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Abstract

The inference of evolutionary trees using approaches which
attempt to solve the maximum parsimony (MP) and maxi-
mum likelihood (ML) optimization problems is a standard
part of much of biological data analysis. However, both
problems are hard to solve: MP provably NP-hard, and
ML even harder in practice. Consequently, hill-climbing
heuristics are used to analyze datasets for phylogeny recon-
struction. Two primary topological transformations have
been used in the most popular heuristics: TBR (tree-
bisection-and-reconnection) and ECR (edge-contractions-
and-refinements). While most of the popular heuristics ex-
clusively use TBR moves to explore tree space, some recent
methods have used ECR in conjunction with TBR and found
significant improvements in the speed and accuracy with
which they can analyze datasets. In this paper we analyze
ECR moves in detail, and provide results on the diameter of
the tree space, the neigborhood intersection with TBR, struc-
tural analysis of the ECR operation, and an efficient method
for sampling uniformly from the 2-ECR neighborhood of a
tree. Our results should lead to a better understanding of
the impact of ECR moves on the performance of heuristic
searches.

1 Introduction

Most, if not all, of the favored approaches in biology for in-
ferring phylogenetic (i.e., evolutionary) trees are based upon
attempts to solve certain NP-hard optimization problems; of
these, perhaps Maximum Parsimony [7] is the most popular.
Maximum Likelihood [6] is also favored, but considerably
harder in practice to solve than Maximum Parsimony
(though not established to be NP-hard). Approximation
algorithms for Maximum Parsimony exist, but the approxi-
mation ratios are not good enough for use in molecular sys-
tematics where errors as small as 1% are unacceptable. Con-
sequently, heuristics, largely based upon hill-climbing (also
called local-search), are used to search for optimal trees.

Two topological transformations on trees, TBR (for
Tree-Bisection-and-Reconnection) andp-ECR, short for
p-Edge Contract and Refine [8], are the basis for the most
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popular heuristics in use for phylogenetic analysis under
Maximum Parsimony. Of these two, the TBR transformation
has been traditionally more popular, and is better understood
in terms of the properties of the “landscape” of trees it
induces [23, 18, 14, 16, 1].

In a p-ECR movep of the edges in the given tree are
contracted and the resulting tree is refined to give back a
new tree. Sankoff et.al [22] define a version of the ECR
move where the contracted edges are restricted to form a
subtree (henceforth, we will call this move thep-sECR orp-
subtreeECRmove). In [22] an experimental comparison of
local searches based onp-sECR moves for different values
of p is presented, and evaluated with regard to the quality of
local optima generated. Subsequently thep-ECR move has
appeared implicitly rather then explicitly in the local-search
heuristic sectorial-search[9]. In sectorial-search, a tree
is transformed through contractions of edges subsequent
refinements, but the edges to be contracted are chosen
using some specific heuristic, and so the number of edges
contracted can vary during the search. Thep-ECR move
as used in this paper was defined recently in [8], where the
neighborhoods of trees induced by the 2-ECR move and by
the TBR move were compared and were shown to have a
small intersection.

In this paper, we present several results about the prop-
erties of the generalp-ECR operation and the search space
induced by it. In particular, we present

� asymptotically tight bounds for the diameter of tree-
space underp-ECR moves as a function ofp, showing
that the diameter of the search space is inΘ( nlogn

plogp)
(wheren is the number of leaves in the trees). This
result could be potentially useful in selecting a suitable
range of values ofp for performing local searches based
on p-ECR operations.

� a comparison of the neighborhoods of a tree induced by
TBR andp-ECR moves, showing that their intersection
is of sizeO(minfn2p;n2pg). The neighborhoods them-
selves are much larger: there could beΘ(n3) trees in the
TBR neighborhood of a tree, while thep-ECR neigh-
borhood containsΩ(np2p) trees. These results may
help explain why the combination of the two moves im-
proves upon the use of just one, as reported in [9]. This
work generalizes the result in [8] for 2-ECR.



� an O(n) pre-processing-time,O(1) update-time algo-
rithm for sampling a tree uniformly at random from the
set of 2-ECR neighbors of a phylogenetic tree. This po-
tentially has applications in Markov Chain Monte Carlo
methods for inferring evolutionary histories through
Bayesian analysis [15, 12, 13].

� a structural analysis of thep-ECR operation, motivated
by its application in our algorithm for uniformly sam-
pling from the 2-ECR neighborhood of a tree. We de-
fine the properties ofirreducibility andcommutativityof
p-ECR operations, and observe a surprising connection
between irreduciblep-ECR operations andelementary
bipartite graphs. We exploit this connection to develop
an O(n+ p2) algorithm to reduce ap-ECR operation
into an equivalent sequence of irreducible ECR opera-
tions.

The rest of the paper is organized as follows: In Section
2 we introduce some basic concepts necessary for the
remaining sections. In Section 3 we present upper and lower
bounds on the diameter of the search space induced by thep-
ECR operation. In Section 4 we compare the neighborhoods
of a tree induced by thep-ECR and TBR operations. In
Section 5 we present our algorithm for sampling uniformly
from the set of 2-ECR neighbors of a tree, and in Section
6 we carry out structural analyses of thep-ECR operation
vis-a-vis the properties of irreducibility and commutativity.

2 Basics

A phylogenyis an unrooted tree (rooted, if the evolutionary
origin is known) whose leaves are labeled and represent
extant species, and all of whose internal nodes have degree
at least three. Abinary phylogenyis one where all internal
nodes are of degree three. Edges that arenot incident on
leaves are calledinternal edges. Non-binary phylogenies
are referred to as beingunresolvedat the nodes of degree
greater than three. Any isomorphism between phylogenies
must preserve the leaf labels.

2.1 Bipartitions A notion crucial to the study of phylo-
genies is that of abipartition: removing an edgee from
a leaf-labeled treeT induces a bipartitionπe on its set of
leaves. We denote byC(T) the setfπe : e2 E(T)g, which
represents the set of bipartitions induced byT. The setC(T)
is known as thecharacter encodingof the treeT. Buneman
proved [2] that two phylogenies are isomorphic if and only
if they have the same character encoding.

2.2 Tree Transformations
Contractions and RefinementsA contraction col-

lapses an edge in the tree and identifies its two end points,
while a refinement expands an unresolved node into two
nodes connected by an edge (see Figure 1). Thep-ECRtree

rearrangement operation on a binary phylogeny is defined
to be p edge-contractions, which are then followed by
refinements that give back a binary phylogeny. The treesT1
andT5 in Figure 1 are separated by one 2-ECR operation.

The Robinson-Foulds Metric The Robinson-Foulds
distance between two unrooted leaf-labeled (not necessarily
binary) treesT and T 0, denotedRF(T;T 0) is defined to
be the length of a shortest sequences of contractions and
refinements that transformsT to T 0 [21]. It was also shown
in [21] thatRF(T;T 0) = jC(T)�C(T 0)j+ jC(T 0)�C(T)j

Based on the above definitions we can deduce the fol-
lowing simple fact.

OBSERVATION 1. Let T and T0 be two unrooted binary leaf-
labeled trees on n leaves, and let p be any integer between1
and n�3. Then RF(T;T 0) � 2p if and only if T and T0 are
one p-ECR move apart.

Tree Bisection and Reconnection (TBR)In a TBR
move, an edge is removed fromT, creating subtreest and
T�t, and then a new edge is added between the midpoints of
any two edges int andT�t, creating a new tree. Throughout
the operation any internal node of degree two is suppressed.
The TBR operation is illustrated in Figure 2.

Nearest Neighbor Interchange (NNI) The NNI move
swaps one rooted subtree on one side of an internal edgee
with another on the other side; note that this is equivalent to
contracting the edgee, and then resolving the resultant tree
into a new binary tree. The NNI operation is thus the same
as a 1-ECR operation, and is also a special case of the TBR
operation. Every sequence ofp NNI moves on a tree is a
p-ECR move on that tree; however there arep-ECR moves
that cannot be performed by a sequence ofp NNI moves
(see, e.g., Figure 1).

Neighborhoods, distances, and diametersWe define
the neighborhood of an unrooted binary leaf-labeled treeT
under a tree-rearrangement move to be the set of all trees
that can be obtained fromT by one move. For each of the
different tree rearrangement operations (TBR, NNI, andp-
ECR), we define the edit distance between two trees on the
same set of leaves as the minimum number of moves needed
to move from one tree to the other. All these distances
are known to be finite (follows from [20] ), but tend to be
hard to compute [1, 11, 4]. We denote the edit distance
under thep-ECR move byδp�ECR(T;T 0), and the others
are similarly defined. Given a specific move (such as TBR,
p-ECR, etc.), we can define thediameterof tree space to
be the maximum edit distance between any two trees. For
convenience, we will phrase the diameter of the search space
as the diameter of a graph, in which the trees on a given set
of leaves constitute the vertices, and an edge exists between
two trees if they are related to each other by one move. Thus,
the graph defined by thep-ECR move isGp�ECR= (U;E),
whereU is the set of unrooted leaf-labeled binary trees on
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Figure 1: Two edges are contracted in T1 to produce T3, which is then refined to produce T5; T3 and T5 are thus separated
by one 2-ECR operation.
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Figure 2: TreeT 00 is one TBR move away fromT.

n leaves, and(u;v) 2 E if and only if u andv are separated
by onep-ECR move. We denote the diameter ofGp�ECR by
∆(Gp�ECR).

3 Bounds on the diameter ofGp�ECR

In this section we derive asymptotically tight bounds for
the diameter of the tree-space induced by thep-ECR
operation (as a function ofp). It was shown in [16]
that ∆(GNNI) 2 Θ(nlogn), and it was shown in [1] that
∆(GTBR) 2Θ(n). As mentioned earlier, the NNI operation is
just the 1-ECR operation. Hence the diameter of the 1-ECR
operation is inΘ(nlogn). The diameter of the(n�3)-ECR
operation is, of course, 1. Obtaining the diameter as a
function of p might give us a way to pick the right range of
values ofp to use in a search, based on the diameter.

3.1 Upper Bound

THEOREM 3.1. ∆(G(2p�2)�ECR) 2 O( nlogn
plogp)+

2n�10
p�1 .

Proof. We show that∆(G(2p�2)�ECR) �
nlogn
plogp +

2n�10
2p�2 , for

p a power of two greater than one, andn > 5. It can then
be shown that∆(G(2p�2)�ECR) �

2nlog2 n
p(log2 p�1) +

2n�10
p�1 , for all

values ofp� 2 andn> 5, thus proving out theorem.
Let C be the sorted “caterpillar” tree for the set of leaf

labels [n] (Figure 3). We will show that for any unrooted
binary leaf-labeled treeT, δ(2p�2)�ECR(T;C) � n

p logpn+
2n�10
2p�2 .

We will first show that the number of(2p� 2)-ECR
steps needed to convert a complete binary tree onn leaves

to a caterpillarC is at mostnp logpn. We will then apply an
idea from [3] to show how any tree can be converted to a
complete binary tree in(2n�10) NNI moves. This implies
that the number of(2p� 2)-ECR steps needed to convert
any tree to a complete binary tree is at most2n�10

2p�2 . The
above two results would then imply that any tree can be
converted toC in at mostn

p logpn+ 2n�10
2p�2 steps. A complete

binary tree1 and the sorted caterpillar tree for the set of
leaves labeled from 1 through 7 are given in Figure 3.
Converting an arbitrary complete binary tree to a sorted
caterpillar tree The procedure is recursive, and is illustrated
in Figures??and??. Let B be the complete binary tree onn
leaves. LetB1, B2, B3, . . .Bp be the subtrees ofB at a depth
of log2 p. SinceB is a complete binary tree, so are subtrees
B1 throughBp. Recursively convert each of thep subtrees to
a sorted caterpillar tree, producing thebc-tree(binary-cum-
caterpillar tree)B0. The subtrees ofB0 at a depth log2 p are
now sorted caterpillar treesC1 throughCp (see Figure??).

The following process is illustrated in Figure??:
consider the firstp leaves in the sorted order. Thesep leaves
can be “pulled” up to the root by contracting only(2p�2)
edges (this is because the caterpillar treesC1 throughCp are
sorted). The contraction of these(2p� 2) edges make the
root of the tree unresolved, with each of thep leaves now
a descendant of the root. To complete the(2p� 2)-ECR

1A complete binary tree is shown rooted at the edge that divides the set
of leaves most evenly. The tree being rooted makes little difference to our
analysis.
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Figure 3:B is a complete rooted binary tree on seven leaves.C is the sorted caterpillar tree for the same set of leaves.

operation, we have to refine the root, and when we refine the
root thep leaves can be transferred to “above” (see Figure
??) the root in sorted order. The next(2p�2)-ECR move
will transfer the nextp leaves in the sorted order to above
the root. In this manner we can obtain aC from B0 in n

p
(2p�2)-ECR moves. This gives us the following recursive
equation for the number of moves required to convertB
to C. Let S(n) denote the number of(2p� 2)-ECR steps
required to convert ann-leaf complete binary tree to the
corresponding sorted caterpillar tree. Then,

S(n)� pS(
n
p
)+

n
p

Solving the recurrence yields usS(n)� n
p logpn.

Converting any tree to a complete binary tree inO(n=p)
p-sECR moves

In a caterpillar we define theend leavesas the two pairs
of leaves at each end of the caterpillar; the remaining leaves
will be called internal leaves. The path connecting the two
pairs of end leaves is thespineof the caterpillar. We define
a q-caterpillar as a caterpillar in which each internal leaf
is replaced by aq-spoke, which is a caterpillar withq� 2
internal leaves and one pair of end leaves (see figure). The
very last spoke (one that is adjacent to the parent of one of the
two end pairs of leaves) is aq0-spoke forq0 = n�4�bn=qc.

Let T be an unrooted binary tree. Any binary tree
contains two pairs of leaves where each pair has a comment
parent. We fix two such pairs of leaves inT and we call the
unique path connecting their parentsp1 andp2 as its spine.
We fix one of the parents, sayp1, and relative top1 we define
the potentialφ(T) = 2 � n1+ n2, wheren1 is the number of
succ essiveq-spokes inT starting with the vertex adjacent to
p1 in T, andn2 is the number of successive subtrees of size
at leastq rooted at vertices following the initialn1 q-spokes.

Consider the transformation of an arbitrary binary treeT
into aq-caterpillar usingp-sECR moves, whereq = bp=2c.
The initial potential ofT is non-negative and final potential
of the transformed tree is 2� bn=qc. We now describe a
method that transformsT into a q-caterpillar usingp-ECR
moves, which increases the potential of the transformed tree
in each step by at least one. Thus this method transformsT
into aq-caterpilla r inO(n=p) moves.

Our method will apply ap-sECR move by contracting
edges starting with the edges in the subtree rooted at the
vertexv on the spine that is adjacent to the last vertex that
is a root of one of then1 q-spokes already constructed
(if n1 = 0 then this is the first vertex on the spine). The
resulting contracted subtreeS on p internal edges will have
p+3 external edges incident on it, of which two are on the
spine andp+ 1 are within subtrees rooted at one or more
vertices on the spine. IfS can be refined to form a new
successiveq-spoke, then the potential increases by at least
one. Otherwise, at leastq external edges end in subtrees,
each of which contain at least two leaves, which implies that
Scan be refined into two subtrees, each containing at leastq
leaves. Further, sinceS could not be refined into aq-spoke
the subtree rooted atv was not of size betweenq and 2q,
so one of the two subtrees formed is a new one, resulting
in an increase in potential of at least one. HenceT can be
transformed into aq-caterpillar inO(n=p) p-sECR moves.

By reversing the above strategy theq-caterpillar can
be transformed into any binary tree in the same number
of moves, hence any binary tree can be transformed into a
complete binary tree inO(n=p) p-sECR moves. �

THEOREM 3.2. ∆(Gp�ECR)�
nlog2 n�o(nlogn)
8plog2 p+O(p) , for all p> 1.

Proof. Let T be an unrooted binary tree onn labeled leaves,
and letT 0 be a tree such thatδp�ECR(T;T 0) = 1. We first
show that,δNNI(T;T 0)� 2plog2 p+O(p), for p

Without loss of generality, assume thatjC(T)�C(T 0)j=
p, and letX be thep-ECR operation that transformsT to T 0.
If the edges corresponding to bipartitions inC(T)�C(T 0)
form a subtree ofT, sayS, let the corresponding subtree in
T 0 beS0. ThenSandS0 may be considered to form a tree with
p+3 leaves each, andScan be transformed intoS0 using at
most 2plog2 p+O(p) NNI moves, as was shown in [16].

If the edges corresponding to bipartitions inC(T)�
C(T 0) form a forest ofk trees, then it can be shown that
there exist somek ECR operationsX1 throughXk that act
on disjoint set of bipartitions such thatX is equivalent to
performing thek operationsX1 through Xk one after the
other (see Corollary 6.3). LetXi be a pi-ECR operation.
We have∑k

i=1 pi = p. Let Ti be the tree obtained by the



application ofXi onTi�1 (thus,T = T0 andT 0 = Tk). Then,
δNNI(Ti�1;Ti) � 2pi log2 pi +O(pi). Hence,δNNI(T;T 0) �
2∑k

i=1 pi logpi +O(p). The summation on the right-hand
side is less thanplog2 p for all p > 1 andk > 1, and hence
δNNI(T;T 0)� 2plog2 p+O(p), for p> 1.

From the results in [16, 1],∆(GNNI) �
nlog2n�o(nlogn)

4 .
This, together with the fact that anyp-ECR move can be
emulated by at most 2plog2 p+O(p) NNI moves, gives us
the desired result.

�

4 Comparison of p-ECR and TBR neighborhoods

Recall that the neighborhood of a treeT under a tree rear-
rangement operation is the set of all trees that can be obtained
by performing one such operation onT. In this section we
first establish bounds on the size of thep-ECR neighborhood
of a tree onn leaves, and then show that size of the intersec-
tion of thep-ECR neighborhood and the TBR neighborhood
of a tree is small. We will denote the neighborhood of a tree
T under, say, the TBR operation, asΓTBR(T). It is known
thatjΓTBR(T)j= Θ(n3) [1].

LEMMA 4.1. Let T be an unrooted binary leaf-labeled tree
on n leaves. Then,∑p

k=1

�n�3
k

�
2k � jΓp�ECR(T)j �

�n
p

�
(p+

3)!! , where(p+3)!! is the product of all odd numbers up to
p+3.

Proof. For any tree T 0 in Γp�ECR(T), RF(T;T 0) 2
f2;4;6; : : : ;2pg. We will show that the number of treesT 0

in Γp�ECR(T) such thatRF(T;T 0) = 2k is at least
�n�3

k

�
2k,

and that will give us the result that we desire.
Let k be such that 1� k � (n� 3). For every way of

choosingk edges inT, there are at least 2k differentk-ECR
moves that can be performed onT: for each chosen edge,
contract the edge and refine the resulting unresolved node
one of at least two ways that results in the alteration of the
bipartition corresponding to the edge. Thus, there are at least�n�3

k

�
2k treesT 0 such thatRF(T;T 0) = 2k. This completes

our proof of the lower bound. For the upper bound, observe
that for each of the

�n
p

�
ways of selectingp edges to contract,

there are at most(p+3)!! neighbors ((p+3)!! is the number
of unrooted leaf-labeled binary trees onp+3 leaves). This
completes our proof. �

THEOREM 4.1. Let T be an unrooted binary leaf-labeled
tree on n leaves. Then, for any p,jΓp�ECR(T)\ΓTBR(T)j �
minf(2n�3)(p+1)2p+3;(2n�3)2(p+1)g).

Proof. Let S= Γp�ECR(T)\ΓTBR(T), and letT 0 be in S.
Then, jC(T)�C(T 0)j � p, sinceT 0 2 Γp�ECR(T). More-
over, sinceT 0 2 ΓTBR(T), the edges inT corresponding to
bipartitions inC(T)�C(T 0) all must lie on a path, and the bi-
partitions corresponding to all edges on the path except three

(the first edge, the last edge and the edge that is broken for
the TBR move) must be inC(T)�C(T 0). Hence, each such
T 0 can be specified by three edges that lie on a path of length
at most(p+3). Now, the number of paths of length at most
(p+3) is at most(2n�3)2p+3. This is because the number
of paths of length exactlyp+3 is at most(2n�3)2p+2: fix
one of the terminal edges of the path, there are at most 2p+3

paths with a given terminal edge, since the tree is binary. But
in this manner, each path will be counted at least twice, and
hence there are at most(2n�3)2p+2 paths of length exactly
(p+3). Summing over allp we get that the number of paths
of length at most(p+3) is at most(2n�3)2p+3.

Also, each path of length at most(p+ 3) corresponds
to at most(p+1) trees that are inS, since there are(p+1)
ways of choosing the edge that is broken for the TBR move.
Hence we have thatjSj � (2n�3)2p+3(p+1).

Moreover, the total number of paths inT is (2n�3)2.
For every tree inS, there is a path inT, and each path
contributes at mostp+ 1 trees toS. HencejSj � (2n�
3)2(p+1).

Thus, we have that jΓp�ECR(T) \ ΓTBR(T)j �
minf(2n�3)(p+1)2p+3;(2n�3)2(p+1)g). �

5 Uniform Sampling from the set of2-ECR Neighbors

The use of MCMC (Markov Chain Monte Carlo) algorithms
in phylogeny reconstruction is of increasing interest in
the research and user community [13, 12, 15]. In this
section, therefore, we address the problem of selecting a
tree uniformly at random from the set of 2-ECR neighbors
of a tree. Our algorithm takesO(1) time, after a one-time
pre-processing step that costsO(n) time.

We partition the set of 2-ECR neighbors ofT into two
subsets:ΓNNI(T) andS= Γ2�ECR(T)�ΓNNI(T). The size
of the former set is 2n� 6, and the size of the latter set
depends on the structure ofT. The outline of our algorithm
is as follows:

1. Compute, inO(n) time,s= jSj.

2. Generateq at random from a uniform distribution on
[0;1].

3. If q� 2n�6
2n�6+s, generate a tree uniformly at random from

ΓNNI(T).

4. If q> 2n�6
2n�6+s, generate a tree uniformly at random from

S.

Sampling from ΓNNI(T): Step (3) is easy and can be
performed inO(1) time, given the set of internal edges ofT.
We choose an internal edgee uniformly at random, and pick
each of the two trees that can be obtained by contracting and
refininge with probability 1=2. It can be verified that in this
manner we do sample uniformly at random fromΓNNI(T).

Sampling from S: This is a complicated by the fact that
sampling two edgese1 ande2 one after the other without re-



placement, and then sampling uniformly at random from the
set of neighbors obtained by performing a 2-ECR move in-
volving edgese1 ande2 does not induce a uniform distribu-
tion onS. This is due to the following reason: whene1 and
e2 are adjacent, there are 14 neighbors, while there are only
8 whene1 ande2 are not adjacent.

Hence, we adopt the following strategy: we arbitrarily
order the internal edges inT, and let index(e) denote the
position of the edgee in such an order.

� We letY be the set of neighbors that can be obtained
from T through a sequence of two 1-ECR moves,
the first one involving edgee1 and the next involving
e2, and such thatindex(e1) < index(e2). Every pair
of internal edges (whether adjacent or non-adjacent)
contributes four trees toY. We letjYj= y.

� Let X = S�Y, and letjXj= x. The set of neighborsX
contains the following two classes of trees:

– Trees that cannot be obtained by a sequence of two
1-ECR moves. There are two such trees for every
pair of adjacent internal edges.

– Trees that are obtained by two 1-ECR moves in-
volving twoadjacentinternal edges,e1 first ande2

next, such thatindex(e1) > index(e2). Every pair
of adjacent internal edges contributes four such
trees toX. Note that two 1-ECR operations per-
formed in the reverse order on two non-adjacent
edges do not generate any new trees, since the
order does not matter when the edges are non-
adjacent.

Note thatjΓ2�ECR(T)j = 2n�6+x+y. We are now in
a position to describe our algorithm.

Algorithm to sample uniformly from S

1. Calculatex andy. This can be done inO(n) time sincex
depends only on the number of pairs of adjacent internal
edges inT, andy depends only onn.

2. Generateq at random from a uniform distribution on
[0;1].

3. if q� x
x+y, then sample a pair of adjacent internal edges

e1 ande2, and then sample a tree uniformly at random
from the set of neighbors contributed toX by a 2-ECR
move involvinge1 ande2 (this involves sampling one
tree from a set of six trees).

4. if q > x
x+y , then sample two internal edgese1 and e2

one after the other without replacement from the set of
internal edges. Then sample a tree uniformly at random
from the set of neighbors contributed toY by a 2-ECR
move involvinge1 ande2 (this involves sampling one
tree from a set of four trees).

Every 2-ECR neighbor is generated with a probability
of 1

2n�6+x+y by our algorithm. The running time isO(n),
the time taken to to calculate the number of pairs of adjacent
internal edges inT. However, note that once a new a tree is
generated, this number can be calculated for the new tree in
O(1) time, since a 2-ECR move makes only local changes to
the tree structure. Hence, we have the following:

THEOREM 5.1. We can generate a tree uniformly at random
from the set of2-ECR neighbors of an unrooted leaf-labeled
binary tree on n leaves in O(1) time, after an O(n) pre-
processing step.

At first sight, our algorithm seems to be a series of case
analyses. However, the analyses reveals some interesting
properties of structure of 2-ECR moves: there are some 2-
ECR operations are notreducible to two successive NNI
moves, and among those thatare thus reducible, some
involve successive NNI moves that arecommutable(i.e,
those that can be reordered), and the rest involve successive
moves that are not commutable. We believe that these
concepts (and generalizations of them) will be essential in
designing an algorithm that samples efficiently from the set
of p-ECR neighbors of a tree forp > 2. In the next section
we study reducibility and commutability ofp-ECR moves,
and show that these concepts generalize to generalp through
a surprising connection to elementary bipartite graphs.

6 Structural Analyses of thep-ECR Operation

In this section we will show how to construct, for any two
given trees, a sequence ofelementaryor irreducible ECR
operations that transforms one tree to another, where an ECR
operation is ap-ECR operation for some (unspecified)p.

We first introduce some terminology and notation. Let
T be an unrooted leaf-labeled tree. LetX andY be two ECR
operations onT. We will sayX equalsY if performingX on
T results in the same tree as the one obtained by performing
Y onT. For twoECRsequencesX andY, we will letYÆX be
the following sequence of twoECRoperations:X onT, fol-
lowed byY on the tree that results from performingX onT.

DEFINITION 1. Reducible p-ECR operation
Let T be an unrooted leaf-labeled tree. Let X be a p-

ECR operation on T. X is said to be reducible if there exists
a p1-ECR operation X1 and a p2-ECR operation X2 such that
X = X2ÆX1 and p= p1+ p2.

The concepts of reducibility and irreducibility of ECR
operations are illustrated in Figure 4.

The problem that we address in this section is this:
given two binary treesT andT 0 such thatRF(T;T 0) = 2p,
decompose thep-ECR operationX that separatesT andT 0

such that,
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� X = XkÆXk�1Æ : : :ÆX1, with Xi being an irreduciblepi-
ECR operation, and

� ∑k
i=1 pi = p

6.1 Irreducibility and Elementary Bipartite Graphs
We begin with a definition:

DEFINITION 2. Bipartition (or edge) compatibility:
A set of bipartitions B is said to becompatibleif and

only if B�C(T) for some tree T .

LEMMA 6.1. (FROM BUNEMAN [2]) A set of bipartitions
is compatible iff any two bipartitions in the set are are
pairwise compatible. Furthermore, two bipartitions A= A1 :
A2 and B= B1 : B2 are compatible iff at least one of the four
sets A1\B1, A1\B2, A2\B1 and A2\B2 is empty.

Observe that there can not be more than 2n�3 edges in
a phylogenetic tree withn leaves, since there are no internal
nodes of degree two (through out the rest of the paper we
usen to denote the number of leaves). This gives us the
following:

COROLLARY 6.1. The maximum cardinality of any set of
compatible bipartitions of a set of n elements is2n�3.

We now define a graph, which we call theincompatibil-
ity graph, defined by two leaf-labeled trees.

DEFINITION 3. Incompatibility Graph
Let T and T0 be two unrooted leaf-labeled trees. The

incompatibility graph G between T and T0, G, is defined
thus: G is a bipartite graph, and G= (U;V;E) where U=
C(T)�C(T 0), V =C(T 0)�C(T) 2, and(u;v)2E if and only
if u and v are incompatible.

2Note that the definition here is almost the same as the definition of
the incompatibility graph appearing in [19], whereU and V were C(T)
andC(T 0) respectively. Our definition has the effect of removing isolated
vertices from the incompatibility graph.

An elementary bipartite graph is one where every edge
is in some perfect matching [17]. SupposeT andT 0 are two
trees such thatδp�ECR(T;T 0) = 1, then, we show that thep-
ECR move that separates them is irreducible if and only if the
incompatibility graph induced by the two trees is elementary.
We start with the following lemma.

LEMMA 6.2. Let G be the incompatibility graph between
two unrooted binary leaf-labeled trees. Then G has a perfect
matching.

Proof. We will show that the incompatibility graphG satis-
fies the following two properties: (1) For every subsetSof V,
jΓ(S)j � jSj, and (2) For every subsetR of U , jΓ(R)j � jRj.
Our result will then follow from Hall’s matching theorem
[10]. Let q = jC(T)�C(T 0)j = jC(T 0)�C(T)j. We first
show that (1) holds. LetS be a subset ofV. Note then that
the set of bipartitionsA = (U �Γ(S))[S[ (C(T)\C(T 0))
is compatible. Now ifjΓ(S)j < jSj, then the setA contains
more than 2n� 3 bipartitions that are pairwise compatible,
sincej(U �Γ(S))[Sj> q andjC(T)\C(T 0)j= 2n�3�q.
But this is a contradiction by Corollary 6.1. Similarly, we
can show that (2) holds. �

THEOREM 6.1. Let X be a p-ECR move that can be carried
out on an unrooted leaf-labeled binary tree T . Let T0 be
the result of carrying out X on T . Let G= (U;V;E) be
the incompatibility graph between T and T0. Then, X is
reducible if and only if there is a proper subset S of V such
that jΓ(S)j= jSj.

Proof. Suppose thatX is reducible and is equivalent to
X2 ÆX1. Then the set of bipartitionsS that results from the
refinement phase ofX1 satisfies the condition thatjΓ(S)j =
jSj. If not there is at least one bipartition inS that is
incompatible with a bipartition inU �Γ(S). But this makes
carrying outX1 onT impossible, and hencejSj= Γ(S).



Conversely, if there is a setS � V that satisfies
jSj= jΓ(S)j, then the contraction of the bipartitions inΓ(S)
and the creation of bipartitions inS can be “scheduled”
before the other contractions and refinements inX, and that
makesX reducible. �

COROLLARY 6.2. A p-ECR move is irreducible if and only
if the corresponding incompatibility graph is elementary.

Using the above characterization, we now show that we
can check efficiently if ap-ECR move is irreducible. It also
means that we can compute, for any givenp-ECR move, an
equivalent sequence of irreducible ECR operations.

THEOREM 6.2. Let X be a p-ECR move that can be per-
formed on an unrooted binary leaf-labeled tree on n leaves.
Then, in O(n+ p2) time, we can determine if X is reducible,
and we can compute a sequence of ECR moves X1 through Xk

(for some k), with each Xi being an irreducible pi-ECR move
for 1� i � k, such that X= Xk Æ : : :ÆX1 and∑k

i=1 pi = p.

Proof. Let G = (U;V;E) be the incompatibility graph
corresponding to thep-ECR moveX. The graphG can be
constructed inO(n+ p2) time as follows: The setsU and
V can be computed inO(n) time, while calculating theRF
distance betweenT andT 0 [5]. OnceU andV have been
determined,E can be calculated inO(n+ p2) time, since for
each bipartition inU , we can identify all bipartitions inV
incompatible with it inO(p) time.

Once we haveG, we use the method in [17] (Section 4.3)
to decomposeG into maximal vertex-disjoint components
such that the subgraph ofG induced by each component
is elementary, as follows: we compute a perfect matching
M in G (which is guaranteed to exist by Lemma 6.2) and
then compute an associated directed graph, sayH. The
graphH is computed fromG by first orienting all the edges
uniformly towards eitherU or V, and then identifying the
vertices matched byM.

The directed graphH is strongly connected if and only
if G is elementary. This is due to the following reason: each
edge ofG not inM is in some perfect matching if and only if
the corresponding directed edge inH is in a directed cycle.
Hence,G is elementary if and only if every edge not inM is
also in a perfect matching, be definition. Every edge inH is
in a cycle if and only ifH is strongly connected. This proves
our claim.

If G is not elementary, thenH can be decomposed
into strongly connected components, sayC1 throughCk,
with componentCi representing an elementary subgraph
of G induced by the sets of vertices(Si ;Ti), with Si � U
and Ti � V. Without loss of generality, letC1;C2; : : : ;Ck

be the topologically sorted order of the strongly connected
components. Then, this represents an ordering of the

corresponding elementary subgraphs ofG, as follows: if
(u;v) 2 E such thatu2 Si andv2 Tj , theni � j (assuming
without loss of generality that all edges were oriented
towardsV while creatingH from G). Hence, if we let
the induced subgraph(Si ;Ti) stand for theith ECR op-
eration Xi, it is assured thatXi can be performed once
operationsX1 throughXi�1 have been performed. This is
because the incompatibilities of the bipartitions created
by Xi (i.e, those inTi) are with bipartitions in components
Sj with j < i, and these bipartitions would have been
eliminated by the ECR moves fromX1 throughXi�1. The
outcome of the sequence of operationsX1 throughXk is X. �

6.2 Commutablep-ECR moves

DEFINITION 4. A p-ECR operation X is separable if and
only if there are two ECR moves X1 and X2 such that X=
X2 ÆX1 = X1 ÆX2. The ECR moves X1 and X2 are then said
to be commutable.

Suppose for an ECR moveX, the corresponding incom-
patibility graph is not connected. ThatX is reducible is im-
mediate. However, in the following lemma (proof omitted)
we observe thatX is in fact separable.

LEMMA 6.3. Let X be an ECR move executable on an
unrooted leaf-labeled binary tree. The incompatibility graph
induced by X is not connected if and only if X is separable.

We now present a necessary and sufficient condition for
separability ofX that can be verified without computing the
incompatibility graph.

COROLLARY 6.3. Let X be a p-ECR move that can be
carried out on an unrooted leaf-labeled tree T . Let T0 be
the result of carrying out X on T . Then X is separable if
and only if the edges corresponding to the bipartitions in
C(T)�C(T0) do not form a connected subtree.

Proof. Let U = C(T)�C(T 0) andV = C(T 0)�C(T). Let
subsetsS1 andS2 partitionU , such that the edges inS1 and
S2 form vertex-disjoint components inT. Let T1 andT2 form
the corresponding partition ofV. Now let G = (U;V;E) be
the incompatibility graph betweenT andT 0. In G, it can be
seen that there can not be any edges between eitherS1 and
T2 or S2 andT1.

To prove the other direction, we prove the following: let
u1;u2 be two bipartitions inU , corresponding to two edges
e1 ande2 adjacent inT. Let v1 andv2 be two bipartitions in
V such that,

� (u1;v1) 2 E,

� (u2;v2) 2 E,



� (u1;v2) 62 E, and

� (u2;v1) 62 E.

We show thatu1, u2, v1 and v2 can be reached from one
another inG. This would imply that if the edges inU form a
single subtree inT, thenG is connected.

We now prove the above claim. Letu1 be the biparti-
tion P : P0 and letu2 beP[Y : P0�Y, for someY � P0 (this
entails no loss of generality sinceu1 andu2 are compatible).
Similarly, letv1 andv2 beQ : Q0 andQ[Z : Q0�Z respec-
tively, for someZ � Q0. Sinceu1 andv2 are incompatible,
we haveP\ (Q0�Z) = /0 (it can be verified that the other
three pairwise intersection cannot be empty) from Lemma
6.1. Similarly, we haveQ\ (P0�Y) = /0.

Now, since the treeT is binary, and the edgese1

and e2 are adjacent, we have thatY : Y0 (whereY0 is the
complement ofY) is a bipartition inT, and the corresponding
edge is adjacent to bothe1 and e2. We show thatY : Y0

is incompatible with bothv1 and v2, thus showing that
u1; u2; v1; v2 are reachable from each other.

Now, Q\ (P0 �Y) = /0 and Q\ P0 6= /0 implies that
Q\P0 �Y. Now, we show thatY 6� Q\P0. Suppose, to the
contrary, thatY�Q\P0. Then,Y�Q. This, combined with
the fact that(Q0�Z) � P, means that(Q0�Z) � (P0�Y).
However, this contradicts(Q0�Z)\ (P[Y) 6= /0, and hence
Y 6� Q\P0. Thus, we have(Q\P0)�Y. We now show that
Y : Y0 is incompatible with bothv1 andv2, thus completing
our proof.

1. Y\Q 6= /0, since as we already saw,Q\P0 �Y. Also,
Y 6� Q. Hence,Y\Q0 6= /0. Moreover,Q 6� Y (since
Q 6� P0), and henceQ\Y0 6= /0. Similarly, Q0\Y0 6= /0.
Thus, we have thatY : Y0 is incompatible withv1.

2. Y \ (Q[ Z) 6= /0, sinceY \Q 6= /0. Now, since(Q0�
Z)\P = /0 and (Q0 �Z)\ (P[Y) 6= /0, we haveY \
(Q0 �Z) 6= /0. This means thatY0 \ (Q[ Z) 6= /0 and
Y0 \ (Q0�Z) 6= /0 as well. Thus, we have thatY : Y0 is
incompatible withv2.

This completes our proof. �

Corollary 6.3 can be generalized as follows:

COROLLARY 6.4. Let T be an unrooted leaf-labeled tree.
Let X be a p-ECR operation on T that would result in a
tree T0. Suppose the edges corresponding to bipartitions in
C(T)�C(T 0) constitute a forest with k trees. There exist k
ECR operations X1, X2, . . . Xk such that X= Xk ÆXk�1Æ : : :Æ
X1.

Proof. By repeated application of Corollary 6.3. �

6.3 Existence of Irreducible p-ECR moves In this sec-
tion we establish that one can construct an irreduciblep-ECR
move for every set ofp connected edges in any tree. Our
construction relies on the concept of anedge-minimal ele-
mentary bipartite graph, i.e., an elementary bipartite graph
in which the removal of any single edge makes the graph
non-elementary.

THEOREM 6.3. Let T be any unrooted binary tree with at
least p internal edges. Then there is a tree T0 such that
RF(T;T 0) = 2p, and the incompatibility graph between T
and T0 is elementary.

Proof.
The proof is by explicit construction. Given anyT, we

show how to construct such aT 0.
We will call a pair of leaves that are siblings as forming a

cherry. LetT havek cherries,(x1;y1); : : : ;(xk;yk). We create
T 0 thus:T 0 is identical toT as far as tree topology (neglecting
leaf-labels) is concerned. Hence,T 0 also containsk cherries.
In T 0 we let (x1;yk); (x2;y1); (x3;y2); : : : ;(xk;yk�1) be the
cherries. For an illustration of this construction, see Figure
5.

We claim thatT andT 0 are separated by one irreducible
p-ECR move. We will prove this by showing that the
incompatibility graph ofT andT 0 is elementary.

We omit detailed proof and just present an outline here.
Let G = (U;V;E) be the incompatibility graph whereU =
C(T)�C(T0) andV =C(T)�C(T0). Then,

1. It can be shown thatjU j= jVj= p.

2. Observe that our transformation just permutes the
leaves. For each bipartitionπ in U there is a unique
bipartitionπ0 in V that is obtained by just permuting the
leaves inπ according to our transformation. Then,π is
incompatible withπ0.

3. There is a permutation of the vertices inU ,
π1; π2; : : : ;πp, such that
π1; π0

1; π2; π0

2; : : : ;πp; π0

p; π1 is a (Hamiltonian) cycle
in G. See Figure 5 for an example on how to obtain this
permutation.

The presence of a Hamiltonian cycle inG implies that
G is elementary, since the cycle by itself is a minimally
elementary bipartite graph onU andV. This completes our
proof. �
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