
CS 395T: Algorithms for Computational Biology

Lecture 12: February 21, 2008 Lecturer: Tandy Warnow
Scribe: Rahul Suri

12.1 Course Logistics

Paper Presentations. A list of publications on phylogenetic networks has
been posted to the course website at http://www.cs.utexas.edu/∼tandy/
395T-2008.html. Each student should select a paper to present to the class
and notify Professor Warnow of this selection by e-mail prior to next Tuesday’s
lecture.

Scribe Notes. Beginning with today’s lecture, a designated scribe will be
responsible for taking notes on each lecture, typesetting a polished and thor-
ough version of the notes in LATEX, e-mailing the notes in both .tex and .pdf
formats to Professor Warnow, and revising the notes to incorporate the profes-
sor’s feedback.

12.2 Applications of Dynamic Programming (HW)

Both problems on Homework #2 were concerned with applications of dynamic
programming to bioinformatics tasks. This section briefly outlines solutions to
these problems:

Problem 1. Give a dynamic programming algorithm for computing the longest
leaf-to-leaf path in a tree. (Here we define the length of a path to be the number
of edges in the path.) This is also called the ”topological diameter” of the tree.
Analyze the running time.

Problem 2. Give a dynamic programming algorithm for the longest common
subsequence between two strings. This is the same problem as finding the
minimum number of deletions from the two strings so that the result is two
identical strings. Thus, the longest common subsequence of AAAAAAAAAA
and CATTAGAA is AAAA. Analyze the running time.

12.2.1 Computing the topological diameter of a tree

To find the topological diameter of a tree, we first define H(n), the height of a
node n ∈ N to represent the maximum number of edges from a leaf node it is:

12-1

Lecture 12: February 21, 2008 12-2

H(n) =
{

0 if n ∈ L,
1 + maxc∈C(n)H(c) otherwise

where L denotes the set of leaf nodes, N the set of all nodes in the tree,
and C(n) the set of node n’s child nodes; Algorithm 1 shows pseudocode for
calculating H(n).

Algorithm 1: H, Tree height of a node

Input: node n ∈ N
Output: associative array H : n ∈ N 7→ R
/* leaf nodes have height 0 */
if C(n) empty then1

H(n)←− 02

else3

/* internal nodes have height 1 greater than maximum child
node height */

max←− 04

foreach c ∈ C(n) do5

if H(c) > max then6

max←− H(c)7

end8

end9

H(n)←− 1 + max10

end11

We now define D(n) the topological diameter of the subtree rooted at node
n ∈ N as follows:

D(n) =

 0 if n ∈ L,

max

{
maxc∈C(n)D(c),
maxc,c′∈C(n)H(c) +H(c′) + 2.

otherwise.

Algorithm 2 shows pseudocode for calculating D(n).
The running time to calculate the height of all nodes in a tree is O(b|N |),

where b = maxn∈N |C(n)| is the tree’s branching factor; calculating the topolog-
ical diameter of all nodes given all nodes’ heights requires O(b2|N |) time. The
algorithm for calculating the topological diameter of a tree is therefore linear in
the number of nodes in the tree.

12.2.2 Computing the longest common subsequence of a
pair of strings [1]

Given strings s1 and s2, we define LCS(i, j) for i, j ∈ R to be the length of a
longest common subsequence of the two strings defined by the first i letters of

Lecture 12: February 21, 2008 12-3

Algorithm 2: D, Topological diameter of the subtree rooted at a node

Input: node n ∈ N
Output: associative array D : n ∈ N 7→ R
/* subtree rooted at leaf node has topological diameter 0 */
if C(n) empty then1

D(n)←− 02

else3

max←− 04

/* search diameters restricted to subtrees rooted at child
nodes */

foreach c ∈ C(n) do5

if D(c) > max then6

max←− D(c)7

end8

end9

/* search diameters spanning subtrees rooted at all pairs
of child nodes */

foreach c, c′ ∈ C(n) do10

if H(c) +H(c′) + 2 > max then11

max←− H(c) +H(c′) + 212

end13

end14

D(n)←− max15

end16

Lecture 12: February 21, 2008 12-4

s1 and the first j letters of s2, respectively. A mathematical formulation of the
longest common subsequence problem is thus:

LCS(i, j) =


0 if i = 0,
0 if j = 0,

max

 1 + LCS(i− 1, j − 1) if s1[i] = s2[j],
LCS(i− 1, j),
LCS(i, j − 1).

otherwise.

where s1[i] and s2[j] denote the ith letter of s1 and the jth letter of s2,
respectively. Algorithm 3 shows pseudocode for calculating a matrix M rep-
resenting LCS(i, j) for all pairs (i, j) of characters from s1 and s2 and a path
matrix P indicating the paths through the matrix yielding each of the entries
in M ; the answer to the longest common subsequence problem is given by the
entry in M [n1, n2]. The running time of the algorithm is O(n1n2).

Figure 12.1 gives a pictorial representation of the matrices M and P following
execution of the LCS algorithm on input strings s1 = ABCA and s2 = BAD,
where the entries in the table represent the entries of M and the arrows represent
the entries of P .

− B A D

− 0 0 0 0

A 0 0oo

OO

1

hh

1oo

B 0 1

hh

1oo

OO

1oo

OO

C 0 1

OO

1oo

OO

1oo

OO

A 0 1

OO

2

hh

2oo

Figure 12.1: Output of LCS algorithm on example input strings s1 = ABCA
and s2 = BAD

12.3 Pairwise Sequence Alignment

Recall the formulation for the pairwise sequence alignment problem presented
in a previous lecture. Given strings s1 and s2 of length n1 and n2, respectively,

Lecture 12: February 21, 2008 12-5

Algorithm 3: LCS, Longest common subsequence of a pair of strings

Input: strings s1 = s1[1 . . . n1], s2 = s2[1 . . . n2]
Output: (n1 + 1)× (n2 + 1) matrices M and P

/* initialize entries in first column */
foreach i = 0 . . . n1 do1

M [i, 0]←− 02

P [i, 0]←− {}3

end4

/* initialize entries in first row */
foreach j = 0 . . . n2 do5

M [0, j]←− 06

P [0, j]←− {}7

end8

/* calculate remaining matrix entries */
foreach i = 1 . . . n1 do9

foreach j = 1 . . . n2 do10

/* if letters match */
if s1[i] = s2[j] then11

M [i, j]←−M [i− 1, j − 1] + 112

P [i, j]←− {(i− 1, j − 1)}13

else14

if M [i, j − 1] > M [i− 1, j] then15

M [i, j]←−M [i, j − 1]16

P [i, j]←− {(i, j − 1)}17

else if M [i, j − 1] < M [i− 1, j] then18

M [i, j]←−M [i− 1, j]19

P [i, j]←− {(i− 1, j)}20

/* if there’s a tie */
else21

M [i, j]←−M [i, j − 1]22

P [i, j]←− {(i, j − 1), (i− 1, j)}23

end24

end25

end26

end27

Lecture 12: February 21, 2008 12-6

indel cost 1, and substitution cost c, we define M [i, j] to be the cost of the best
(i.e. minimal-cost) transformation of the first i letters of s1 to the first j letters
of s2:

M [i, j] =


i if j = 0,
j if i = 0,

min

 M [i− 1, j − 1] + cH(s1[i], s2[j]),
M [i− 1, j] + 1,
M [i, j − 1] + 1.

otherwise

where H(s1[i], s2[j]) denotes the Hamming distance from the ith letter of s1

to the jth letter of s2. It is straightforward to formulate an O(n1n2) dynamic
programming algorithm for calculating M [n1, n2] by analogy from Algorithm 3.

We can consider reformulations of the pairwise alignment problem in which
the substitution cost is 1 and the cost of a gap of length l is costg(l) = c0+c1l or,
more generally, simply any function costg(l). Note that in these formulations,
the cost of a pairwise alignment is not simply the sum of the cost of the columns
of letters. Figure 12.2 shows an example pair of pairwise alignments which would
have equal costs under the earlier problem formulation, but unequal costs given
even general affine gap costs. It has been shown [2] that the pairwise alignment
problem with affine gap costs can be solved in O(n1n2) time.

A C T A G A

A − − − − A

A C A T A A G A

A − A − A − − A

Figure 12.2: A pair of pairwise alignments with equal costs under traditional
problem formulation and unequal costs given gap penalties

12.4 Multiple Sequence Alignment

Multiple sequence alignment (MSA) is the extension of the pairwise alignment
problem from Section 12.3 to 3 or more sequences. This section details two
optimization approaches to the MSA problem.

12.4.1 Computing MSA by sum-of-pairs optimization

Given a set of sequences S = {s1 . . . sn} and an edit cost function for a pairwise
alignment on sequences s and s′ cost : A(s, s′) 7→ R, our goal is to compute a

Lecture 12: February 21, 2008 12-7

multiple sequence alignment A∗S on set S of minimum cost

A∗S = arg min
AS

∑
si,sj∈S

cost(AS(si, sj)),

whereAS is a multiple sequence alignment on set S andAS(si, sj) is the pairwise
alignment of sequences si and sj induced by the multiple sequence alignment
AS .

This formulation of the MSA problem is known as the “sum-of-pairs” opti-
mization problem and is known to be NP-hard [3], with running time O(n2k)
to calculate the cost of a given multiple alignment, where k is the length of the
longest sequence in S. Figure 12.3 shows an example MSA on 3 sequences and
Figure 12.4 shows the corresponding induced pairwise alignments.

− A C A −

C − − A T

T A − − T

Figure 12.3: A multiple sequence alignment of 3 sequences

− A C A −

C − − A T

− A C A −

T A − − T

C − A T

T A − T

Figure 12.4: Pairwise alignments induced by the MSA in Figure 12.3

12.4.2 Computing MSA by generalized tree alignment op-
timization

Another approach to computing an optimal MSA is referred to as the “general-
ized tree alignment” optimization problem; the inputs are the same as those to
the sum-of-pairs optimization problem outlined in Section 12.4.1. The output
is a tree T with the sequences in S at the leaves and a set I of new sequences
at the tree’s internal nodes. Our goal is to compute a tree T ∗ with leaf nodes
T ∗L = S and internal nodes T ∗I of minimum cost

Lecture 12: February 21, 2008 12-8

T ∗ = arg min
T

∑
(n1,n2)∈TE

cost(A(s[n1], s[n2]))

where (n1, n2) ∈ TE denotes the edge delimited by nodes n1 and n2 from
tree T ’s edge set TE and s[n] gives the sequence associated with node n. Figure
12.5 shows an example tree on a set of 7 sequences S1 . . . S7 with five internal
sequence nodes circled and lettered a . . . e. The problem of finding the minimum
cost tree is known to be NP-hard [3].

S1 S7

'&%$!"#a

OOOOOOOOOOOO '&%$!"#b '&%$!"#c

ooooooooooooo

OOOOOOOOOOOOO

S2

oooooooooooo /.-,()*+d S5 S6

'&%$!"#e

oooooooooooo

OOOOOOOOOOOO

S3 S4

Figure 12.5: A tree with sequences at the leaves and internal sequence nodes

We can consider a relaxation of the generalized tree alignment problem in
which the tree T is given and we need only assign sequences to the internal
nodes to minimize the overall cost. This simplified problem is known as the
“tree alignment” optimization problem and is still NP-hard [3].

References

[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to
Algorithms, Second Edition, 2001.

[2] O. Gotoh. An improved algorithm for matching biological sequences. J.
Mol. Biol., 162:705–708, 1982.

[3] L. Wang and T. Jiang. On the complexity of multiple sequence alignment.
J. Comput. Biol., 1:337-348, 1994.

