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Abstract. In this paper, we introduce a new and highly scalable algo-
rithm, PASTA, for large-scale multiple sequence alignment estimation.
PASTA uses a new technique to produce an alignment given a guide tree
that enables it to be both highly scalable and very accurate. We present
a study on biological and simulated data with up to 200,000 sequences,
showing that PASTA produces highly accurate alignments, improving on
the accuracy of the leading alignment methods on large datasets, and is
able to analyze much larger datasets than the current methods. We also
show that trees estimated on PASTA alignments are highly accurate –
slightly better than SATé trees, but with substantial improvements rela-
tive to other methods. Finally, PASTA is very fast, highly parallelizable,
and requires relatively little memory.
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1 Introduction and Motivation

Multiple sequence alignment (MSA) is a basic step in many bioinformatics anal-
yses, including predicting the structure and function of RNAs and proteins and
estimating phylogenies. Yet only a handful of the many MSA methods are able
to analyze large datasets with 10,000 or more sequences. Performance studies
evaluating MSA methods on large datasets have shown that some MSA methods
can produce highly accurate alignments, as measured by traditional alignment
criteria (sum-of-pairs or column scores) for sufficiently slowly evolving sequence
datasets (e.g., [1]). However, other studies, focusing on phylogeny estimation
from nucleotide datasets, have found that only a handful of MSA methods can
provide good enough alignments on nucleotide datasets with 10,000 or more se-
quences to produce highly accurate trees, even when trees are estimated using
the best maximum likelihood heuristics [2–5]. However, these studies have relied
upon benchmarks with at most 28,000 sequences, and so little is known about
alignment accuracy and its impact on tree accuracy for larger datasets. Yet, phy-
logenetic analyses of sequence datasets containing more than 100,000 nucleotide
sequences are being attempted by at least two groups that we are aware of: the
iPTOL project [6] and the Thousand Transcriptome project (1KP)[7].
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In this paper we present PASTA, “Practical Alignments using SATé and
TrAnsitivity”, a new method for ultra-large multiple sequence alignment of nu-
cleotide sequence datasets. PASTA begins with an alignment and tree estimated
using a very simple profile HMM-based technique and then re-aligns the se-
quences using the tree. If desired, a new tree can be estimated on the new
alignment, and the algorithm can iterate.

The key to the accuracy and scalability of PASTA is the novel technique it
uses for estimating an alignment on a guide tree. As in SATé [3], PASTA uses the
centroid edge dataset decomposition technique and computes MAFFT -linsi [8]
alignments on the subsets; however, PASTA and SATé merge these subset align-
ments into an alignment on the full dataset using very different techniques. While
SATé uses Opal [9] (or Muscle [10, 11], if the dataset is too large) to hierarchically
merge all the subset alignments into a single alignment, PASTA uses Opal only
to merge pairs of adjacent subset alignments, producing overlapping alignments,
then treats each resultant alignment as an equivalence relation and uses tran-
sitivity to merge these larger alignments. The result is a very fast re-alignment
method that is highly parallelizable and easily scales to large datasets. Further-
more, this re-alignment step in PASTA is a negligible fraction of the PASTA
analysis, whereas the re-alignment step in SATé is the majority of its running
time on large datasets (44% of the running time for datasets with 10K sequences,
and 78% of the time for datasets with 50K sequences). Thus, PASTA is dramat-
ically faster than SATé on large datasets. Interestingly, PASTA produces more
accurate alignments and trees than SATé. We demonstrate PASTA’s speed and
accuracy on a collection of datasets, including a 200K-sequence RNASim dataset
[12], which we align in less than 24 hours using PASTA on a 12-core machine.

2 PASTA

We describe PASTA and present some theorems about its performance guaran-
tees and running time; due to space limits, proofs are provided in the appendix.

PASTA uses an iterative divide-and-conquer strategy to align an input set S
of sequences, and uses the following input parameters: a starting tree (default our
HMM-based profile alignment technique, described below), subset size k (default
200), a subset alignment technique (default MAFFT -linsi), an alignment merger
technique (default OPAL), and a stopping rule (default 3 iterations).

The first iteration begins with the starting tree, and subsequent iterations
begin with the tree estimated in the previous iteration. Each iteration involves
six steps, shown in Figure 1.

Starting Tree: PASTA can begin with any reasonable starting tree, but here
we describe the simple technique, similar to that used in [14, 15], that we use
in these experiments. We take a random subset X of 100 sequences from S and
compute a SATé alignment A on the set; this is called the “backbone alignment”.
We then use HMMER [16, 17] to compute a Hidden Markov Model on A, and to
align all sequences in S−X one by one (and independently) to A, and hence build
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Step 1 Decompose the input set S into subsets S1 . . . Sm of size at most k.
Step 2 Compute a spanning tree T ∗ to connect the subsets S1 . . . Sm.
Step 3 Align each subset using the subset alignment technique.
Step 4 Merge the two alignments on endpoints of each edge in T ∗.
Step 5 Use successive applications of transitive closure to merge the overlap-

ping and compatible alignments obtained in Step 4.
Step 6 Compute a maximum likelihood (ML) tree on the full MSA using

FastTree-2 [13].

Fig. 1. Algorithmic steps of PASTA for each iteration

an alignment of the full dataset. We then construct a ML tree on this alignment
using FastTree-2 [13]. If this technique fails to produce an alignment on the
full set of sequences (which can happen if HMMER considers some sequences
unalignable), we randomly add the unaligned sequences into the tree obtained
on the alignment obtained by HMMER.

Step 1: We use the centroid decomposition technique in SATé [3] on the current
guide tree to divide the sequence set into disjoint sets, S1, . . . , Sm, each with at
most k sequences. If the tree has at most k leaves, we return the set of sequences;
otherwise, we find an edge in the tree that splits the set of leaves into roughly
equal sizes, remove it from the tree, and then recurse on each subtree.

Step 2: We compute a spanning tree T ∗ on the subsets, S1, S2, . . . , Sm, as
follows. For every i, we compute the set of nodes v in the guide tree that are on
a path between two leaves that both belong to Si, and we label all these nodes
by Si; thus, if v is a leaf and belongs to Si, we label v by Si. Then, if some nodes
are not yet labelled, we propagate labels from nodes to unlabelled neighbors
(breaking ties by using the closest neighbor according to branch lengths in the
guide tree) until all nodes are labelled. We then collapse edges that have the
same label at the endpoints. The result is a spanning tree on S1, S2, . . . , Sm.

Step 3: We compute MSAs on each Si using the subset alignment method spec-
ified by the user. We refer to each such alignment as a “Type 1 sub-alignment”.

Step 4: Every node in T ∗ is labelled by an alignment subset for which we
have a Type 1 sub-alignment from Step 3. For every edge (v, w) in T ∗, we use
the specified alignment merger technique to merge the Type 1 sub-alignments
at v and w; this produces a new set of alignments, each containing at most 2k
sequences, which are called “Type 2 sub-alignments”. We require that the merger
technique used to compute Type 2 sub-alignments not change the alignments on
the Type 1 sub-alignments; therefore, Type 2 sub-alignments induce the Type 1
sub-alignments computed in Step 2.
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Step 5: We compute the transitivity merge through a sequence of pairwise
transitivity mergers. To motivate this technique, we note that every MSA defines
an equivalence relation on the letters within its sequences, whereby two letters
are in the same equivalence class if and only if they are in the same column [18].
Hence given two alignments A and B that induce identical alignments on their
shared sequences (called overlapping compatible alignments henceforth), we can
define an equivalence relation on the union of the letters from their sequence
subsets, as follows: a and b are in the same equivalence class for the merged
alignment if and only if at least one of the following is true: (1) they are in the
same equivalence class in A or B, or (2) there is some letter c such that a and
c are in the same equivalence class in one alignment, and b and c are in the
same equivalence class for the other alignment. This is the basis for the pairwise
transitivity merger, but the spanning tree enables this technique to extend to
a set of alignments through a sequence of pairwise transitivity mergers in a
computationally efficient manner. We provide details for the transitivity merge
in the appendix.

Step 6: If an additional iteration (or a tree on the alignment) is desired, we run
FastTree-2 [13] to estimate a maximum likelihood tree on the MSA produced in
the previous step. To speed up this step, we mask all sites that have more than
99.9% gaps in the alignment obtained in Step 5. Note that PASTA’s alignment
merging step is conservative in introducing new homologies (only what is nec-
essary through transitivity is added) and thus PASTA tends to produce many
gappy columns. Masking these highly gapped columns is harmless for the tree
estimation step but has a dramatic effect on the running time.

Running Time Considerations. PASTA keeps alignments in the memory in a
condensed format by representing each sequence by its unaligned sequence and
column indices for each letter. So, for example, (‘ACCA’,[1,3,5,6]) corre-
sponds to ‘A-C-CA’. This format reduces the memory requirement of PASTA,
as well as the running time for each transitivity merge.

As long as each pairwise transitivity merge is performed correctly, the final
output multiple sequence alignment does not depend on the order in which edges
of the spanning tree are processed, but the order can impact the running time.
However, if we merge sub-alignments using the reverse order of the centroid edge
deletions, then the running time can be bounded, as follows:

Theorem 1. Given m Type 1 alignments and m−1 Type 2 alignments, the algo-
rithm to compute the transitivity merge of these alignments uses O(Km logm+
Lm) time, where K is the maximum length of any sequence (not counting gaps)
in any Type 1 alignment, and L is the length of output alignment.

The bound given in the theorem is achievable using an order of edge contrac-
tions that reverses the order of centroid edge deletions; however, an arbitrary
order of edge contractions can result in a worst case O(Km2 + Lm) running
time; see Supplementary Material [19] for discussion and proof.
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Table 1. Empirical statistics of large datasets based on reference alignments. Number
of sequences, number of sites, proportion of gap characters, maximum p-distance, and
average p-distance are given for each dataset (the p-distance is the fraction of sites
in which two sequences differ). For 10K RNASim datasets, the given values are aver-
ages over 10 replicates. For RNASim datasets with 100K and 200K sequences, pairwise
distances could not be computed; however, since 100K and 200K datasets are ran-
dom subsamples from the same alignment as 10K and 50K datasets, their alignment
statistics are likely very close to those of 10K and 50K.

Dataset # Sequences # Sites Proportion gaps Max p-dist Avg p-dist

Gutell 16S.B.ALL 27,643 6,857 0.800 0.769 0.210
Gutell 16S.T 7,350 11,856 0.874 0.900 0.345
Gutell 16S.3 6,323 8,716 0.821 0.832 0.315

RNASim 10,000 10,000 8,637 0.820 0.616 0.410
RNASim 50,000 50,000 12,400 0.875 0.620 0.410
RNASim 100,000 100,000 14,316 0.891 ≈ 0.62 ≈ 0.410
RNASim 200,000 200,000 16,365 0.905 ≈ 0.62 ≈ 0.410

3 Experimental Setup

Datasets. To evaluate the accuracy on moderate size datasets, we use 1000-taxon
simulated datasets from [2]. For evaluating performance on larger datasets, we
used RNASim, a simulated RNA dataset with 1,000,000 sequences [12], subsam-
pling it to create datasets with 10,000, 50,000, 100,000, and 200,000 sequences.
For the 10K case we created 10 different replicates, but for other cases, due to
running time requirements, we created only one replicate. Finally, we use three
large 16S biological datasets obtained from the Gutell lab [20], and previously
studied in [2]. These datasets include 16S.3 with 6323 sequences, 16S.T with 7350
sequences, and 16S.B.ALL with 27,643 sequences. The reference alignments for
the biological datasets are based on secondary structure, and the reference trees
are computed on these reference alignments using RAxML [21], with all edges
having bootstrap support less than 75% contracted; using other thresholds pro-
duces similar results (see online supplementary materials [19]). The reference
alignments and trees for the simulated datasets are the true alignment and true
trees, which are known because they are the result of a simulation process. Ta-
ble 1 shows more statistics about the reference alignments.

Methods. We compare PASTA to SATé, Muscle, MAFFT-Profile [22], ClustalW
(quicktree algorithm) [23], and also to our approach for obtaining the starting
alignment and tree. PASTA results are based on the default settings: three iter-
ations, subset size set to 200, MAFFT-linsi used on subsets, and Opal used for
merging alignments. The starting tree is obtained by the technique described in
Section 2. MAFFT-Profile is a version of MAFFT that can add new sequences
into an existing backbone alignment [22]; we provide MAFFT-Profile the same
backbone alignment that we use for the starting tree of PASTA. We run SATé
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with identical starting trees as PASTA, and we also run SATé for three itera-
tions. Due to high computational costs of OPAL on large datasets, we use Muscle
for merging alignments inside SATé for datasets with 5,000 sequences or more,
and otherwise we use the default settings in SATé. Finally, we use FastTree-2
to compute ML trees on each alignment. See supplementary material [19] for
commands and version numbers.

Criteria. We measure the alignment accuracy, tree error, and running time.
Alignment accuracy is measured using FastSP [18] with two different metrics: the
SP-score (the percentage of homologies in the reference alignment recovered in
the estimated alignment) and the modeler score (the percentage of homologies in
the estimated alignment that are correct), averaged together to get one measure.
Note that SP-score is the complement of the SP-FN error rate, and the modeler-
score is the complement of the SP-FP error rate; thus our measure of alignment
accuracy is influenced equally by false positive and false negative homologies.
In addition, we also report the number of columns that are recovered entirely
correctly in the estimated alignment (TC score). The standard error metric for
tree estimation is the bipartition distance, also known as the Robinson-Foulds
(RF) rate; however, this metric is not appropriate when the reference tree is
not fully resolved, as is the case for the biological datasets. Therefore, we use
the False Negative (FN) rate, which is the percentage of true tree edges missing
in the estimated trees, to evaluate estimated trees. Note that the FN rate is
identical to the RF rate when both estimated and reference trees are binary.

Computational Platform. We ran all methods on the Lonestar Linux cluster at
TACC [24], and each run was given one node with 12 cores and 24 GB of memory.
Since running time on Lonestar is limited to 24 hours, we were only able to run
techniques that could finish in 24 hours (see below). However, PASTA and SATé
are iterative techniques, and we allowed them to perform as many iterations (but
no more than three) as they could complete within 24 hours. We report the wall
clock time in all cases.

4 Results

Ability to complete analyses. We report which methods completed analyses
within 24 hrs using 12 cores and 24 GB of memory. All methods completed
on all datasets with at most 10,000 sequences. On 16S.B.ALL, all methods ex-
cept for ClustalW finished. However, ClustalW, Muscle, and SATé-2 failed to
complete on the RNASim datasets with 50,000 sequences or more, and MAFFT-
profile failed to complete on the RNASim dataset with 200K sequences. On 100k
RNAsim, PASTA finished 2 iterations in 24 hours, and on 200k, PASTA was able
to complete one iteration and was the only method that could run.

1000-Taxon datasets from SATé papers. We studied PASTA on the 1000-taxon
simulated datasets from [2, 3] and observed that PASTA trees matched the
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Fig. 2. Tree error rates on RNASim 10K-200K (left) and biological (right)
datasets.We show missing branch rates for maximum likelihood trees estimated on the
reference alignment as well as alignments computed using PASTA and other methods;
results not shown indicate failure to complete within 24 hours using 12 cores on the
datasets. Error bars on 10,000 RNASim dataset show standard error over 10 replicates.

accuracy of SATé trees and had improved alignment accuracy; PASTA was also
more accurate than the other methods we tested (Opal, Muscle, and MAFFT);
see supplementary materials for these results [19].

Tree Error on RNASim and biological datasets. Figure 2 reports results for
tree error rates of ML trees on the reference alignments and on the different
estimated alignments for the RNASim and biological datasets. On the RNASim
data, PASTA returns the most accurate trees, coming very close to FastTree trees
on the reference (true) alignment. The difference between PASTA and trees on
the next most accurate alignment is very large. Note also that only PASTA and
its starting tree complete within the time limit on the 100K and 200K sequence
datasets. Furthermore, PASTA has very low error rates overall (e.g., only 6.4%
tree error on the 200K dataset).

We also show results for the biological datasets using the 75%-support refer-
ence trees. FastTree-2 trees computed on the reference alignments had the best
accuracy. PASTA, SATé, and Muscle came next, and the remaining methods
had poorer accuracy.

Alignment Accuracy on the RNASim and biological datasets. Figure 3 compares
methods with respect to two ways of evaluating accuracy - the total column
score (TC) and the average of the SP-score and modeler score. On the RNASim
data, PASTA returns by far the most accurate alignments of all methods tested
according to TC, and its SP-scores are better than all other methods except the
starting alignment. Furthermore, the PASTA alignment had high accuracy: on
the 200K dataset, its sum-of-pairs accuracy was 88% and more than 800 columns
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Fig. 3. Alignment accuracy on the RNASim 10K-200K (left) and biological
(right) datasets. We show the number of correctly aligned sites (top) and the average
of the SP-score and modeler score (bottom). The starting alignment was incomplete on
the 16S.T dataset, and so no result is shown for the starting alignment on that dataset.

were recovered entirely correctly. Another interesting trend is that as the number
of sequences increases, the alignment accuracy decreased for MAFFT-profile but
not for PASTA.

The biological datasets are smaller (see Table 1) and so are not as challenging.
On the 16S.T dataset, the starting alignment did not return an alignment with
all the sequences on the 16S.T dataset because HMMER considered one of the
sequences unalignable. However, the starting alignment technique had good SP-
scores for the other two datasets. Of the remaining methods, PASTA has the
best sum-of-pairs scores (bottom panel), and MAFFT-profile has only slightly
poorer scores; the other methods are substantially poorer. With respect to TC
scores, on 16S.B.ALL and 16S.T, PASTA is in first place and SATé is in second
place, but they swap positions on 16S.3. TC scores for the other methods are
clearly less accurate, though Muscle does fairly well on the 16S.B.ALL dataset.

Comparison to SATé on 50,000 taxon dataset. SATé could not finish even one
iteration on the RNASim with 50,000 sequences running for 24 hours and given
12 CPUs on TACC. However, we were able to run two iterations of SATé on a
separate machine with no running time limits (12 Quad-Core AMD Opteron(tm)
processors, 256GB of RAM memory). Given 12 CPUs, each iteration of SATé
takes roughly 70 hours, compared to 5 hours for PASTA, and as shown next, the
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Table 2. Two iterations of PASTA compared to SATé on 50,000 RNASim given more
than 24 hours of running time (outside TACC)

Alignment Accuracy Tree Error Running Time
SP-score Modeler score TC FN (hours)

PASTA-2iter 80.2% 81.8% 311 8.2% 10

SATé-2iter 20.5% 55.9% 30 12.6% 137
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Fig. 4. Alignment running time (hours). Note that PASTA is run for three iterations
everywhere, except on 100,000-sequence RNASim dataset where it is run for two iter-
ations, and on the 200,000-sequence RNASim dataset where it is run for one iteration.

majority of SATé running time is spent in the merge step. However, the resulting
SATé alignment is much less accurate, and produces trees that are substantially
less accurate than PASTA (see Table 2).

Running Time. Figure 4 compares the running time (in hours) of different align-
ment methods. PASTA is faster than SATé, and MAFFT-Profile is faster than
PASTA on the smallest datasets. However, the running time of MAFFT-Profile
grows faster than PASTA so that at 200,000 sequences it is not able to finish in 24
hours, while PASTA can. Muscle is faster than PASTA on datasets with 10,000
sequences or less, but is slower on 16S.B.ALL, the only dataset above 10,000 se-
quence where it can actually run. Our approach for producing the starting tree
is the fastest method on all datasets, and ClustalW is always the slowest. How-
ever, note that neither Clustalw or Muscle is parallelized and so these methods
cannot take advantage of the multiple cores.

Figure 5a presents the running time comparison to SATé. Note that merging
subset alignments is the majority of the time used by SATé to analyze the
50K RNASim dataset, but a very small fraction of the time used by PASTA.
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Fig. 5. Running time comparison of PASTA and SATé. (a) Running time pro-
filing on one iteration for RNASim datasets with 10K and 50K sequences (the dotted
region indicates the last pairwise merge). (b) Running time for one iteration of PASTA
with 12 CPUs as a function of the number of sequences (the solid line is fitted to the
first two points). (c) Scalability for PASTA and SATé with increased number of CPUs.

The reason SATé uses so much time is that all mergers are done hierarchically
using either Opal (for small datasets) or Muscle (on larger datasets), and both
are computationally expensive with increased number of sequences. For example,
the last pairwise merge within SATé, shown by the dotted area in Figure 5a,
is entirely serial and takes up a large chunk of the total time. PASTA solves
this problem by using transitivity for all but the initial pairwise mergers, and
therefore scales well with increased dataset size, as shown in Figure 5b (the
sub-linear scaling is due to a better use of parallelism with increased number of
sequences). Finally, Figure 5c shows that PASTA is highly parallelizable, and
has a much better speed-up with increasing number of threads than SATé does.
While PASTA has a much improved parallelization, it does not quite scale up
linearly, because FastTree-2 does not scale up well with increased thread count.

Divide-and-Conquer strategy: impact of guide tree. We also investigated the im-
pact of the use of the guide tree for computing the subset decomposition, and
hence defining the Type 1 sub-alignments. We compared results obtained using
three different decompositions: the decomposition computed by PASTA on the
HMM-based starting tree, the decomposition computed by PASTA on the true
(model) tree, and a random decomposition into subsets of size 200, all on the
RNASim 10k dataset. PASTA alignments and trees had roughly the same ac-
curacy when the guide tree was either the true tree or the HMM-based starting
tree (Table 3). However, when based on a random decomposition, tree error in-
creased dramatically from 10.5% to 52.3%, and alignment scores also dropped
substantially. Thus, the guide-tree based dataset decomposition used by PASTA
provides substantial improvements over random decompositions, and the default
technique for getting the starting tree works quite well.
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Table 3. Effect of subset decomposition in PASTA algorithm, based on one iteration
of PASTA on one replicate of the 10k RNASim dataset

Alignment Accuracy Tree Accuracy
SP-score Modeler score TC FN

Random 78.4% 81.4% 2 52.3%

Phylogeny-based (estimated tree) 86.3% 87.3% 138 10.5%

Phylogeny-based (true tree) 85.5% 86.7% 133 10.5%

5 Discussion and Future Work

One of the intriguing observations in this study is that alignment accuracy mea-
sures are not always predictive of tree accuracy. For example, on the Gutell
datasets, MAFFT-profile produced less accurate trees than Muscle, yet had bet-
ter sum-of-pairs alignment accuracy scores. Similarly, the PASTA starting align-
ment is typically among the best in terms of alignment accuracy but far from the
best in terms of tree error. Most likely this is because not all pairwise homologies
are equally important for phylogeny estimation, and alignment accuracy mea-
sures treat pairwise homologies identically. Failing to recover some homologies
may not have much impact on tree estimation, while other homologies may be
essential for phylogenetic accuracy. Furthermore, alignment methods that aim
to recover the conserved regions may be able to have high alignment accuracy
scores but fail to produce good trees - because conserved regions may not be
as useful for phylogeny estimation as regions that change. Thus, the sites and
even specific homologies that are most informative of the phylogenetic branching
process may not be the homologies that many alignment methods are trained to
recover. More generally, then, this disconnect suggests a real challenge in using
alignment metrics to predict the utility of an alignment, especially if the purpose
of the alignment is phylogeny estimation.

We have shown results for the current default version of PASTA; however,
we also explored variants where we changed some algorithmic parameters (see
supplementary material [19]). We found PASTA to be robust to the choice of the
starting tree. Interestingly, while varying the alignment subset size (between 50
and 200) had only a small impact on accuracy, PASTA run with smaller align-
ment subsets is much faster, raising the possibility that comparable accuracy at
reduced running time might be achievable through smaller alignment subsets.

Finally, we note that PASTA, like SATé, is a method that “boosts” the per-
formance (accuracy and/or scalability) of the base method used to align subsets.
The good performance using MAFFT as the base method suggests the possibility
that PASTA could be used to extend computationally intensive statistical meth-
ods, such as BAli-Phy [25], to large datasets, while maintaining their accuracy.
Our future work will explore this possibility.
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6 Conclusions

PASTA is a new method for nucleotide sequence alignment and tree estimation
that is designed for speed, scalability, and accuracy, especially for large datasets.

PASTA is based on SATé, but its design allows it to provide improved accu-
racy while using only a fraction of the time on large datasets. The key algorithmic
contribution is the new technique for aligning sequences on a given guide tree.
This algorithmic design addresses computational limitations in SATé and other
methods, however it also provides improved accuracy on large datasets because
it uses transitivity to extend highly accurate overlapping alignments rather than
trying to directly infer homologies between distantly related sets of sequences.

PASTA is fast and also scales well with the number of processors, so that
datasets with even 200,000 sequences can be analyzed in less than a day with
a small number of processors. Thus, highly accurate alignment and phylogeny
estimation is possible, even on hundreds of thousands of sequences, without
supercomputers.

PASTA software is implemented by extending the SATé code, and is publicly
available at https://github.com/smirarab/pasta. Datasets are available at
http://www.cs.utexas.edu/users/phylo/software/pasta/.
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A Appendix: Computing the Transitivity Merge

We compute the transitivity merge through a sequence of pairwise transitivity
mergers. Recall that every node v in the spanning tree T ∗ computed in Step 2 is
labelled by an alignment subset (i.e., a subset of the input sequence dataset on
which we have a Type 1 sub-alignment). In addition, during Step 4, we computed
Type 2 sub-alignments for every pair of Type 1 sub-alignments whose alignment
subsets are adjacent in the spanning tree T ∗. We now define a set S(v) for every
vertex v and Label(e) for every edge e, as follows. For node v in T ∗, we define
the set S(v) = {Xv} where Xv is the alignment subset associated to the node
v, and for edge e = (v, v′), we set Label(e) = (Xv, Xv′). Note that S(v) is a
set containing one element - the alignment subset associated to v - and that
Label(e) is a pair of alignment subsets. Furthermore, we have computed Type 2
sub-alignments for each X ∪ Y where Label(e) = (X,Y ).

We will use T ∗ to guide a sequence of pairwise transitivity mergers, resulting
finally in an MSA for the full set of sequences. As we do so, we will modify T ∗

through a sequence of edge contractions, until there is only one vertex left. The
contraction of an edge e = (v, w) will create a new vertex x with a new label

https://github.com/smirarab/pasta
http://www.cs.utexas.edu/users/phylo/software/pasta/
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S(x) = S(v) ∪ S(w), but will not modify the labels at the edges. Therefore, at
every point in the process, each edge will be labelled by a pair of alignment
subsets for which we have a Type 2 sub-alignment, and each vertex will be
labelled by a set of alignment subsets. Some edge contractions will require that
we compute a transitivity merge of two overlapping compatible alignments. The
new sub-alignments that result from transitivity mergers are called “Type 3 sub-
alignments”, and these Type 3 sub-alignments are defined by transitivity applied
to some subset of the Type 2 sub-alignments.

For an edge e = (v, w) and Label(e) = (Si, Sj), we have a Type 2 sub-
alignment Aij on Si ∪Sj , and S(v)∩S(w) = ∅. If S(v) and S(w) are singletons,
then collapse the edge, and label the new vertex by the union of the labels at the
endpoints. Otherwise, at least one endpoint of e is labelled by a set containing
two or more alignment subsets, and the alignments Av and Aij are overlapping
compatible alignments. Therefore, the three alignments Aij , Av, and Aw are all
compatible, and so we can use transitivity (i.e., treating each alignment as an
equivalence relation) to define the “transitivity merge” of these three alignments.
To compute this transitivity merge, we first mergeAv andAij , and then we merge
the resulting alignment with Aw (each step involves merging two overlapping
compatible alignments). The result of each merger of these three MSAs creates
a Type 3 sub-alignment on S(v) ∪ S(w). We contract the edge (v, w) to create
the new node x, and we set S(x) = S(v) ∪ S(w).

Transitivity merge of two alignments. To compute the transitivity merge of two
overlapping compatible alignments A and B, given two columns (one in A and
the other in B) that share a common letter (i.e. the ith character of the jth

sequence) we simply merge the two columns into one column.

Theorem 2. Given m Type 1 alignments and m−1 Type 2 alignments, the algo-
rithm to compute the transitivity merge of these alignments uses O(Km logm+
mL) time, where K is the maximum length of any sequence (not counting gaps)
in any Type 1 alignment and L is length of output alignment.

Proof (Sketch): We begin with the following observation, which we provide
without a proof due to space limitations (but see our supplementary material
[19]). Lemma: Let X,Y, and Z be disjoint sequence datasets, and alignments A
and A′ be alignments on X ∪ Z and Y ∪ Z, respectively, that induce identical
alignments on Z. Let K be the length of the longest sequence in X, Y, and Z,
and L be the total number of sites in A and A′. Then we can merge alignments
A and A′ using transitivity in O(L + (|X |+ |Y |+ |Z|)K).

Let our dataset consist of N sequences, with each sequence of length at most
K, and for the sake of simplicity, assume that our decomposition produces m
subsets, all with equal sizes (note that centroid decomposition produces balanced
subsets, so this assumption is justified). As described before, in Step 5, we chose
an edge e = (v, w) from the spanning tree, contract that edge, and perform two
transitivity merges: one between S(v) and Label(e), and another between the
result of the first merger and S(w).



190 S. Mirarab, N. Nguyen, and T. Warnow

Based on the Lemma above, the first transitivity merge will have a run-
ning time of O(K(|S(v)| + 2) + L), and the second merge will have a cost
of O(K(|S(v)| + |S(w)|) + L), and thus the cost of each edge contraction is
O(K(2 ∗ |S(v)| + |S(w)|) + L). Now, imagine the case where the spanning tree
is a path. If we start merging from one end to the other end, we get the total
running time of O(K(3 + 4+ . . .+m)) = O(Km2); however, we can improve on
that. The important observation is that the spanning tree should be traversed
such that transitivity mergers are between alignments with balanced number of
sequences on each side.

The order in which edges are processed in PASTA is obtained by a recursive
approach. Given the spanning tree, we divide it into two halves on the centroid
edge, and thus obtain two roughly equal size subtrees. We process each half re-
cursively using the same strategy, and thus get two single leaves at the endpoints
of the centroid edge. Each leaf would represent the merger of all alignments in
each half, and by construction they would have roughly equal size. We then
contract the centroid edge, merge the two sides, and obtain the full alignment.
If each half has roughly x sequences, the cost of the final edge contraction is
O(K(2x+ x) +L) = O(3Kx+L) (as shown before). If f(x) denotes the cost of
applying our transitivity merger on a spanning tree with x nodes, we have

f(2x) = 2f(x) + 3kx+ L

which has a O(x log(x)+xL) solution. Therefore, our particular order of travers-
ing the spanning tree results in a total cost of O(Km log(m) +mL).
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