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Abstract. The reconstruction of evolutionary trees is a major problem in biol-
ogy, and many evolutionary trees are estimated using heuristics for the NP-hard
optimization problem Maximum Parsimony. The current heuristics for searching
through tree space use a particular technique, called “tree-bisection and reconnec-
tion”, or TBR, to transform one tree into another tree; other less-frequently used
transformations, such as SPR and NNI, are special cases of TBR. In this paper, we
describe a new tree-rearrangement operation which we call the p-ECR move, for
p-Edge-Contract-and-Refine. Our results include an efficient algorithm for com-
puting the best 2-ECR neighbors of a given tree, based upon a simple data struc-
ture which also allows us to efficiently calculate the best neighbors under NNI,
SPR, and TBR operations (as well as efficiently running the greedy sequence ad-
dition technique for maximum parsimony). More significantly, we show that the
2-ECR neighborhood of a given tree is incomparable to the neighborhood defined
by TBR, and properly contains all trees within two NNI moves. Hence, the use
of the 2-ECR move, in conjunction with TBR and/or NNI moves, may be a more
effective technique for exploring tree space than TBR alone.

1 Introduction
The Maximum Parsimony Problem, also called the Hamming Distance Steiner
Tree Problem, is one of the main optimization problems in phylogenetic analy-
sis. Because it is NP-hard [FG82], heuristics are used to analyze datasets. Most
of the favored heuristics operate by hill-climbing through tree space where each
move changes a tree using some specific transformation, and then scores the
new tree, and the search terminates when no allowed move improves the score.
Transformations that are used in standard hill-climbing procedures are NNI,
SPR, and TBR, with NNI being a special case of SPR, and SPR being a special
case of TBR; thus, TBR searches are the most exhaustive, and also the most pre-
ferred [SOWH96]. Even TBR searches, however, can get caught in local optima
(that is, trees that have no neighbors under TBR moves which are better and yet
are not globally optimal)

The main result in this paper is a mathematical analysis of a new transforma-
tion, which we call p-edge-contract-and-refine, or p-ECR. This transformation
is similar to other techniques described in other papers [BSWY98, Gol99], and
�
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has a similar motivation; what is new here is the mathematical analysis. We pro-
vide a fast algorithm for computing the optimal 2-ECR neighbors of a given
tree, and show that the number of 2-ECR neighbors that are also TBR neighbors
is small, namely O � n � , where n is the number of leaves. In contrast, we show
that the size of the 2-ECR neighborhood is itself Θ � n2 � , and it has been shown
that the TBR neighborhood could be Θ � n3 � . Our other main result is a simple
algorithm, called Three-Way-Labels, which can be used to speed-up exhaustive
search for optimal neighbors under these and other transformations on trees. See
Section 7 for pointers to related work on these problems.

The rest of the paper is organized as follows. In Section 2 we describe the
Maximum Parsimony problem, and describe an algorithm to compute the par-
simony score of a given tree. In Section 3, we define the NNI, SPR and TBR
moves and present some known properties about the neighborhoods induced
by these moves. In Section 4, we describe the p-ECR move, and compare the
neighborhoods defined by the 2-ECR, TBR, and NNI operations. In Section 5,
we formally define the problem of finding the best neighbor under the p-ECR
move and describe a general algorithmic technique that we use to obtain a fast
algorithm for the optimal neighbor problem under the 2-ECR move. In Section
6 we describe how our general technique can be used to obtain fast algorithms
for the optimal neighbor problem under NNI, SPR and TBR moves, and also for
computing the Greedy Sequence Addition algorithm for maximum parsimony.
We conclude with Section 7 where discuss related work.

2 Basics

2.1 The Maximum Parsimony Problem

The input to the Maximum Parsimony problem is a collection S of n strings of
the same length k over a given alphabet, Σ; these are the “given” nodes. The
Steiner nodes (i.e., the nodes which can be used to connect the given nodes to-
gether) are drawn from Σk, i.e., all strings of length k over Σ. The objective is
a tree T , with the given nodes at the leaves, and internal nodes from Σk, which
minimizes the sum of the Hamming distances on the edges, where the Ham-
ming distance on an edge e ��� x � y � , denoted H � x � y � , is the number of positions
in which x and y differ. Informally, this quantity is the minimum number of
changes (via point mutations) needed to explain the evolution of the dataset
from a common ancestor. We formalize this as follows.

Definition 1. Parsimony score of a tree
Let S be a set of sequences of length k over the alphabet Σ. Let T be a bi-

nary tree with leaf set S, and let f be an assignment of sequences to the internal
nodes of T . The score of T under the assignment f , denoted score � T � f � equals



∑ � u � v ��� E � T � H � f � u � � f � v � � . The parsimony score of T , denoted by pscore � T � , is
the minimum score � T � f � over all possible assignments f .

We now define the Maximum Parsimony (MP) problem.

Definition 2. The Maximum Parsimony Problem

Input: Set S of sequences of length k over an alphabet Σ.
Output: A binary tree T whose leaves are bijectively labeled with sequences

in S, such that the parsimony score of T , pscore � T � , is minimum.

2.2 Computing the Maximum Parsimony Score of a Fixed Tree

Although finding the most parsimonious tree is NP-hard, we can find the optimal
labeling of the internal nodes of a given tree in polynomial time. The standard al-
gorithm for this problem, by Fitch [Fit71], is the basis of our Three-Way-Labels
algorithm, and so is included here.

The input to the fixed-tree maximum parsimony problem is a set S of n
strings over a fixed alphabet Σ; for the typical cases, Σ is either the set of four
nucleotides, or the set of amino-acid sequences, and thus is quite small. The
elements of Σ are called the “states”. We make the typical assumption that the
sequences are already aligned, so that all sequences have the same length k. The
positions within the sequences are sometimes called “sites.”

The algorithm operates as follows. First, the tree is rooted (arbitrarily), ei-
ther at a leaf, or by subdividing an edge e and rooting the tree at the newly
introduced node. The cost of the tree (also called its “length”) is then computed
using dynamic programming. The algorithm is usually described as having two
phases, where the first phase computes the length of the tree as well as a repre-
sentation of candidate labels (strings over Σk that would produce optimal scores)
for the root of each subtree of the tree; the second phase then actually produces
a specific labeling for each node achieving the optimal score. We are primarily
interested in the first phase, which we modify for use in our Three-Way Labels
algorithm. However, the whole algorithm is of general interest, and so we pro-
vide it here.

Note that each position within the strings can be handled separately, so it
suffices to describe the fixed-tree maximum parsimony algorithm as though
there were only one position to consider. Since we have rooted T (arbitrarily),
for every internal node v in T , we can define the rooted subtree Tv, and also the
children of v. We let Statesv denote the set of state assignments for the node
v (i.e., elements from Σ) which are part of an optimal assignment of states to
all nodes in Tv so as to minimize the total parsimony score in Tv. We assume
that T is binary, and that v’s children are x and y (the algorithm can be applied



more generally, however), and we similarly define Statesx and Statesy. Then,
the following equality holds (see [Fit71]):

v is a leaf : Statesv ��� state of v �
v has two children x � y : Statesv �

�
Statesx � Statesy if Statesx � Statesy �� /0
Statesx � Statesy otherwise

This allows us to compute Statesv for every node v in T , from the bottom
up. The optimal cost, i.e. the parsimony score, of T can also be calculated from
the bottom-up at the same time: every time Statesx � Statesy � /0 we increment
the parsimony score of the tree by one. (Since we perform this computation for
each site – i.e., position – independently, the sum of these values over all the
sites is the parsimony score of the tree.)

In the second phase, we obtain the labeling on the internal nodes using a pre-
order traversal. Once again, we can handle the positions (sites) independently.
For the root r arbitrarily assign the state for r to be any element of Statesr . Then
visit the remaining nodes in turn, every time assigning a state to the node v from
its set Statesv. When we visit a node v we will have already set the state of its
parent, u. If the selected state for u is an element of Statesv , then we use the
same state; otherwise we pick a state arbitrarily from Statesv.

This algorithm takes O � nrk � time to compute the labeling of every node in
T and the optimal length (i.e., maximum parsimony cost) of T , where r ���Σ � ,
n �	� S � , and k is the sequence length.
3 Hill-Climbing Heuristics for MP Analysis
The general structure of a heuristic search is as follows:

– First, an initial tree (or set of trees) is obtained, typically using the Greedy
Sequence Addition method (see Section 6.2).

– Then, for each tree in the initial set, a search is initiated in which the given
tree is modified (using a transformation that modifies trees), and the new
tree is then scored. This process is repeated until a local optimum is found
– that is, a tree which has no neighbor that has a better score.

– Finally, of all the local optima found, the set of trees that have the best MP
score, or a “consensus” of these trees is returned; sometimes, sub-optimal
trees are also returned.

Note that since MP is NP-hard, a local optimum need not be globally op-
timal, and in general this scheme will not return optimal trees in polynomial
time.

We now describe three currently used tree-rearrangement operations and
present some properties of the neighborhood induced around a tree by each of
the three operations. Our definitions closely follow those in [AS01].



Nearest Neighbor Interchange (NNI) The NNI move swaps one rooted subtree
on one side of an internal edge e with another on the other side; note that this is
equivalent to contracting the edge e, and then resolving the resultant tree into a
new binary tree. See Figure 1 for an example of this procedure.
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Fig. 1. Tree T can be transformed into either T � or T � � with one NNI move

Subtree Prune and Regraft (SPR) An SPR move on a tree T is defined as cutting
any edge and thereby pruning a subtree, t, and then regrafting the subtree by the
same cut edge to a new vertex obtained by subdividing a pre-existing edge in
T � t. Any internal node that might arise that has degree two is suppressed in
the resulting tree.
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Fig. 2. Tree T � is one SPR move away from T , while T � � is one TBR move away.

Tree Bisection and Reconnection (TBR) In a TBR move an edge is removed
from T , creating subtrees t and T � t, and then a new edge is added between the
midpoints of any two edges in t and T � t, creating a new tree. Again, through-
out the operation any internal node of degree two is suppressed. The last two
operations are illustrated in Figure 2.

Each of the tree rearrangement operations described above naturally induces
a distance metric in the space of trees. For instance, the NNI distance between
two trees is defined as the minimum number of NNI moves required to transform
one tree to another. The metrics induced by NNI, SPR and TBR moves have
been discussed in [AS01]. We will denote the NNI metric by δNNI , the SPR
metric by δSPR, and the TBR metric by δTBR. Note that every NNI move is
an SPR move, and that every SPR move is a TBR move. Hence we have the
following result:



Observation 1 (From [Mad91]) For any two unrooted leaf-labeled binary trees
T and T

�
on the same set of leaves,

δT BR � T � T
� � � δSPR � T � T

� � � δNNI � T � T
� ���

It is known that all of these distances are finite (Robinson showed this for the
NNI distance in [Rob71]).

Note that TBR searches explore a superset of trees, compared to both SPR
and NNI, which is desirable. However, TBR searches are also more expensive,
since there are more trees that are TBR neighbors of a given tree.

Induced neighborhoods We define the neighborhood of an unrooted binary leaf-
labeled tree T under a tree-rearrangement move to be the set of all trees that can
be obtained from T by one move. The following theorem, about the neighbor-
hoods induced by NNI, SPR and TBR moves, is from [AS01].

Theorem 1. [AS01] The size of the neighborhood for T is:

1. 2n � 6 for the NNI operation,
2. 2 � n � 3 � � 2n � 7 � for the SPR operation,
3. at most � 2n � 3 � � n � 3 � 2 , and dependent on the topology of T for the TBR

operation.

See [HJWZ96, AS01, DHJ � 97] for results related to computing the distance
between trees under these metrics, and [LTZ96, AS01] for results related to the
maximum pairwise distance between trees under these metrics.

4 The p-ECR Operation

In this section we describe the p-edge-contract-and-refine (p-ECR) move, and
we compare neighborhoods defined by the 2-ECR, TBR, and NNI operations.
Our main results are Lemma 3 and Theorem 2, which show that for any tree
T , (1) the size of the 2-ECR neighborhood is Θ � n2 � , but that (2) there are at
most O � n � trees that are in both the 2-ECR neighborhood and the TBR neigh-
borhood of T . We also show that the 2-ECR neighborhood strictly contains all
trees within two NNI moves from T .

The p-ECR move is a generalization of the NNI move in the following
sense: Since an NNI move can also be viewed as an edge contraction followed
by a refinement at the newly created unresolved node, we can generalize NNI
by contracting p edges all at once, creating unresolved nodes in the process,
and then refining these unresolved nodes give back a binary tree. Note that this
process is not, in general, equivalent to contracting and refining each of the p
edges in succession. Indeed, in Figure 3 we give an example of two trees T and
T
�
such that δp � ECR � T � T

� � � 1, but δNNI � T � T
� ��� p.



Since NNI is the same as 1-ECR, it follows from [Rob71] that δp � ECR � T � T
� �

is finite for all pairs of binary trees on the same leaf set (i.e, we can go from any
tree to any other tree through a sequence of p-ECR moves).
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Fig. 3. A 2-ECR move. The dashed edges in T1 are contracted to give T2, and then T2 is fully
refined to give T3. Note that δNNI � T1 � T 3 ��� 3, although δ2 � ECR � T1 � T3 ��� 1.

4.1 Comparing p-ECR with TBR

In this section we show that the number of 2-ECR neighbors of a tree on n leaves
is Ω � n2 � , and that the number of 2-ECR neighbors that are also TBR neighbors
is only O � n � .

We now define some concepts that will be necessary for our analyses. Every
edge in a binary leaf-labeled tree T induces a bipartition of the set of leaves. Let
the bipartition induced by an edge e be πe. Then the set C � T � ��� πe � e � E � T � �
uniquely defines the tree T (see [Bun71, War94]). In the subsequent discussion
all trees will be assumed to be binary, leaf-labelled trees.

Definition 3. Robinson-Foulds distance [RF81].
The Robinson-Foulds (RF) distance between two binary leaf-labeled trees

T and T
�
is defined to be � � C � T � ∆C � T � � � , i.e, �C � T � � C � T � � � + �C � T � � � C � T � � .

Neither contraction nor refinement of a set of edges alters bipartitions in-
duced by other edges in a tree, and hence we have the following:

Observation 2 Let T and T
�

be two binary leaf-labeled trees. Then, for any
1
�

p
�

n � 3, δp � ECR � T � T
� � � 1 ��� RF � T � T � � � 2p.

We now define the Maximum Agreement Forest [HJWZ96] between two
binary leaf-labeled trees.

Let F � � t1 � t2 � � � � � tm � be a forest of m trees that results from deleting m � 1
edges from a tree T . Let F

�
be a forest of m trees obtained similarly from T

�
. F

(or F
�
) is said to be an agreement forest for T and T

�
iff F � F

�
. A maximum

agreement forest (MAF) for T and T
�

is an agreement forest with the minimum
number of trees.



Lemma 1. (From [AS01]) Let T and T
�
be two binary leaf-labeled trees. Let F

be a maximum agreement forest for T and T
�
. Then δTBR � T � T

� � �	�F � � 1.

We now show that for every and n and every 1 � p � n � 3 there are trees
whose p-ECR distance is less than their TBR distance, and vice versa.

Lemma 2. The following is true for every natural number n and every natural
number p � n � 3:

1. � T � T � s � t δTBR � T � T
� ��� δp � ECR � T � T

� � .
2. � T � T � s � t δp � ECR � T � T

� � � 1 and δTBR � T � T
� ��� Ω � p � .

Due to space requirements, we omit the proof; however, see Figure 4 for a pair
of trees satisfying the first condition, and Figure 5 for a pair of trees satisfying
the second condition.
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We now prove some results about the neighborhood induced around a tree
by the 2-ECR operation, and in particular we show that the neighborhood of
a tree induced by the 2-ECR operation is very different from the one induced
by the TBR operation. We will denote the 2-ECR neighborhood of a tree T as
N2 � ECR � T � , and the TBR neighborhood as NTBR � T � .
Lemma 3. For any binary leaf-labeled tree T , �N2 � ECR � T � � � Θ � n2 � .
Proof. Omitted due to space constraints.

We now prove that most of the trees in N2 � ECR � T � are not in NTBR � T � .



Theorem 2. For a binary leaf-labeled tree T , �N2 � ECR � T � � NTBR � T � � � O � n � .
Proof. Let X � T � � N2 � ECR � T � � NNNI � T � . Note then that each tree T

� � X � T �
can be obtained by contracting two edges e1 and e2 in T , and then refining the
resultant tree. Consider the set S of all trees T

�
in X � T � such that the correspond-

ing contracted edges e1 and e2 are separated in T by at least two edges. Note
that there are only Θ � n � pairs of edges in T that are either adjacent, or separated
by exactly one edge. Consequently, it follows that �N2 � ECR � S � � O � n � .

We now show that S � NTBR � T � � /0. Suppose to the contrary that there
is a tree T

� � S � NTBR � T � . Note that RF � T � T � � � 4, since C � T � � C � T � � �
� πe1 � πe2 � , where C � T � is the set of bipartitions in T , and e1 and e2 are those two
edges through whose contraction (and subsequent refinement) T

�
was obtained

from T .
However, T and T

�
are one TBR move apart. Hence, it can be shown that

if � πe1 � πe2 ��� C � T � � C � T � � , then the bipartitions induced by all edges (except,
possibly, the edge that was broken in the TBR move) in the path in T between
e1 and e2 are in C � T � � C � T � � . Now, since e1 and e2 are separated by at least two
edges, the set C � T � � C � T � � must contain at least one more bipartition, which is
a contradiction. This completes our proof.

5 Computing Optimal 2-ECR Neighbors

In this section we consider the problem of finding an optimal neighbor under the
p-ECR tree-rearrangement operation, and present a fast algorithm for solving
the problem. The technique that we use to obtain the fast algorithm is general
and can be used to obtain fast algorithms for the optimal neighbor problem
under the NNI, SPR and TBR moves as well. We now define the Optimal 2-
ECR Neighbor problem.

Definition 4. Optimal 2-ECR Neighbors

Input An unrooted binary tree T on n leaves, each bijectively leaf-labeled by
a set S of sequences of length k over an alphabet of size r.

Output: An unrooted binary tree T
�

on n leaves, each bijectively labelled by
the same set S, such that T

�
has the minimum MP score among all such trees

t for which δ2 � ECR � T � t � � 1.

Henceforth, we will call such a tree an optimal 2-ECR-neighbor of T . The Op-
timal TBR-neighbor, Optimal SPR-neighbor and Optimal NNI-neighbor prob-
lems are defined similarly. Note also that there can be more than one optimal
neighbor, and that in general the objective is to find all optimal solutions.

At the outset we observe that a brute-force algorithm for the above problem
would take Θ � n3rk � time, since there are Θ � n2 � 2-ECR neighbors for any tree,



and computing the parsimony score of each tree using Fitch’s algorithm would
take Θ � nrk � time. We will obtain a Θ � n2rk � time algorithm for the Optimal 2-
ECR problem which will return all the optimal neighbors.

As was observed in Section 4, an NNI move can be thought of as a 1-ECR
move. So, not surprisingly, we use a fast algorithm for computing optimal NNI-
neighbors in our algorithm for computing optimal 2-ECR-neighbors. A brute-
force optimal NNI neighbors algorithm would run in Θ � n2rk � time, but our al-
gorithm runs in Θ � nrk � time.
5.1 An O � nrk � Algorithm for the Optimal NNI Neighbor Problem
The way we obtain a speed-up over the brute-force techniques for each of the
problems we address is by performing a preprocessing step in which we assign
three labels to each node in the tree.

In order to understand why we do this preprocessing step, consider an NNI
move across an edge, say � u � v � , in a given tree T . Let W and X be the rooted
subtrees below u, and let Y and Z be the rooted subtrees below v. The NNI move
will, e.g, involve swapping W with Y . Let the resulting tree be T

�
. Supposing

that we have the parsimony scores and optimal state assignments for the rooted
subtrees W , X , Y and Z, the parsimony score of T

�
can be computed in Θ � rk �

time, thus: we can subdivide edge � u � v � and root T
�
at the newly created node,

which we shall call x. This produces a binary tree rooted at x, with subtrees off x
rooted at u and v. The parsimony score of the subtree of T

�
rooted at u depends

just on the parsimony scores and optimal state assignments of X and Y , and can
be computed from them in Θ � rk � time, as in Fitch’s algorithm. Similarly, the
parsimony score of the subtree of T

�
rooted at v can be computed in Θ � rk � time.

Finally, the parsimony score of T
�
(rooted at x) can be computed in O � rk � time

from the parsimony scores and optimal state assignments of the subtrees rooted
at u and v.

The above observations suggest that a preprocessing stage that computes the
parsimony score and the optimal state assignments for every rooted subtree will
let us compute the parsimony score of each NNI neighbor in Θ � rk � time. The
brute-force way of performing this preprocessing step would take Θ � n2rk � time,
but we will next see how to perform this preprocessing stage in Θ � nrk � time. We
will call the preprocessing step the Three-Way Labels algorithm since it would
assign three optimal state-assignment labels to each internal node.
5.2 Three-Way Labels: the Dynamic Programming Algorithm

In a tree T , consider an internal node v with three neighbors a, b and c, as in
Figure 6. The node v is the root of three rooted subtrees, one where a and b
are its children (tree � v� a � b � in the figure), one where a and c are its children
(tree � v� a � c � ) and one where b and c are its children (tree � v� b � c � ). The prepro-
cessing step would involve assigning three labels (optimal state assignments)



for each such internal node v - namely the optimal state assignments at the roots
of tree � v� a � b � , tree � v� b � c � and tree � v� a � c � .

The parsimony score and the optimal state assignment of, for example,
tree � v� a � b � can be computed from the parsimony score and optimal state as-
signments of the subtrees rooted at a and b. Note that the subtrees of tree � v� a � b �
rooted at a and b have fewer leaves than tree � v� a � b � . This suggests the following
dynamic programming algorithm:

Bucket sort the rooted subtrees in T by the number of leaves in the subtree
in O � n � time. For subtrees that contain just a single leaf, the label is just the
sequence at the leaf. For subtrees such as tree � v� a � b � , the label is computed by in
the usual way: for a given site, if the corresponding sets at a and b are disjoint we
take the union of the sets, and otherwise we take the intersection. Note the when
we compute the label at v corresponding to tree � v� a � b � , the necessary labels
at a and b are already available since the subtrees rooted a and b are smaller.
There are O � n � rooted trees like tree � v� a � b � , and for each of them the optimal
state assignment at the root can be computed in Θ � rk � time using the dynamic
programming technique. Also, the parsimony score of the rooted subtrees can
be computed along side their optimal state assignments.

Therefore, we have the following:

Lemma 4. The Three-Way Labels algorithm takes O � nrk � time, where n is the
number of leaves in the tree T , and each leaf is labeled by a sequence of length
k over an alphabet of size r.

v v v

a

b c

vv

ba a c b c

tree(v, a, b) tree(v, a, c) tree(v, b, c)

Fig. 6. Internal node v and the three subtrees associated with it.

As we saw in the previous section, the preprocessing stage would let us com-
pute the parsimony score of each NNI-neighbor in Θ � rk � time. Since there are



2n � 6 NNI-neighbors, the optimal NNI neighbors can be identified in Θ � nrk �
time after the preprocessing step. To summarize,

Theorem 3. We can solve the Optimal NNI-Neighbors Problem in Θ � nrk � time.

5.3 Computing an Optimal 2-ECR Neighbor
We now show how to compute an optimal 2-ECR neighbor of an unrooted binary
tree on n labeled leaves, each labeled by a sequence of length k over an alphabet
of size r, in Θ � n2rk � time, thus spending only Θ � rk � time per neighbor.

A 2-ECR move on a tree T is specified by the two edges e1 and e2 to be
contracted, and the refinement of the resulting contracted tree into an unrooted
binary tree that differs from T .

Our algorithm will handle the following two cases separately.

1. The edges e1 and e2 are not adjacent to each other.
2. The edges e1 and e2 are adjacent to each other.

We now show how to handle case (1). We first state a lemma that in this case
any 2-ECR move can be “simulated” by two successive NNI moves. We omit
the proof because of space limitations.

Lemma 5. Let T be an unrooted leaf-labeled tree and let T
�
be a 2-ECR neigh-

bor of T such that the 2-ECR move involves the contraction and refinement of
two non-adjacent edges in T . Then T

�
can be reached from T through two NNI

moves.

We now continue with the discussion of the Optimal 2-ECR neighbors algo-
rithm.
Case 1: the edges are not adjacent By Lemma 5, in this case the optimal
2-ECR neighbors can be obtained by two sequential NNI moves. To compute
the optimal 2-ECR neighbors of T in this case, we compute the optimal NNI
neighbors of every NNI neighbor of T . There are Θ � n � NNI neighbors of T ,
and the optimal NNI neighbors of a given tree can be found in Θ � nrk � time
by Theorem 3. Hence, the set of optimal 2-ECR neighbors can be computed in
Θ � n2rk � time for this case.
Case 2: the edges are adjacent Note that on a tree with n leaves, there are only
O � n � pairs of adjacent edges. For each possible way of contracting a pair of
adjacent edges, we create a tree with a single unresolved node (that is, a node
of degree more than three), and the unresolved node has degree 5. Hence, there
are 15 possible binary trees that resolve each such tree. Furthermore, each of
the 15 refinements involves only a rearrangement of the 5 rooted subtrees off
the unresolved node around the two new edges that result from the refinement.



Therefore, the algorithm operates as follows. First, we compute the optimal la-
bels at the root of all such subtrees in Θ � nrk � time in a preprocessing step as
in Section 5.2. Then, for each of the O � n � pairs of adjacent edges, in O � rk � ad-
ditional time we can compute the optimal neighbors obtainable by contracting
and refining those edges. Hence, for the case of adjacent edges, can compute the
set of optimal 2-ECR neighbors in Θ � nrk � time.

The overall optimal 2-ECR neighbors will be those with the best score, and
hence we have the following:

Theorem 4. Let T be an unrooted binary tree on n leaves, each labeled by
a sequence of length k over an alphabet of size r. Then the optimal 2-ECR
neighbors of T can be computed in Θ � n2rk � time.

6 Application of Three-Way Labeling to Other Problems
In this section we describe how our Three-Way labeling algorithm can be used
to compute the set of optimal SPR and TBR neighbors in O � n2rk � time and
O � n3rk � time respectively. We then describe how the technique can be used to
compute the Greedy Sequence Addition parsimony algorithm in O � n2rk � time.
6.1 Optimal SPR and TBR neighbors

An SPR move on a tree T to create a tree T
�
involves the following three steps:

– Delete an edge e � � x1 � x2 � from T , thus producing two trees T1 and T2 with
x1 � V � T1 � and x2 � V � T2 � .

– Pick one of the two subtrees (say, T1). Then, pick an edge e2 in T2, and
subdivide e2, thus creating a new node v2.

– Add the edge � x1 � v2 � .
To compute the parsimony score of T

�
, we can root T

�
at the edge � x1 � v2 � .

We will then need the parsimony score and optimal state assignments of T2

rooted at v2 and those of T1 rooted at x1. We perform a Three-Way labeling of
the nodes in T1 and T2. This takes O � nrk � time, and would allow us to compute
the parsimony score and optimal state assignments of T2 rooted at v2 and those of
T1 rooted at x1 in O � rk � time. Once this information is available, the parsimony
score of T

�
can be computed in O � rk � time. Thus, for a fixed way of deleting

an edge � x1 � x2 � , all SPR neighbors can be evaluated in O � nrk � time. There are
O � n � ways of deleting an edge, and thus we can evaluate all SPR neighbors and
identify the optimal ones in O � n2rk � time.

As for TBR, the only difference here is that for every way of deleting an edge
� x1 � x2 � in T1, there can be O � n2 � TBR neighbors. Evaluating all these neighbors
can be done in O � n2rk � time if we Three-Label the two trees (T1 and T2) that
result from the deletion of � x1 � x2 � from T . There are O � n � ways of deleting
an edge from T , and thus we can evaluate all TBR neighbors and identify the
optimal ones in O � n3rk � time.



6.2 A Faster Algorithm for Greedy Sequence Addition Parsimony

We begin by describing a brute-force algorithm for the Greedy-MP algorithm.

Brute-Force Greedy MP Greedy-MP constructs a tree for a set S of sequences
based upon a specified (usually random) ordering on S; suppose that ordering is
s1 � s2 � � � � � sn. It begins with the star tree on the first three sequences, s1 � s2 � and
s3, and then sequentially adds each of the remaining sequences into the tree it
has constructed so far. Before it attempts to insert the ith sequence, si, it has a
tree ti � 1 on the first i � 1 sequences. In order to insert si into ti � 1, it computes
the length of each possible extension of ti � 1, in the obvious way: for each way
of adding si (by subdividing an edge in ti � 1, and making the newly created node
the parent of si), it uses Fitch’s algorithm (see Section 2.2) to score the resultant
tree. If there is a tie (more than one way of adding si gives a minimal score),
then a best tree is selected arbitrarily. When all sequences have been added, the
resultant tree is returned.

The running time of this brute-force algorithm follows from the analysis of
the cost of adding si to the tree ti � 1. First, note that there are O � i � ways to add
si to ti � 1, and that scoring the resultant trees costs O � irk � per tree, where r is
the alphabet size, and k is the sequence length. Hence, computing ti, given ti � 1,
costs O � i2rk � . Since we do this for i � 4 � 5 � � � � � n, the total cost is O � n3rk � .
Faster Greedy-MP If we do a Three-Way Labeling of ti � 1, then we can compute
the optimal placement of si into ti in only O � irk � time, so that Greedy-MP can
be completed in O � n2rk � time.

7 Related Work

In the “sectorial search” technique used in the parsimony software TNT, devel-
oped by Goloboff et. al ([Gol99]), repeatedly a set of edges is identified (using
some specific technique) to be contracted and then refined. This can be viewed
as a p-ECR based search, where the value for p is determined indirectly. The
general approach of contracting edges and then finding an optimal resolution
has also been suggested in [BSWY98]. Empirical comparisons in [Gol99] of
sectorial search to other search strategies suggested that this kind of approach
would be potentially useful. Our contribution here is theoretical rather than em-
pirical, and our findings are consistent with those positive observations reported
in [Gol99].

Our other main contribution, namely the 3-Way-Labels algorithm, and its
use in finding optimal neighbors under various tree transformations, is new, but
similar techniques have been presented before (see [Swo86, Gol94, Gol96]).
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