony score for c on T is 
k-1, where c has k states at the leaves of T.	





Computing the compatibility 
score on a tree	



•  Given a matrix M of character states for a 
set of taxa, and given a tree T for that input, 
how do we calculate the compatibility 
score?	



•  One approach: run maximum parsimony on 
the input, and determine which characters 
are compatible.	





Character compatibility	



•  More general problem: given matrix M of 
character states for a set S of taxa, find the 
tree with the highest character compatibility 
score.	



•  This is NP-hard, even for binary (presence/
absence) characters!	





Binary character compatibility	



•  Here the matrix is 0/1. Thus, each character 
partitions the taxa into two sets: the 0-set 
and the 1-set.	



•  Note that a binary character c is compatible 
on a tree T if and only if the tree T has an 
edge e whose bipartition is the same as c.	





Solving binary character 
compatibility	



•  Input: matrix M of 0/1.	


•  Output: tree T that maximizes character 

compatibility	


•  Graph-based Algorithm: 	



– Vertex set: one node vc  for each character c	


– Edge set: (vc,vc’) if c and c’ are compatible as 

bipartitions (can co-exist in some tree)	





Solving maximum binary 
character compatibility	



•  Vertex set: one node vc  for each character c	


•  Edge set: (vc,vc’) if c and c’ are compatible 

as bipartitions (can co-exist in some tree)	


•  Note: Every clique in the graph defines a set 

of compatible characters. 	


•  Hence, finding a maximum sized clique 

solves the maximum binary character 
compatibility problem.	





Solution to binary character 
compatibility	



•  Max Clique is NP-hard, so this is not a fast 
algorithm. This algorithm shows that 
Maximum Character Compatibility reduces 
to Max Clique – not the converse. 	



•  But the converse is also true. So Maximum 
Character Compatibility is NP-hard.	





Solving NP-hard problems 
exactly is … unlikely	



•  Number of 
(unrooted) binary 
trees on n leaves is 
(2n-5)!!	



•  If each tree on 
1000 taxa could be 
analyzed in 0.001 
seconds, we would 
find the best tree in	



      2890 millennia	



#leaves	

 #trees	


4	

 3	


5	

 15	


6	

 105	


7	

 945	


8	

 10395	


9	

 135135	


10	

 2027025	


20	

 2.2 x 1020	



100	

 4.5 x 10190	



1000	

 2.7 x 102900	





1.  Hill-climbing heuristics (which can get stuck in local optima) 
2.  Randomized algorithms for getting out of local optima 
3.  Approximation algorithms for MP (based upon Steiner Tree 

approximation algorithms). 

Approaches for “solving” MP/MC/ML 

Phylogenetic trees 

Cost 

Global optimum 

Local optimum 

MP = maximum parsimony, MC = maximum compatibility, 	


ML = maximum likelihood	





Problems with current techniques for MP 
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Shown here is the performance of a heuristic  maximum parsimony analysis on a real 
dataset of almost 14,000 sequences. (“Optimal” here means best score to date, using 
any method for any amount of time.)  Acceptable error is below 0.01%. 

Performance of TNT with time 



Observations	



•  The best heuristics cannot get acceptably 
good solutions within 24 hours on most of 
these large datasets.  	



•  Large datasets may need months (or years) 
of further analysis to reach reasonable 
solutions.	



•  Apparent convergence can be misleading.	





What happens after the analysis?	



•  The result of a phylogenetic analysis is 
often thousands (or tens of thousands) of 
equally good trees.  What to do?	



•  Biologists use consensus methods, as well 
as other techniques, to try to infer what is 
likely to be the characteristics of the “true 
tree”.  	





Supertree methods	



•  Input: collection of trees (generally 
unrooted) on subsets of the taxa	



•  Output: tree on the entire set of taxa	



Basic questions: 	


§  is the set of input trees compatible? 	


§  can we find a tree satisfying a maximum 

number of input trees?	





Triplet-based methods	



•  Triplet Compatibility: does a tree exist that 
satisfies all the input triplets? If so, find it. 
Polynomial time solvable!	



•  Aho, Sagiv, Szymanski, and Ullman 
algorithm (works on any input)	





Quartet-based methods	



•  Quartet Compatibility: does there exist a tree 
compatible with all the input quartet trees? If so, 
find it. (NP-hard)	



•  Naïve Quartet Method solves Quartet 
Compatibility (must have a tree on every quartet)	





Tree compatibility	



•  Unrooted trees: NP-hard	


•  Rooted trees: Polynomial	



But rooted trees are even harder to get exactly 
correct than unrooted trees!	





Real data	



•  Cannot reliably obtain accurate rooted 
triplets	



•  Cannot reliably obtain accurate quartet trees	


•  All input trees will have some error	


•  “Supertree” methods need to be able to 

handle error in the input trees	





Quartet-based methods	



•  Maximum Quartet Compatibility: find a tree 
satisfying a maximum number of quartet trees 
(NP-hard)	



•  PTAS for case where the set contains a tree for 
every four leaves (Jiang et al.)	



•  Heuristics (Quartets MaxCut by Snir and Rao, 
Weight Optimization by Ranwez and Gascuel, 
Quartet Cleaning by Berry et al., etc.)	





MRP	



•  Matrix Representation with Parsimony	


•  Encode each input source tree as a matrix 

with entries from {0,1,?}, and run 
maximum parsimony	



•  Solves “tree compatibility” exactly!	





SuperFine	



•  Swenson et al., Systematic Biology 2012	


•  Supertree method “booster”	


•  Two-step procedure: first construct a 

“constraint” tree (using the strict consensus 
merger), then refine each polytomy using 
the preferred supertree method	



•  Improves MRP and other supertree methods	





False Negative Rate	



Scaffold Density (%) 



False Negative Rate	



Scaffold Density (%) 



Running Time	


SuperFine vs. MRP	



      MRP  8-12 sec. 
SuperFine  2-3 sec. 

Scaffold Density (%) Scaffold Density (%) Scaffold Density (%) 



Homework (due 9/18)	


•  Find some paper related to supertree or quartet-based tree 

estimation, read it, and write a 1-2 page discussion of what 
is in the paper – its claims, whether it’s important, and 
whether you agree with the conclusions (i.e., critique the 
paper, don’t just summarize it).	



•  This can be a paper that describes a new method, a paper 
that evaluates such a method on some data, or a paper that 
uses any such method to analyze some data (e.g., a 
biological dataset analysis).	



•  Google Scholar is one way to look for papers; you 
probably have others.	





Some Quartet Tree papers to read	


•  “Quartets Max Cut…”, by Snir and Rao, IEEE/ACM TCBB, vol. 7, no. 4, pp. 704-708	


•  “Quartet-based phylogenetic inference: improvements and limits”, by Ranwez and 

Gascuel,  http://mbe.oxfordjournals.org/content/18/6/1103.full.pdf	


•  “Short Quartet Puzzling…”, by Snir and Warnow. 

Journal of Computational Biology, Vol. 15, No. 1, January 2008, pp. 91-103.	


•  “An experimental study of Quartets MaxCut and other supertree methods” by Swenson 

et al. Journal of Algorithms for Molecular Biology 2011, 6(7),	


•  “A polynomial time approximation scheme for inferring evolutionary trees from quartet 

topologies and its applications” by Jiang, Kearney, and Li, SICOMP 2001, 
http://dl.acm.org/citation.cfm?id=586889	



•  "Performance study of phylogenetic methods: (unweighted) quartet methods and 
neighbor-joining,”  Proceedings SODA 2001 and J. of Algorithms, 48, 1 (2003), 
173-193 . (PDF)	



•  “Quartet Cleaning…” by Berry et al, ESA 1999, LNCS Vol. 1643, pp. 
313-324.	





SuperFine papers	



•  Swenson et al. 2012, 
Systematic Biology (2012) 61(2):214-227	



•  Nguyen, Mirarab, and Warnow, MRL and 
SuperFine+MRL: new supertree methods." 
Journal Algorithms for Molecular Biology 7:3, 
2012.	



       	


The literature on supertree methods is enormous – 

look for something recent (last 3 years).	




