
Problems for 394C – Algorithms for Computational Biology
Problems are numbered by the section and subsection from which they are

derived, followed by an integer in parentheses. For example, the sixth problem
from section 3.2 would be numbered 3.2(6).
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1 Problems from Section 1: Introduction

Problem 1.1(1) Suppose T is a rooted binary tree on n leaves. Give a linear-
time algorithm that returns a matrix indexed by the nodes of v the number of
leaves in the subtree of T rooted at v. (Hint: think dynamic programming or
recursion.) Prove that your algorithm uses linear time.

Problem 1.1(2) Let T be an unrooted tree on n leaves that are labelled
s1, s2, . . . , sn, and let the edges of T all have unit length. Give an algorithm to
compute the matrix of pairwise distances in T . Analyze the running time.

Problem 1.1(3) Let A and B be two binary sequences. Give an algorithm
to determine if A is a substring of B. Analyze the running time.

Problem 1.1(4) Let A and B be two binary sequences. Give an algorithm
to determine if A is a subsequence of B. Analyze the running time.

Problem 1.1(5) Let G = (V,E) be a graph. Give an algorithm to determine
if G has a clique of size 3. Analyze the running time.

Problem 1.1(6) Let G = (V,E) be a graph and k be a positive integer. Give
an algorithm to determine if G has a clique of size k. Analyze the running time.

Problem 1.1(7) Give an example of a simple undirected graph with at most
10 vertices and exactly two components.

Problem 1.1(8) Give an example of a simple undirected graph with the fol-
lowing degree sequence: 0,0,1,1,2,2,2.

Problem 1.1(9) Prove that the number of vertices of odd degree in any graph
is always even.

Problem 1.1(10) Prove or disprove: every connected graph with maximum
degree two has an Eulerian path or cycle.

Problem 1.1(11) Prove or disprove: every connected graph with maximum
degree three has an Eulerian path or cycle.

Problem 1.1(12) Prove or disprove: every connected graph with maximum
degree two has a Hamiltonian path.
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Problem 1.1(13) Suppose I were to tell you that I had discovered an algo-
rithm that could correctly tell whether a graph G has a 5-clique, and could
answer the problem in time that is polynomial in the number of vertices for the
graph. What would that mean for the question “Does P = NP?”

Problem 1.1(14) Suppose I were to tell you that I had discovered an algo-
rithm that could correctly tell you if a graph had an Eulerian cycle, and run in
time that is polynomial in the number of vertices for the graph. What would
that mean for the question “Does P = NP?”

Problem 1.1(15) Suppose I were to tell you that I had discovered an algo-
rithm that could correctly tell you if a graph had a Hamiltonian path, and run
in time that is polynomial in the number of vertices for the graph. What would
that mean for the question “Does P = NP?”
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2 Problems from Section 2: Trees

Problem 2.1(1) Draw the rooted tree that is given by (f, ((a, b), (c, (d, e))).

Problem 2.1(2) Draw a rooted tree and give its Newick format representa-
tion.

Problem 2.1(3) Draw the rooted tree given by (1, (2, (3, (4, (5, 6))))), and
write down the set of clades of that tree.

Problem 2.1(4) Draw the same rooted tree in at least two different ways,
with at least one of them using the style as in Figure 1(b) in the text.

Problem 2.1(5) For the rooted tree T given by (a, ((b, c), (d, (e, f)))),

• write down at least three other Newick representations.

• write down the the set of clades, and indicate which of the clades is non-
trivial.

Problem 2.1(6) Compute the Hasse Diagram on the posets defined for the
following sets of clades, and then draw the rooted tree for each set.

• {{a, b}, {a, b, c}, {a, b, c, d}, {e, f}, {e, f, g}}

• {{a, b, c}, {a, b, c, d}, {e, f}, {e, f, g}}

Which one of these trees is not binary?

Problem 2.1(7) Draw all rooted binary trees on leaf set {a, b, c, d}. (Note
that trees that can be obtained by swapping siblings are the same.)

Problem 2.1(8) Draw all rooted trees (not necessarily binary) on leaf set
{a, b, c, d}.

Problem 2.1(9) Give a polynomial time problem to determine if two Newick
strings represent the same rooted tree. For example, your algorithm should
return “YES” on the following pair of strings:

• (a, (b, c)) and ((c, b), a)

and should return “NO” on

• (a, (b, c)) and (b, (a, c))
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Problem 2.2(1) Draw the rooted and unrooted versions of the unrooted tree
given by the following Newick string: ((a, b), (c, (d, e)).

Problem 2.2(2): Draw all the rooted versions of the unrooted tree (x, (y, (z, w))),
and give their Newick formats.

Problem 2.2(3) Draw the unrooted version of the trees given below, and
write down the set C(T ) of each tree T below. Are the two trees the same as
unrooted trees?

1. (a, (b, (c, ((d, e), (f, g))))).

2. (((a, b), c), ((d, e), (f, g)))

Problem 2.2(4) Consider the two unrooted trees given below by their bi-
partition encodings. Draw them. Do you see how one tree can be derived from
the other by contracting a single edge? Which one refines the other?

• T1 is given by C(T1) = {(ab|cdef), (abcd|ef)}

• T2 is given by C(T2) = {(ab|cdef)}.

Problem 2.2(5) Draw two unrooted trees, so that neither can be derived
from the other by contracting a set of edges.

Problem 2.2(6) Draw three different unrooted trees, T1, T2, and T3, on no
more than 8 leaves, so that T1 is a contraction of T2, and T2 is a contraction of
T3 (identically, T3 is a refinement of T2, and T2 is a refinement of T1). Write
down the bipartition encodings of each tree.

Problem 2.2(7) Apply the technique for computing unrooted trees from
compatible bipartitions to the input given below, using leaf 3 as the root. After
you are done, do it again but use a different leaf as the root. Compare the
rooted trees you obtained using the different leaves as roots: are they different?
Unroot the trees, and compare the two unrooted trees. Are they the same?

Input: {(123|456789), (12345|6789), (12|3456789), (89|1234567)}.

Problem 2.2(8) Compute the unrooted trees compatible with the following
sets of bipartitions (use the algorithm that operates on clades, using the specified
roots):

• {(ab|cdef), (abc|def), (abcd|ef)}, with root “b”. Then do this again using
root c. Are the unrooted trees you get different or the same?

• {(ab|cdef), (abc|def), (abcd|ef)}, with root “d”.

• {(abcdef |ghij), (abc|defghij), (abcdefg|hij)}, using any root you wish.
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Problem 2.2(9) Give a polynomial time algorithm to determine if the un-
rooted trees defined by two Newick strings are the same. Your algorithm should
return “YES” for the following pairs of strings:

• (a, (b, (c, d))) and ((a, b), (d, c))

• (a, (b, (c, d))) and (c, (d, (b, a)))

Your algorithm should return “NO” for

• (a, (b, (c, d))) and ((b, d), (a, c))

Problem 2.2(10) Implement the algorithm you designed for problem 2.2(9).
Record its running time and compare against the theoretical running time anal-
ysis you provided for problem 2.2(9).

Problem 2.3(1) The following set of unrooted trees was discussed in Section
2.3:

• T1 given by C(T1) = {(12|3456), (123|456), (1234|56)}

• T2 given by C(T2) = {(12|3456), (123|456), (1235|46)}

• T3 given by C(T3) = {(12|3456), (126|345), (1236|45)}

Is it possible to order the bipartitions of this set so as to produce T2 as a
greedy consensus? If so, provide one such ordering. If not, explain why not.

Problem 2.3(2) Suppose you have an arbitrary set T of trees on the same
leaf set, and you compute the strict, majority, and greedy consensus trees.
Suppose that the strict and majority consensus trees are different. Must one of
them refine the other? If so, which one, and why? Same question for the greedy
consensus and the majority consensus. Finally, what about the strict consensus
tree and an arbitrary tree in T ? What about the majority consensus and an
arbitrary tree in T ?

Problem 2.4(1) Give two different compatible unrooted trees on the same
leaf set, and present their minimal common refinement.

Problem 2.4(2) Give two different trees on the same leaf set, neither of
which is fully resolved, and which are not compatible.

Problem 2.5(1) Let unrooted T0 given by (a, (b, (c, ((d, e), (f, g))))) denote
the true tree.

1. For each unrooted tree below, draw the tree, and write down the biparti-
tions that are false positives and false negatives with respect to T0.
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• T1 = (f, (g, (a, (b, (c, (d, e)))))).

• T2 = (g, (f, (c, (d, (e, (a, b))))))).

• T3 = (g, (f, (a, (b, (c, (d, e))))))).

2. Draw the strict, majority, and greedy consensus trees for these three trees
T1, T2, and T3. Compute the false negatives and false positives (with
respect to T0) for these consensus trees.

Problem 2.5(2) Consider an arbitrary unrooted true tree that is binary, and
let T be a set of estimated unrooted trees. Suppose you compute the strict con-
sensus, majority consensus, and greedy consensus of these trees. Now compute
the false negative error rates of these three consensus trees, and compare them
to each other and also to the false negative error rate of the trees in the set T .
What can you deduce? Do the same thing for the false positive error rates.

Problem 2.5(3) Give two unrooted trees, T1 and T2, which are compatible,
and their unrooted compatibility tree T3. Treat T3 as the true tree, and compute
the False Negative and False Positive rates of T1 and T2 with respect to T3. What
do you see?

Problem 2.5(4) Let T0 be the unrooted tree given by splits {123|456, 12|3456, 1234|56},
and let T1 be an estimated tree. Suppose T1 is missing split 123|456, but has a
false positive 124|356. Draw T1.

Problem 2.5(5) Give an algorithm for the following problem:

• Input: unrooted tree T0 and two sets of bipartitions, C1 and C2, where
C1 ⊆ C(T0) and C2 ∩ C(T0) = ∅.

• Output: tree T1 (if it exists) such that T1 has false negative set C1 and
false positive set C2, when T0 is treated as the true tree. (Equivalently,
C(T1) = [C(T0)− C1] ∪ C2.)

Problem 2.5(6) Describe a polynomial time algorithm to compute the com-
patibility tree of two unrooted trees, and implement it.

Problem 2.7(1) For each of the given unrooted trees, draw the subtree
induced on {a, b, c, d}.

• T has Newick format (b, (a, (f, (c, (g, (d, e)))))) (i.e., it is the caterpillar
b, a, f, c, g, d, e).

• T has the Newick format (f, (a, (c, (g, (d, (b, e)))))) (i.e., it is the caterpillar
f, a, c, g, d, b, e).
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Problem 2.7(2)

• Give two unrooted trees on a, b, c, d, e, f, g that induce the same subtree
on a, b, c, d but that are different trees.

• Give two unrooted trees on a, b, c, d, e, f, g that are identical on {a, b, c, d}
and different on {d, e, f, g}.

• Give two rooted trees on a, b, c, d, e that are identical on a, b, c but different
on d, e, f .
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3 Problems from Section 3: Computing trees
from subtrees

Problem 3.1(1) Make up a rooted tree on 6 leaves, and write down all its
rooted triples. Then make up another rooted tree on the same 6 leaves, and
write down all its rooted triples. How many rooted triples do your trees disagree
on?

Problem 3.1(2) Make up two rooted trees on at least 5 leaves that differ in
exactly one rooted triple.

Problem 3.1(3)

• Write down the set X of rooted triples for the caterpillar tree given by
(1, (2, (3, (4, 5)))).

• Apply the two algorithms for constructing trees from rooted triples to the
set X. What do you find? Do they produce the same output?

Problem 3.1(4) Is it possible to have a set of rooted triplets that is com-
patible but where some pair of leaves i, j is not separated in any pair in which
they both appear, but are not siblings in any tree that realizes the set of rooted
triplets? If so, provide the example, and otherwise prove it is impossible.

Problem 3.1(5) Suppose we modify the Aho, Sagiv, Szymanski, and Ullman
algorithm (see Section 3.1 in the text) as follows. We compute the equivalence
relation, and if there is more than two equivalence classes, C1, C2, . . . , Ck (with
k > 2) we make two subproblems, C1 and C2 ∪ C3 ∪ . . . ,∪Ck. Otherwise, we
don’t change the algorithm. Does this also solve rooted triplet compatibility?
(Prove or disprove.)

Problem 3.2(1) Make up an unrooted tree on at least 5 leaves, and write
down all its unrooted quartet trees.

Problem 3.2(2) Make up two different unrooted trees on the same leaf set,
but try to make them disagree on as few unrooted quartet trees as possible.
How many do they disagree on?

Problem 3.2(3) Construct a tree on leaf set {a, b, c, d, e, f} that induces each
of the following quartet trees:

• (ab|cd),

• (ab|ce),

• (ac|de),
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• (bc|de),

• (ab|de),

• (ab|cf),

• (ab|df),

• (ab|ef),

• (ac|df),

• (ac|ef),

• (ad|ef)
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4 Problems from Section 4: Constructing trees
from qualitative characters

Problem 4.2(1) Suppose we are given the following input of binary char-
acters, in which 0 denotes the ancestral state and 1 denotes the derived state.
Construct the rooted tree that is consistent with these characters evolving with-
out homoplasy.

• a = (1, 1, 0, 0, 1, 0)

• b = (1, 0, 1, 0, 1, 0)

• c = (0, 0, 0, 1, 0, 0)

• d = (0, 0, 0, 0, 1, 1)

Problem 4.3(1) Construct an unrooted tree that is consistent with the
following input of binary characters, under the assumption that all characters
evolve without homoplasy. (You may not assume that any particular state is
ancestral on any character.)

• a = (0, 0, 1, 1)

• b = (1, 0, 0, 1)

• c = (1, 1, 0, 1)

• d = (1, 0, 1, 0)

Problem 4.3(2) Take the data matrix from Problem 4.2(1) and add in the
root sequence, r, given by r = (0, 0, 0, 0, 0, 0). Thus, you now have a matrix
with five taxa, a, b, c, d, r, defined by six characters. Divide this matrix into two
pieces: the first three characters, and the last three characters. Construct the
minimally resolved unrooted tree that is compatible with each submatrix. How
are these trees different? Are they fully resolved, or do they have polytomies?
Compare them to the tree you obtained on the full matrix. Now, treat the tree
on the full matrix as the “true tree”, and compute the False Negative and False
Positive rates for these two trees. What do you find? Finally, are these two
trees compatible?

Problem 4.4(1) For the tree T given by ((a,(b,(c,(d,(e,f)))))), determine for
each of the following characters (columns in the following tuple representation)
whether it could have evolved on the tree T without any homoplasy:

• a = (0, 0, 0, 0, 1)

• b = (0, 1, 1, 0, 0)

• c = (1, 0, 0, 1, 1)
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• d = (1, 2, 0, 1, 0)

• e = (2, 0, 2, 0, 1)

• f = (2, 3, 2, 0, 1)

Problem 4.4(2) For the following input, show how to set the entries given
with “?” so as to produce a compatible matrix:

• A = (0, 1, 0, ?)

• B = (0, 1, 1, 0)

• C = (0, 0, 1, 0)

• D = (1, 0, 1, 1)

• E = (1, 0, ?, 1)

Explain how you derived your solution.

Problem 4.4(3) In the text, we said that there was no way to set the values
for the missing entries in the following matrix, in order to produce a tree on
which all the characters are compatible:

• A = (0, 0, ?)

• B = (0, 1, 0)

• C = (1, 0, 0)

• D = (1, ?, 1)

• E = (?, 1, 1)

Prove this assertion.

Problem 4.4(4) Suppose T and T ′ are two trees on the same leaf set, and
T ′ refines T .

• Prove or disprove: if character c is compatible on T then it is compatible
on T ′.

• Prove or disprove: if character c is compatible on T ′ then it is compatible
on T .
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Problem 4.4(5) The maximum parsimony problem asks us to find a tree that
has the best maximum parsimony score with respect to a matrix M . Suppose
we consider the following problem, “binary tree maximum parsimony”: Given
a matrix M , find a binary tree that optimizes maximum parsimony.

1. Is it possible for a solution to the “binary tree maximum parsimony”
problem to not be optimal for the standard maximum parsimony problem?

2. Consider the same question but restated in terms of maximum compatibil-
ity and “binary tree maximum compatibility”. Does your answer change?

Problem 4.6(1) Consider the set of six taxa described by two multi-state
characters, A = (0, 0), B = (1, 2), C = (0, 2), D = (2, 1), E = (1, 1), and F =
(1, 0), and the tree on the taxa given by: (((A, B), C), (D, (E,F ))).

• Apply the parsimony algorithm to assign states to each node for each of
the two characters. What is the parsimony score of this tree?

• For which nodes of the tree is the character state of either character de-
termined, and for which nodes is it optional?

• Give two different character state assignments to the nodes to produce the
minimum number of changes.

Problem 4.6(2) Find an optimal MP tree T for the input given in Problem
4.6(1). Are either of the characters compatible on T? If not, find an optimal
MP tree for this input for which at least one character is compatible.

Problem 4.6(3) Suppose T and T ′ are two trees on the same leaf set, and
T ′ refines T . Prove that the parsimony score of T ′ is at most that of T .

Problem 4.7(1) Consider the following multi-state characters.

• L1 = (0, 0, 0)

• L2 = (0, 1, 1)

• L3 = (1, 1, 2)

• L4 = (1, 2, 0)

1. Does a perfect phylogeny (tree on which all characters evolve without
homoplasy) exist for this dataset? If so, prove this by presenting the
perfect phylogeny. Otherwise, prove that it does not.

2. Write down the binary encoded version of this input. Does a perfect
phylogeny exist for the binary encoded version of the matrix? If so, prove
this by presenting the perfect phylogeny. Otherwise, prove that it does
not.
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Problem 4.8(1) Suppose M is an input matrix for maximum parsimony, so
M assigns states for each character to all the taxa in a set S. Suppose M ′ is
the result of removing all characters from M that are identical on all taxa (i.e.,
characters c such that c(s) = c(s′) for all s, s′ in S). Prove or disprove: M and
M ′ have the same set of optimal trees under maximum parsimony.

Problem 4.8(2) Suppose M is an input matrix for maximum parsimony and
M ′ the result of removing all characters from M that have different states on
every taxon (i.e., i.e., characters c such that c(s) 6= c(s′) for all s 6= s′ in S).
Prove or disprove: M and M ′ have the same set of optimal trees under maximum
parsimony.

Problem 4.8(3) Do problems 4.8(1) and 4.8(2) but with respect to maximum
compatibility.

Problem 4.8(4) Let M be an input matrix to maximum parsimony, and let
M ′ be the result of removing all parsimony uninformative characters from M .
Thus, M ′ has a subset of the columns of M . By Lemma 3, the trees that are
returned by an exact MP solution on M ′ will be the same as the maximum
parsimony trees returned for M . However, suppose you use the characters to
define “branch lengths” in some output tree (as there can be many), as follows.
You use maximum parsimony to calculate ancestral sequences, and then you
use Hamming distances to define the branch lengths on the tree.

1. Is it the case that branch lengths you estimate on a given tree T must be
the same for M as for M ′? (In other words, can branch length estimations
change?)

2. If you use normalized Hamming distances instead of Hamming distances,
does your answer change?

Problem 4.8(5) Consider the following input matrix to maximum parsimony:

• a = (0, 1, 0, 0, 0)

• b = (0, 0, 1, 1, 1)

• c = (0, 0, 2, 3, 2)

• d = (0, 2, 0, 1, 1)

• e = (1, 2, 0, 1, 1)

• f = (0, 0, 3, 2, 1)

Write down all the optimal solutions to maximum parsimony on this input,
and explain how you obtain your answer. Do not solve this by looking at all
possible trees on {a, b, c, d, e, f}. (Hint: Read Section 4.8 in the text.)
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Problem 4.8(6) Is it the case that maximum compatibility and maximum
parsimony always return the same set of optimal trees? If so prove it, and
otherwise find a counterexample.
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5 Problems from Section 5: Distance-based meth-
ods

Problem 5.2(1): Draw an edge weighted tree T with all branches having pos-
itive weight, and derive its additive matrix. Check that the four point condition
applies for at least two different quartets of leaves.

Problem 5.2(2) For the additive matrix you produced in Problem 5.1, com-
pute the tree for every quartet of taxa, by applying the four-point method. Then
apply the Naive Quartet method to the set of quartets. Verify that you produce
the same tree.

Problem 5.2(3) Consider the matrix in Figure 19 from the text. Apply
UPGMA to the matrix. What is the unrooted tree that you obtain? Does it
equal the tree given in Figure 20?

Problem 5.2(4) Take the matrix you had produced in Problem 5.2(1), and
change one entry. Determine if the new matrix is additive. If not, prove it is
not by producing the four leaves for which the four-point condition fails. If yes,
prove that is by producing the edge weighted tree that realizes the new matrix.

Problem 5.2(5) Compute the Hamming distance matrix for the set of four
taxa, L = {L1, L2, . . . , L4}, given below (each described by four binary char-
acters). Is the distance matrix additive? If you apply the UPGMA method to
this distance matrix, what do you get? If you apply the Four-Point Method to
the matrix, what do you get? What is the solution to maximum parsimony on
this input of four taxa? What is the solution to maximum compatibility? Are
these characters compatible?

• L1 = (0, 1, 0, 1, 0)

• L2 = (0, 0, 0, 0, 0)

• L3 = (1, 0, 0, 0, 0)

• L4 = (1, 0, 1, 0, 1)

Problem 5.2(6) Prove the following: If C is a set of binary characters that
evolve without homoplasy on a tree T , then the Hamming distance matrix
H(i, j) is additive. Furthermore, the Naive Quartet Method applied to H would
yield the tree T ′, defined to be T with all zero-event edges contracted.

Problem 5.2(7) Prove or disprove: If C is a set of characters (not necessarily
binary) that evolve without any homoplasy on a tree T , then the Hamming
distance matrix is additive.
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Problem 5.2(8) Consider the Naive Quartet Method applied to pairwise
Hamming distances; call this the NQM(Hamming) method. For binary charac-
ters, what characters are uninformative for the NQM(Hamming) method?
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6 Problems from Section 6: Statistical phylogeny
estimation methods

Problem 6.1(1) Suppose you have the CF tree T with topology ((A, B), (C, D))
with every edge having p(e) = 0.1, and rooted at A. Compute the probability
of A = B = C = D = 0.

Problem 6.1(2) Consider a Cavender-Farris model tree T given by ((A, B), (C, D)).
Treat this as a rooted tree, with A being the root, and thus having five edges.
Suppose the internal edge is labelled eI , and we set p(eI) = .4, and p(e) = 0.001
for all the other edges.

1. Compute the probability of the following events:

• A = B = 0 and C = D = 1

• A = C = 0 and B = D = 1

• A = D = 0 and B = C = 1

2. Would maximum parsimony be statistically consistent on this model tree?
Why?

Problem 6.1(3) In this problem we will define a set of different CF model
trees on the same tree topology, ((A, B), (C, D)) but with different edge param-
eters. We let eI be the internal edge separating A, B from C, D, and let ex be
the edge incident with leaf x (for x=A,B,C,D). The trees are then defined by the
edge parameters p(e) for each of these edges, with these p(e) given as follows:

• For T1, we have p(eA) = p(eC) = .499, and p(e) = 0.0001 for the other
edges e.

• For T2, we have p(e) = .499 for all edges e.

• For T3, we have p(e) = .0001 for all edges e.

• For T4, we have p(eI) = .499 and p(e) = .01 for the other edges e.

Think about what kinds of character patterns you would see at the leaves of the
trees, and answer the following questions;

1. Of the three parsimony-informative character patterns, identify which
one(s) would appear most frequently for tree T1

2. Of the three parsimony-informative character patterns, identify which
one(s) would appear most frequently for tree T4

3. Now suppose one of these CF trees generated a dataset of four sequences,
and you had to guess which one generated the data. Suppose the dataset
consisted of four sequences A, B,C, D of length 100 that were all identical,
which would you choose?
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4. Same question as above, but suppose the dataset consisted of four se-
quences A, B,C, D of length 10, where

• A = 0100100111

• B = 0000000000

• C = 0010101001

• D = 0000000000

Problem 6.1(4) Suppose you have performed the binary-encoding of a mul-
tistate character c defined on six taxa, A, B,C, D, E, F , with c(A) = c(B) =
1, c(C) = c(D) = 2, and c(E) = c(F ) = 3. The three binary characters you
obtain are ci, for i = 1, 2, 3. Thus, ci(x) = 1 if c(x) = i, and otherwise ci(x) = 0.
Assume that there is no polymorphism in the multistate character c, so that
each of the taxa can have only one state of c.

1. Write down the binary encoding of each character.

2. Analyze the dataset under maximum parsimony; what trees do you find?

Problem 6.1(5) Let c be a character with three states, 1, 2 and 3; consider
the binary encoding of c, and let A be one of the taxa on which c is defined.

1. Suppose you know that c1(A) = 1. What can you say about c2(A)?

2. Suppose you know that c1(A) = 0. What can you say about c2(A)?

3. Suppose you know that c1(A) = c2(A) = 0. What can you say about
c3(A)?

4. Is it possible for c1(A) = c2(A) = c3(A)? Why or why not?

5. Under the assumption that the character c is not polymorphic, can the
characters c1, c2 and c3 be statistically independent?
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7 Problems from Section 7: Other phylogeny
estimation issues

Problem 7.1(1) Suppose the rooted tree T is given, as (A, (B, (C, (D,E)))).
Suppose the character dataset is

• A = (0, 0, 0, 0)

• B = (0, 1, 0, 1)

• C = (1, 1, 2, 1)

• D = (1, 2, 3, 0)

• E = (1, 2, 4, 0)

First, determine which characters are compatible on the tree. For these char-
acter(s), determine which nodes of the tree have uniquely determined states for
the character. Finally, for the character(s) that are not compatible on the tree,
which nodes have uniquely determined states for these characters? To answer
this, apply the maximum parsimony algorithm, and determine the character
state assignments which optimize the parsimony score.

Problem 7.2(1) Suppose the tree is given by (A, (B, (C, (D,E)))), and that
we have three homoplasy-free characters on these taxa given by:

• A = (0, 0, 1)

• B = (0, 1, 1)

• C = (0, 0, 0)

• D = (1, 0, 0)

• E = (1, 0, 0)

Assume that 0 is the ancestral state and 1 the derived state for each of these
characters. Determine the edges in the tree that could contain the root.
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8 Problems from Section 8: Multiple sequence
alignment
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9 Problems from Section 9: Constructing species
trees from multiple genes
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10 Problems from Section 10: Detecting and
representing reticulation

Problem 10.2(1): Write down a rooted phylogenetic network with two con-
tact edges, and all the trees that are contained within the network.

Problem 10.2(2): Consider the following taxa defined by qualitative char-
acters. A perfect phylogenetic network with exactly one contact edge exists
for these taxa – find it. Produce the trees contained inside the network, and
demonstrate that for every character in this set, there is at least one tree in the
network on which it is compatible.

• A = (0, 1, 0)

• B = (0, 0, 1)

• C = (1, 0, 1)

• D = (1, 1, 2)

Problem 10.2(3): Consider the following set of rooted trees:

• ((A, B), (C, D))

• ((A, D), (B, C))

• ((A, C), (B, D))

• (A, (B, (C, D))).

For each tree, see if you can add a single contact edge so as to make a perfect
phylogenetic network for the input given in Problem 8.2(2).
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11 Problems from Section 11: Genome Rear-
rangement Phylogeny
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12 Problems from Section 12: Historical Lin-
guistics
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