394C, October 2, 2013

Topics:
 Multiple Sequence Alignment
e Estimating Species Trees from Gene Trees



Multiple Sequence Alignment

Multiple Sequence Alignments and Evolutionary
Histories (the meaning of “homologous”)

How to define error rates in multiple sequence
alignments

Minimum edit transformations and pairwise
alignments

Dynamic Programming for calculating a pairwise
alignment (or minimum edit transformation)

Co-estimating alignments and trees



DNA Sequence Evolution
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Deletion Mutation

.ACGGTGCAGTTACCA...

\ /
N/
Ny

..ACCAGTCACCA..



Deletion Mutation

F

..ACGGTGCAGTTACCA...
/ ..ACGGTGCAGTTACCA...
..ACCAGTCACCA.. ..AC----CAGTCACCA..

The true multiple alignment

— Reflects historical substitution, insertion, and
deletion events in the true phylogeny



S1
S2
S3
S4

Input: unaligned sequences

= AGGCTATCACCTGACCTCCA

TAGCTATCACGACCGC
TAGCTGACCGC

= TCACGACCGACA



Phase 1: Multiple Sequence Alignment

S1 = AGGCTATCACCTGACCTCCA S1 = -AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC S2 = TAG-CTATCAC--GACCGC--
S3 = TAGCTGACCGC S3 = TAG-CT-——-——-———-— GACCGC--

S4 = TCACGACCGACA S4 = ——————— TCAC--GACCGACA



Phase 2: Construct tree

S1 = AGGCTATCACCTGACCTCCA S1 = -AGGCTATCACCTGACCTCCA

S2 = TAGCTATCACGACCGC S2 = TAG-CTATCAC--GACCGC--

S3 = TAGCTGACCGC S3 = TAG-CT-——-——-———-— GACCGC--

S4 = TCACGACCGACA S4 = ——————— TCAC--GACCGACA
S1 S2

N

S4 S3




Many methods

Alienment methods Phylogeny methods

e Clustal .
 POY (and POY*) .
* Probcons (and Probtree)
* MAFFT

 Prank

« Muscle )
e Di-align *
 T-Coffee .
e Opal .

e Etc.

Bayesian MCMC
Maximum parsimony
Maximum likelihood
Neighbor joining
FastME

UPGMA

Quartet puzzling

Etc.



Deletion Mutation

F

..ACGGTGCAGTTACCA...
/ ..ACGGTGCAGTTACCA...
..ACCAGTCACCA.. ..AC----CAGTCACCA..

The true multiple alighnment

— Reflects historical substitution, insertion, and deletion
events in the true phylogeny

But how do we try to estimate this?



Pairwise alignments and edit transformations

* Each pairwise alignment implies one or more edit
transformations

e Each edit transformation implies one or more
pairwise alignments

* So calculating the edit distance (and hence
minimum cost edit transformation) is the same

as calculating the optimal pairwise alighment



Edit distances

e Substitution costs may depend upon which
nucleotides are involved (e.g, transition/
transversion differences)

* Gap costs
— Linear (aka “simple”): gapcost(L) = cL
— Affine: gapcost(L) = c+c’'L
— Other: gapcost(L) = c+c’ log(L)



Computing optimal pairwise alighments

* The cost of a pairwise alignment (under a simple

gap model) is just the sum of the costs of the
columns

e Under affine gap models, it’s a bit more
complicated (but not much)



Computing edit distance

* Given two sequences and the edit distance
function F(.,.), how do we compute the edit
distance between two sequences?

* Simple algorithm for standard gap cost
functions (e.g., affine) based upon dynamic
programming



DP alg for simple gap costs

* Given two sequences A[l...n] and B[1...m], and
an edit distance function F(.,.) with unit
substitution costs and gap cost C,

* Let
—A=ALA,,..., A
—~B=B,B,,..B_

e Let M(i,j)=F(A[1...i],B[1...j]) (i.e., the edit
distance between these two prefixes )



Dynamic programming algorithm

Let M(i,j)=F(A[1...i],B[1...j])

* M(0,0)=0
e M(n,m) stores our answer

* How do we compute M(i,j) from other entries
of the matrix?



Calculating M(i,j)

* Examine final column in some optimal pairwise
alignment of A[1...i] to B[1...j]
* Possibilities:
— Nucleotide over nucleotide: previous columns align
A[1...i-1] to B[1...]-1]:

— Indel (-) over nucleotide: previous columns align
A[1...i] to B[1...}-1]:

— Nucleotide over indel: previous columns align
A[1...i-1] to B[1...j]:



Calculating M(i,j)

* Examine final column in some optimal pairwise
alignment of A[1...i] to B[1...j]
* Possibilities:

— Nucleotide over nucleotide: previous columns align
A[1...i-1] to B[1...]-1]:
M(i,j)=M(i-1,j-1)+subcost(A,B)

— Indel (-) over nucleotide: previous columns align
A[1...i] to B[1...}-1]:

M(i,j)=M(i,j-1)+indelcost

— Nucleotide over indel: previous columns align
A[1...i-1] to B[1...j]:

M(i,j)=M(i-1,j)+indelcost



Calculating M(i,j)

 M(i,j) =min {

M(i-1,j-1)+subcost(A;,B)),
M(i,j-1)+indelcost, M(i-1,j)+indelcost }



O(nm) DP algorithm for pairwise alignment

using simple gap costs
» Initialize M(0,j) = M(j,0) = j*indelcost

* Fori=1l...n
— Forj=1..m
* M(i,j) = min {
M(i-1,j-1)+subcost(A,B)),
M(i,j-1)+indelcost,
M(i-1,j)+indelcost
}

 Return M(n,m)

* Add arrows for backtracking (to construct an optimal alignment and edit
transformation rather than just the cost)

Modification for other gap cost functions is straightforward but leads to an increase in
running time



Sum-of-pairs optimal multiple alignment

Given set S of sequences and edit cost
function F(.,.),

Find multiple alighment that minimizes the
sum of the implied pairwise alignments
(Sum-of-Pairs criterion)

NP-hard, but can be approximated
s this useful?



Other approaches to MSA

Many of the methods used in practice do not
try to optimize the sum-of-pairs

Instead they use probabilistic models (HMMs)

Often they do a progressive alignment on an
estimated tree (aligning alignments)

Performance of these methods can be
assessed using real and simulated data



Many methods

Alienment methods Phylogeny methods

e Clustal .
 POY (and POY*) .
* Probcons (and Probtree)
* MAFFT

 Prank

« Muscle )
e Di-align *
 T-Coffee .
e Opal .

e Etc.

Bayesian MCMC
Maximum parsimony
Maximum likelihood
Neighbor joining
FastME

UPGMA

Quartet puzzling

Etc.



Simulation study

ROSE simulation:

— 1000, 500, and 100 sequences

— Evolution with substitutions and indels
— Varied gap lengths, rates of evolution

Computed alignments
Used RAXML to compute trees
Recorded tree error (missing branch rate)

Recorded alignment error (SP-FN)



Alignment Error

Given a multiple sequence alignment, we
represent it as a set of pairwise homologies.

To compare two alignments, we compare their
sets of pairwise homologies.

The SP-FN (sum-of-pairs false negative rate) is
the percentage of the true homologies (those
present in the true alignment) that are missing in
the estimated alignment.

The SP-FP (sum-of-pairs false positive rate) is the
percentage of the homologies in the estimated
alignment that are not in the true alignment.
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Problems with the two phase approach

* Manual alignment can have a high level of
subjectivity (and can take a long time).

* Current alignment methods fail to return
reasonable alighments on markers that evolve
with high rates of indels and substitutions,
especially if these are large datasets.

 We discard potentially useful markers if they
are difficult to align.



S1 S2

S4 S3

S1 = AGGCTATCACCTGACCTCCA

S2 = TAGCTATCACGACCGC

S3 = TAGCTGACCGC

S4 = TCACGACCGACA Ear](j
S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-CT------—- GACCGC--
S4 = —————-—- TCAC--GACCGACA

Simultaneous estimation of trees and alignments



Simultaneous Estimation Methods

* Likelihood-based (under model of evolution including
insertion/deletion events)

— ALIFRITZ, BAIli-Phy, BEAST, StatAlign, others
— Computationally intensive
— Most are limited to small datasets (< 30 sequences)



Treelength-based

* Input: Set S of unaligned sequences over an alphabet
>, and an edit distance function F(.,.) (must account
for gaps and substitutions)

 QOutput: Tree T with sequences S at the leaves and
other sequences at the internal nodes so as to
minimize
2eF(SwSu),

where the sum is taken over all edges e=(s,,s, ) in the tree



Minimizing treelength

Given set S of sequences and edit distance
function F(.,.),

Find tree T with S at the leaves and sequences
at the internal nodes so as to minimize the
treelength (sum of edit distances)

NP-hard but can be approximated
NP-hard even if the tree is known!



Minimizing treelength

The problem of finding sequences at the internal
nodes of a fixed tree was introduced by Sankoff.

Several algorithmic results related to this
problem, with pretty theory

Most popular software is POY, which tries to
optimize tree length.

The accuracy of any tree or alignment depends
upon the edit distance function F(.,.), but so far
even good affine distances don’t produce very
good trees or alignments.



More

SATe: a heuristic method for simultaneous estimation and
tree alignment

POY, POY*, and BeeTLe: results of how changing the gap
penalty from simple to affine impacts the alignment and tree

Impact of guide tree on MSA

Statistical co-estimation using models that include indel
events (Statalign, Alifritz, BAliPhy)

UPP (ultra-large alignments using SEPP)

Alignment estimation in the presence of duplications and
rearrangements

Visualizing large alignments

The differences between amino-acid alignments and
nucleotide alignments (especially for non-coding data)



Research Projects

* How to use indel information in an alignment?

* Do the statistical estimation methods (Bali-
Phy, StatAlign, etc.) produce more accurate
alignments than standard methods (e.g.,
MAFFT)? Do they result in better trees?

 What benefit do we get from an improved
alignment? (What biological problem does the
alignment method help us solve, besides tree
estimation?)



Phylogenomics
Phylogenetic estimation from whole genomes

Low-GC Crenarchaeota
Gram positive Plancto- Themo- Desulfurococcales
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Chromalveolata

Nature Reviews | Genetics



Gene Trees to Species Trees

Gene trees are “inside” species trees
Causes of gene tree discord
Incomplete lineage sorting

Methods for estimating species trees from
gene trees



Sampling multiple genes from
multiple species

Corbisicam

From the Tree of the Life Website,
University of Arizona



Using multiple genes

gene 1
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Two competing approaches

gene1 qgene?2 ... qgenek

—
Concatenation

Specigs

Analyze
separately

%\ %Summary Method

>



1kp: Thousand Transcriptome Project

G. Ka-Shu Wong  J. Leebens-Mack N. Wickett N. Matasci T. Warnow, S. Mirarab, N. Nguyen, Md. S.Bayzid
U Alberta U Georgia Northwestern iPlant UT-Austin UT-Austin UT-Austin UT-Austin
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Plus many many other people...

o Plant Tree of Life based on transcriptomes of ~1200 species
o More than 13,000 gene families (most not single copy)

« Gene sequence alignments and trees computed using SATé (Liu et al.,
Science 2009 and Systematic Biology 2012)

Challenges:
Multiple sequence alignments of > 100,000 sequences

Gene tree incongruence




Avian Phylogenomics Project

Erich Jarvis, MTP Gilbert, G Zhang, T.Warnow  S.Mirarab Md. S. Bayzid,
HMI ; v Copenhagen BGI UT-Austin UT-Austin UT-Austin

i Pl th le...
o Approx. 50 species, whole genomes us many many other people

e 8000+ genes, UCEs
e Gene sequence alignments and trees computed using SATé (Liu et al,,
Science 2009 and Systematic Biology 2012)

Challenges:
Maximum likelihood on multi-million-site sequence alignments
Massive gene tree incongruence




Questions

e |sthe model tree identifiable?

* Which estimation methods are statistically
consistent under this model?

 What is the computational complexity of an
estimation problem?



Statistical Consistency

error

Data



Statistical Consistency

error

Data

Data are sites in an alignment



S| AcCAATTAGAAC

S» AcccTTAGAAC

- S3 ACCATTCCAAC
S4 Accacaccaac \
St S2 S3 S4 |
| \  STATISTICAL
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| OF PAIRWISE
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INFERRED TREE DISTANCE MATRIX

Neighbor Joining (and many other distance-based methods) are
statistically consistent under Jukes-Cantor




Questions

e |sthe model tree identifiable?

* Which estimation methods are statistically
consistent under this model?

 What is the computational complexity of an
estimation problem?



Answers?

e We know a lot about which site evolution models
are identifiable, and which methods are
statistically consistent.



Answers?

e We know a lot about which site evolution
models are identifiable, and which methods
are statistically consistent.

* Just about everything is NP-hard, and the
datasets are big.



Answers?

e We know a lot about which site evolution
models are identifiable, and which methods
are statistically consistent.

e Just about everything is NP-hard, and the
datasets are big.

* Extensive studies show that even the best
methods produce gene trees with some error.



In other words...

error

Data

Statistical consistency doesn’t guarantee accuracy
w.h.p. unless the sequences are long enough.



Species Tree Estimation from Gene Trees

error

Data

Data are gene trees, presumed to be randomly
sampled true gene trees.




Phylogenomics
Phylogenetic estimation from whole genomes

Low-GC Crenarchaeota
Gram positive Plancto- Themo- Desulfurococcales
Themmotogales mycetales  Proteales Sulfolobales
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Nature Reviews | Genetics



Using multiple genes
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Concatenation

gene 1 gene 2 gene 3
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Red gene tree # species tree
(green gene tree okay)
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1P: Thousand TranscriptomgeProjec

U Alberta U Georgia iPlant UT-Austin UT-Austin UT-Austin UT-Austin

G. Ka-Shu Wong . Leebens-Mack N.&e‘(e N. Matasci T. Warnow, S. Mirarab, N. Nguyen, Md. S.Bayzid
éorth stérn

e 120 anscriptomes

o Moré“than 13,000 gene families (most not single copy)
o Multi-institutional project (10+ universities)

o iPLANT (NSF-funded cooperative)

o Gene sequence alignments and trees computed using SATe (Liu et al.,
Science 2009 and Systematic Biology 2012)



Avian Phylogenomics Project

E Jarvis, MTP Gilbert, G Zhang, T. Warnow S. Mirarab Md. S. Bayzid,
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Plus many many other pe&e
e Approx. 50 'Xs‘whole genomes

o 80 ‘@ CEs
quence alignments computed using SATé (Liu et al., Science 2009
and Systematic Biology 2012)



Gene Tree Incongruence

* Gene trees can differ from the species tree
due to:

— Duplication and loss

— Horizontal gene transfer
— Incomplete lineage sorting (ILS)



Species Tree Estimation in the
presence of ILS

Mathematical model: Kingman’s coalescent

“Coalescent-based” species tree estimation
methods

Simulation studies evaluating methods
New techniques to improve methods
Application to the Avian Tree of Life



Species tree estimation: difficult,
even for small datasets!

Corbisicam

From the Tree of the Life Website,
University of Arizona



The Coalescent

Gorilla and Orangutan
are not siblings in the
species tree, but they
are in the gene tree.

* & e
* & e

Past

Present

Courtesy James Degnan



Courtesy James Degnan

tree

in a species

Gene tree



Lineage Sorting

* Lineage sorting is a Population-level process, also
called the “Multi-species coalescent” (Kingman,
1982).

 The probability that a gene tree will differ from
species trees increases for short times between
speciation events or large population size.

* When a gene tree differs from the species tree, this
is called “Incomplete Lineage Sorting” or “Deep

Coalescence”.



Key observation:
Under the multi-species coalescent model, the species tree
defines a probability distribution on the gene trees

Courtesy James Degnan



Incomplete Lineage Sorting (ILS)

e 2000+ papersin 2013 alone
* Confounds phylogenetic analysis for many groups:
— Hominids
— Birds
— Yeast
— Animals
— Toads
— Fish
— Fungi
 There is substantial debate about how to analyze
phylogenomic datasets in the presence of ILS.



Two competing approaches

gene1 qgene?2 ... qgenek

—
Concatenation

Specigs

Analyze
separately

%\ %Summary Method

>



How to compute a species tree?



MDC Problem (Maddison 1997)

Courtesy James Degnan

XL(T,t) = the number of extra lineages
on the species tree T with respect to
the gene tree t. In this example,
XL(T,t) = 1.

MDC (minimize deep coalescence) problem:
Given set X = {t,t,,...,t,} of gene trees find the species tree T
that implies the fewest extra lineages (deep coalescences)
with respect to X, i.e.,
minimize MDC(T, X) = 2, XL(T,t;)



MDC Problem

MDC is NP-hard

Exact solution to MDC that runs in
exponential time (Than and Nakhleh, PLoS
Comp Biol 2009).

Popular technique, often gives good
accuracy.

However, not statistically consistent under
ILS, even if solved exactly!



Statistically consistent under ILS?

MDC - NO

Greedy — NO

Most frequent gene tree - NO

Concatenation under maximum likelihood — open

MRP (supertree method) — open



Under the multi-species coalescent model, the species
tree defines a probability distribution on the gene trees

Courtesy James Degnan

Theorem (Degnan et al., 2006, 2009):
Under the multi-species coalescent
model, for any three taxa A, B, and C,
the most probable rooted gene tree on s
{A,B,C} is identical to the rooted species .,:523.5'52:;5
tree induced on {A,B,C}. o




How to compute a species tree?

Techniques:
MDC?
Most frequent gene tree?
Consensus of gene trees?
Other?



How to compute a species tree?

Theorem (Degnan et al., 2006, 2009):
Under the multi-species coalescent
model, for any three taxa A, B, and C,
the most probable rooted gene tree on
{A,B,C} is identical to the rooted species
tree induced on {A,B,C}.



How to compute a species tree?

AN AN —— ANA

Estimate species
tree for every
3 species

Theorem (Degnan et al., 2006, 2009):
Under the multi-species coalescent
model, for any three taxa A, B, and C,
the most probable rooted gene tree on
{A,B,C} is identical to the rooted species
tree induced on {A,B,C}.



How to compute a species tree?

AN AN —— ANA

Estimate species
tree for every
3 species

Theorem (Aho et al.): The rooted tree
on n species can be computed from its
set of 3-taxon rooted subtrees in
polynomial time.



How to compute a species tree?

AN A —— AN-A

Estimate species

tree for every Combine
3 species rooted
3-taxon
Theorem (Aho et al.): The rooted tree trees
on n species can be computed from its v

set of 3-taxon rooted subtrees in
polynomial time.



How to compute a species tree?

AN A —— AN-A

Estimate species .
tree for every Combine
3 species rooted
. -taxon
Theorem (Degnan et al., 2009): Under the multi- 3-taxo
. . trees
species coalescent, the rooted species tree can v

be estimated correctly (with high probability)
given a large enough number of true rooted
gene trees.



How to compute a species tree?

AN AN —— ANA

Estimate species

tree for every Combine
3 species rooted
. -taxon
Theorem (Degnan et al., 2009): Under the multi- 3-taxo
. . trees
species coalescent, the rooted species tree can 4

be estimated correctly (with high probability)
given a large enough number of true rooted
gene trees.

Theorem (Allman et al., 2011): the unrooted
species tree can be estimated from a large
enough number of true unrooted gene trees.



How to compute a species tree?

AN A —— AN-A

Estimate species

tree for every Combine
3 species rooted
. -taxon
Theorem (Degnan et al., 2009): Under the multi- 3-taxo
. . trees
species coalescent, the rooted species tree can 4

be estimated correctly (with high probability)
given a large enough number of true rooted
gene trees.

Theorem (Allman et al., 2011): the unrooted
species tree can be estimated from a large
enough number of true unrooted gene trees.



Statistical Consistency

error

Data

Data are gene trees, presumed to be randomly
sampled true gene trees.




Statistically consistent methods under ILS

Quartet-based methods (e.g., BUCKy-pop (Ané and
Larget 2010)) for unrooted species trees

MP-EST (Liu et al. 2010): maximum likelihood
estimation of rooted species tree for rooted species
trees

*BEAST (Heled and Drummond, 2011), co-estimates
gene trees and species trees

(and some others)



Questions

Is the model tree identifiable?

Which estimation methods are statistically
consistent under this model?

What is the computational complexity of an
estimation problem?

What is the performance in practice?



Results on 11-taxon weaklILS
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20 replicates studied, due to computational challenge of running *BEAST
and BUCKy



Results on 11-taxon stronglILS

0.5

*BEAST
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5—genes 10—genes 25—genes 50—genes

20 replicates studied, due to computational challenge of running *BEAST
and BUCKy



Average FN rate

*BEAST is better than ML at estimating gene trees

0.5 T T T 0.5

04

Average FN rate

*BEAST FastTree RAxXML

11-taxon weakILS datasets 17-taxon (very high ILS) datasets

e FastTree-2 and RAXML very close in accuracy
e *BEAST much more accurate than both ML methods

» *BEAST gives biggest improvement under low-ILS conditions




Impact of Gene Tree Estimation Error on MP-EST

0.25

0.2

0.15

B true
O estimated

Average FN rate

0.1 T

0.05 |-

MP-EST

MP-EST has no error on true gene trees, but
MP-EST has 9% error on estimated gene trees
Similar results for other summary methods (e.g., MDC)

Datasets: 11-taxon 50-gene datasets with high ILS (Chung and Ané
2010).



Problem: poor phylogenetic signal

 Summary methods combine estimated
gene trees, not true gene trees.

* The individual genes in the 11-taxon
datasets have poor phylogenetic signal.

* Species trees obtained by combining

poorly estimated gene trees have poor
accuracy.



Controversies/Open Problems

e Concatenation may (or may not be)
statistically consistent under ILS — but some
simulation studies suggest it can be positively
misleading.

* Coalescent-based methods have not in
general given strong results on biological data
— can give poor bootstrap support, or produce
strange trees, compared to concatenation.
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trees, not true gene trees.
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Problem: poor gene trees

e Summary methods combine estimated gene
trees, not true gene trees.

 The individual gene sequence alignments in the
11-taxon datasets have poor phylogenetic
signal, and result in poorly estimated gene
trees.

e Species trees obtained by combining poorly
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TYPICAL PHYLOGENOMICS PROBLEM:
many poor gene trees

e Summary methods combine estimated gene
trees, not true gene trees.

 The individual gene sequence alignments in the
11-taxon datasets have poor phylogenetic
signal, and result in poorly estimated gene
trees.

e Species trees obtained by combining poorly
estimated gene trees have poor accuracy.



Research Projects

Coalescent-based methods: analyze a biological
dataset using different coalescent-based
methods and compare to concatenation

Evaluation impact of choice of gene trees (e.g.,
removing gene trees with low support)

Evaluate impact of missing taxa in gene trees

Develop new coalescent-based method (e.g.,
combine quartet trees)

Evaluate scalability of coalescent-based methods



