## Statistical stuff: models, methods, and performance issues

CS 394C September 16, 2013

## Today's Class

- Phylogeny as statistical estimation problem
- Stochastic models of evolution
- Distance-based estimation

Phylogeny estimation as a statistical inverse problem

## Estimation of evolutionary trees as a statistical inverse problem

- We can consider characters as properties that evolve down trees.
- We observe the character states at the leaves, but the internal nodes of the tree also have states.
- The challenge is to estimate the tree from the properties of the taxa at the leaves. This is enabled by characterizing the evolutionary process as accurately as we can.

## Performance criteria

- Running time.
- Space.
- Statistical performance issues (e.g., statistical consistency and sequence length requirements)
- "Topological accuracy" with respect to the underlying *true tree.* Typically studied in simulation.
- Accuracy with respect to a mathematical score (e.g. tree length or likelihood score) on real data.

## Statistical models

- Simple example: coin tosses.
- Suppose your coin has probability p of turning up heads, and you want to estimate p. How do you do this?

## Estimating p

- Toss coin repeatedly
- Let your estimate q be the fraction of the time you get a head
- Obvious observation: q will approach p as the number of coin tosses increases
- This algorithm is a statistically consistent estimator of p. That is, your error |q-p| goes to 0 (with high probability) as the number of coin tosses increases.

## Another estimation problem

- Suppose your coin is biased either towards heads or tails (so that p is not 1/2).
- How do you determine which type of coin you have?
- Same algorithm, but say "heads" if q>1/2, and "tails" if q<1/2. For large enough number of coin tosses, your answer will be correct with high probability.

# Markov models of character evolution down trees

- The character might be binary, indicating absence or presence of some property at each node in the tree.
- The character might be multi-state, taking on one of a specific set of possible states. Typical examples in biology: the nucleotide in a particular position within a multiple sequence alignment.
- A probabilistic model of character evolution describes a random process by which a character changes state on each edge of the tree. Thus it consists of a tree T and associated parameters that determine these probabilities.
- The "Markov" property assumes that the state a character attains at a node v is determined only by the state at the immediate ancestor of v, and not also by states before then.

## **Binary characters**

- Simplest type of character: presence (1) or absence (0).
- How do we model the presence or absence of a property?

## Simplest model of binary character evolution: Cavender-Farris

- For each edge e, there is a probability
   p(e) of the property "changing
   state" (going from 0 to 1, or vice-versa),
   with 0<p(e)<0.5 (to ensure that CF trees
   are identifiable).</p>
- Every position evolves under the same process, independently of the others.

## Statistical models of evolution

- Instead of directly estimating the tree, we try to estimate the process itself.
- For example, we try to estimate the probability that two leaves will have different states for a random character.

# Cavender-Farris pattern probabilities

- Let x and y denote nodes in the tree, and p<sub>xy</sub> denote the probability that x and y exhibit different states.
- Theorem: Let  $p_i$  be the substitution probability for edge  $e_i$ , and let x and y be connected by path  $e_1e_2e_3...e_k$ . Then  $1-2p_{xy} = (1-2p_1)(1-2p_2)...(1-2p_k)$

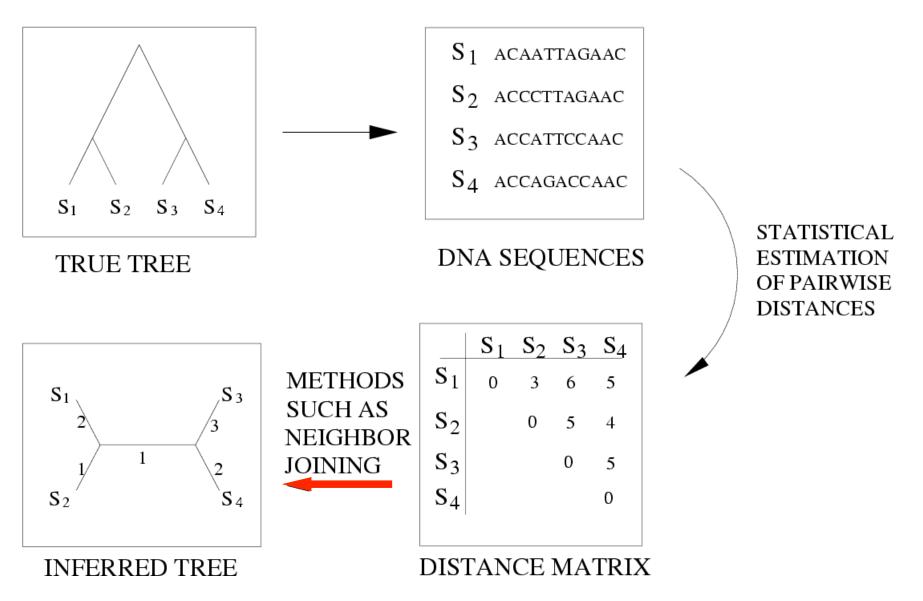
### And then take logarithms

- The theorem gave us:  $1-2p_{xy} = (1-2p_1)(1-2p_2)...(1-2p_k)$
- If we take logarithms, we obtain  $ln(1-2p_{xy}) = ln(1-2p_1) + ln(1-2p_2) + ... + ln(1-2p_k)$
- Since these probabilities lie between 0 and 0.5, these logarithms are all negative. So let's multiply by -1 to get positive numbers.

## An additive matrix!

- Consider a matrix  $D(x,y) = -\ln(1-2p_{xy})$
- This matrix is additive!
- Can we estimate this additive matrix from what we observe at the leaves of the tree?
- Key issue: how to estimate p<sub>xv.</sub>
- (Recall how to estimate the probability of a head...)

#### **Distance-based Methods**



## Estimating CF distances

Consider

 $d_{ij} = -1/2 \ln(1-2H(i,j)/k),$ 

where k is the number of characters, and H(i,j) is the Hamming distance between sequences  $s_i$  and  $s_i$ .

• Theorem: as k increases,

 $d_{ij}$  converges to  $D_{ij} = -1/2 \ln(1-2p_{ij})$ , which is an additive matrix.

## CF tree estimation

- Step 1: Compute Hamming distances
- Step 2: Correct the Hamming distances, using the CF distance calculation
- Step 3: Use distance-based method (neighbor joining, naïve quartet method, etc.)

## Four Point Method

- Task: Given 4x4 dissimilarity matrix, compute a tree on four leaves
- Solution: Compute the three pairwise sums, and take the split ij|kl that gives the minimum!
- When is this guaranteed accurate?

## **Error tolerance for FPM**

- Suppose every pairwise distance is estimated well enough (within f/2, for f the minimum length of any edge).
- Then the Four Point Method returns the correct tree (i.e., ij+kl remains the minimum)

## Naïve Quartet Method

- Compute the tree on each quartet using the four-point condition
- Merge them into a tree on the entire set if they are compatible:
  - Find a sibling pair A,B
  - Recurse on S-{A}
  - If S-{A} has a tree T, insert A into T by making A a sibling to B, and return the tree

## Error tolerance for NQM

- Suppose every pairwise distance is estimated well enough (within f/2, for f the minimum length of any edge).
- Then the Four Point Method returns the correct tree on every quartet.
- And so all quartet trees are compatible, and NQM returns the true tree.

## In other words:

- The NQM method is statistically consistent methods for estimating Cavender-Farris trees!
- Plus it is polynomial time!

## DNA substitution models

- Every edge has a substitution probability
- The model also allows 4x4 substitution matrices on the edges:
  - Simplest model: Jukes-Cantor (JC) assumes that all substitutions are equiprobable
  - General Time Reversible (GTR) Model: one 4x4 substitution matrix for all edges
  - General Markov (GM) model: different 4x4 matrices allowed on each edge

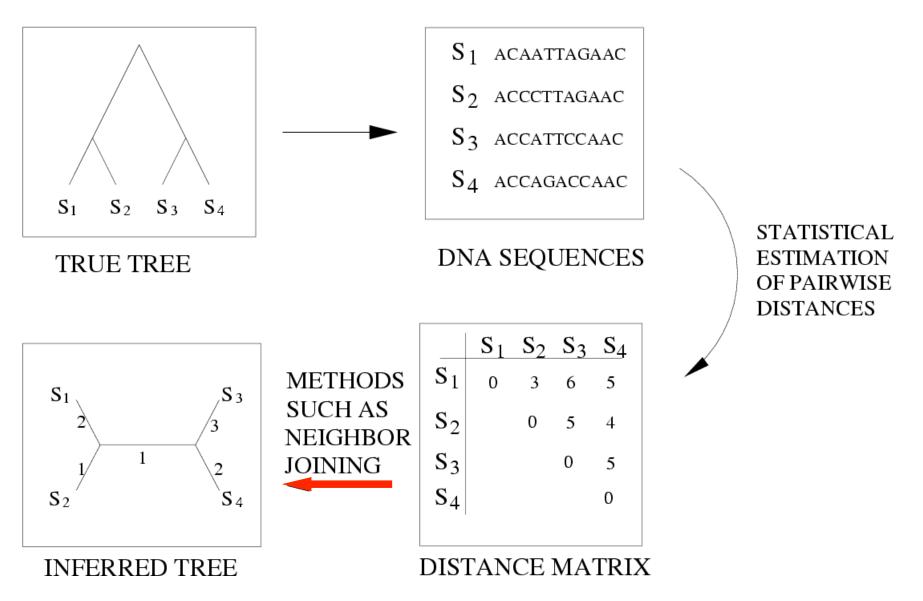
## Jukes-Cantor DNA model

- Character states are A,C,T,G (nucleotides).
- All substitutions have equal probability.
- On each edge e, there is a value p(e) indicating the probability of change from one nucleotide to another on the edge, with 0<p(e)<0.75 (to ensure that JC trees are identifiable).
- The state (nucleotide) at the root is random (all nucleotides occur with equal probability).
- All the positions in the sequence evolve identically and independently.

### Jukes-Cantor distances

- D<sub>ij</sub> = -3/4 ln(1-4/3 H(i,j)/k)) where k is the sequence length
- These distances converge to an additive matrix, just as with Cavender-Farris distances

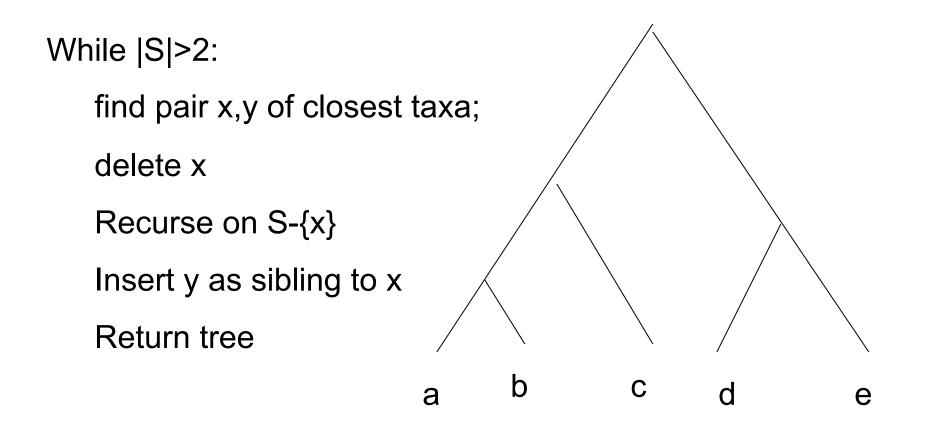
#### **Distance-based Methods**



#### Other statistically consistent methods

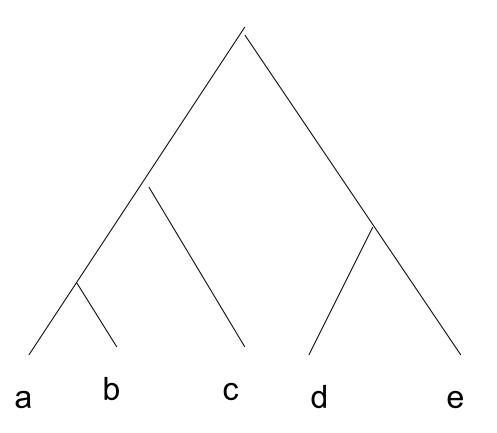
- Maximum Likelihood
- Bayesian MCMC methods
- Distance-based methods (like Neighbor Joining and the Naïve Quartet Method)
- But not maximum parsimony, not maximum compatibility, and not UPGMA (a distance-based method)

### UPGMA



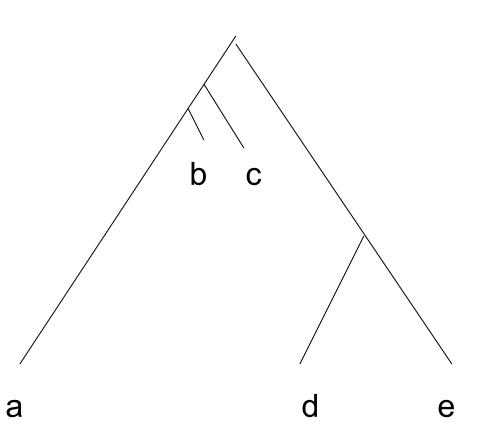
#### UPGMA

Works when evolution is "clocklike"



### UPGMA

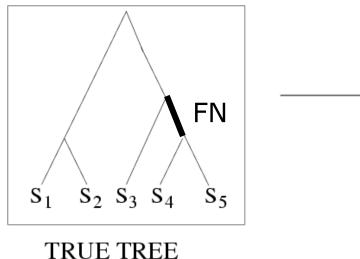
Fails to produce true tree if evolution deviates too much from a clock!



#### Better distance-based methods

- Neighbor Joining
- Minimum Evolution
- Weighted Neighbor Joining
- Bio-NJ
- DCM-NJ
- And others

## Quantifying Error



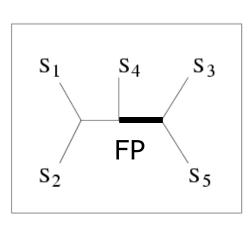
S<sub>1</sub> ACAATTAGAAC
S<sub>2</sub> ACCCTTAGAAC
S<sub>3</sub> ACCATTCCAAC
S<sub>4</sub> ACCAGACCAAC
S<sub>5</sub> ACCAGACCGGA

FN: false negative (missing edge)

FP: false positive (incorrect edge)

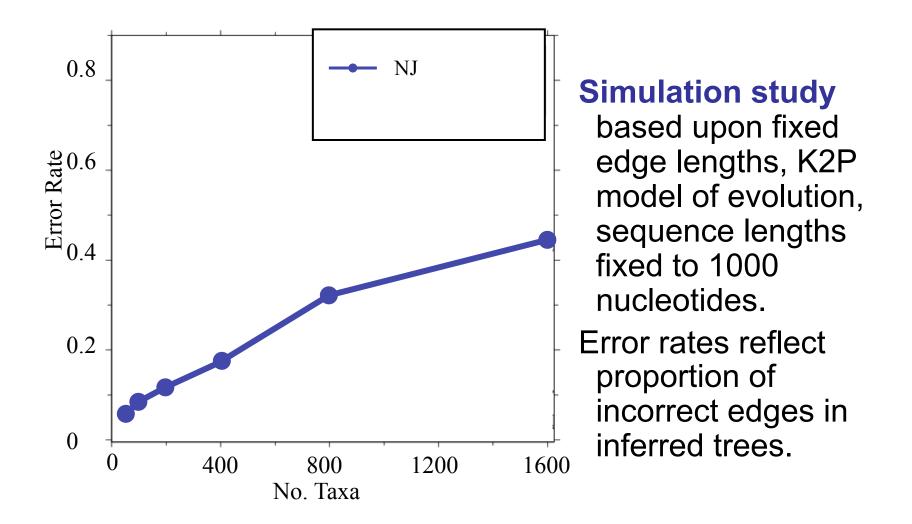
50% error rate





INFERRED TREE

## Neighbor joining has poor performance on large diameter trees [Nakhleh et al. ISMB 2001]



#### Statistical Methods of Phylogeny Estimation

- Many statistical models for biomolecular sequence evolution (Jukes-Cantor, K2P, HKY, GTR, GM, plus lots more)
- Maximum Likelihood and Bayesian Estimation are the two basic statistical approaches to phylogeny estimation
- MrBayes is the most popular Bayesian methods (but there are others)
- RAxML and GARLI are the most accurate ML methods for large datasets, but there are others
- Issues: running time, memory, and models...

## Maximum Likelihood

- Input: sequence data S,
- Output: the model tree (tree T and parameters theta) s.t. Pr(S|T,theta) is maximized.

NP-hard.

Important in practice.

Good heuristics!

But what does it mean?

# Computing the probability of the data

- Given a model tree (with all the parameters set) and character data at the leaves, you can compute the probability of the data.
- Small trees can be done by hand.
- Large examples are computationally intensive
   but still polynomial time (using an algorithmic trick).

## Cavender-Farris model calculations

- Consider an unrooted tree with topology ((a,b),(c,d)) with p(e)=0.1 for all edges.
- What is the probability of all leaves having state 0?

We show the brute-force technique.

## **Brute-force calculation**

Let E and F be the two internal nodes in the tree ((A,B), (C,D)).

Then Pr(A=B=C=D=0) =

- Pr(A=B=C=D=0|E=F=0) +
- Pr(A=B=C=D=0|E=1, F=0) +
- Pr(A=B=C=D=0|E=0, F=1) +
- Pr(A=B=C=D=0|E=F=1)

The notation "Pr(X|Y)" denotes the probability of X given Y.

## Calculation, cont.

Technique:

- Set one leaf to be the root
- Set the internal nodes to have some specific assignment of states (e.g., all 1)
- Compute the probability of that specific pattern
- Add up all the values you get, across all the ways of assigning states to internal nodes

## Calculation, cont.

Calculating Pr(A=B=C=D=0|E=F=0)

- There are 5 edges, and thus no change on any edge.
- Since p(e)=0.1, then the probability of no change is
   0.9. So the probability of this pattern, given that the root is a particular leaf and has value 0, is (0.9)<sup>5</sup>.
- Then we multiply by 0.5 (the probability of the root A having state 0).
- So the probability is  $(0.5)x (0.9)^5$ .

## Maximum likelihood under Cavender-Farris

- Given a set S of binary sequences, find the Cavender-Farris model tree (tree topology and edge parameters) that maximizes the probability of producing the input data S.
- ML, if solved exactly, is statistically consistent underCavender-Farris (and under the DNA sequence models, and more complex models as well).The problem is that ML is hard to solve.

## "Solving ML"

- Technique 1: compute the probability of the data under each model tree, and return the best solution.
- Problem: Exponentially many trees on n sequences, and infinitely many ways of setting the parameters on each of these trees!

## "Solving ML"

- Technique 2: For each of the tree topologies, find the best parameter settings.
- Problem: Exponentially many trees on n sequences, and calculating the best setting of the parameters on any given tree is hard!

Even so, there are hill-climbing heuristics for both of these calculations (finding parameter settings, and finding trees).

## **Bayesian analyses**

- Algorithm is a **random walk** through space of all possible model trees (trees with substitution matrices on edges, etc.).
- From your current model tree, you perturb the tree topology and numerical parameters to obtain a new model tree.
- Compute the probability of the data (character states at the leaves) for the new model tree.
  - If the probability increases, accept the new model tree.
  - If the probability is lower, then accept with some probability (that depends upon the algorithm design and the new probability).
- Run for a long time...

## **Bayesian estimation**

After the random walk has been run for a very long time...

- Gather a random sample of the trees you visit
- Return:
  - Statistics about the random sample (e.g., how many trees have a particular bipartition), OR
  - Consensus tree of the random sample, OR
  - The tree that is visited most frequently
- Bayesian methods, if run *long enough*, are statistically consistent methods (the tree that appears the most often will be the true tree with high probability).
- MrBayes is standard software for Bayesian analyses in biology.

# Phylogeny estimation statistical issues

- Is the phylogeny estimation method statistically consistent under the given model?
- How much data does the method need need to produce a correct tree?
- Is the method robust to model violations?
- Is the character evolution model reasonable?