Computational Biology – Class Presentation

Gene Trees in Species Trees

Wayne P. Maddison

Published in *Systematic Biology*, Vol. 46, No.3 (Sept 1997), pp. 523-536

Overview

- Gene Trees and Species Trees
- Processes of Discord
 - Horizontal Transfer
 - Lineage Sorting or Deep Coalescence
 - Gene Duplication/Extinction
- Reconstructing Species Tree Using Gene Trees
- Using MLE for Deep Coalescence
- Species Phylogeny New interpretation
- Conclusion

Gene Trees and Species Trees

• Species Trees / Phylogenetic tree

- Pattern of branching of species lineages via the process of speciation

- Gene Trees
 - Formed due to gene replication.
 - Broken into several pieces. Due to recombinations within populations
- What is the relationship between Species Trees and Genes Trees?

Gene Trees and Species Trees

- Gene copies within reproductive communities are also split
- Gene trees contained within branches of species phylogeny

Discord between Gene Trees and Species Trees

- If in agreement gene copies should show same branching topology as species tree
- Gene trees has more terminals when more gene copies or extant gene copies are considered

Horizontal Transfer

- Renegade genes breaking confines of species lineages
- Occurs by isolated hybridization events across phylogeny and by vector transfer
- Successful transfer less likely the more phylogentically distant the original and receiving species

Lineage Sorting or Deep Coalescence

Branch short and wide: Deep coalescence likely

- Common ancestry of gene copies at a single locus extends deeper than speciation events
- Coalescence theory views this process backwards in time
- With large population, gene copies take many generation to 'coalesce'

Lineage Sorting or Deep Coalescence

 Larger the population size and shorter the phylogenetic branch, lesser the chances to coalesce before speciation event

Gene Duplication and Extinction

- Gene duplication yields a second locus
- Both evolve, but only one survive

Gene Duplication and Extinction

- Different from deep coalescence
 - Does not depend on population size
- Reason:
 - Different gene copies are competing for the same locus in deep coalescence
 - Two copies at different loci in the genome not competing for the same site in gene duplication

Reconstructing Species Trees from Gene Trees

- Gene trees can disagree with their containing species trees
- Even if gene tree is reconstructed correctly, reconstructed species trees can be wrong
- Gene tree good indicator for small population size relative to phylogenetic branch length
- Simplest approach choose the commonest gene tree. Does this works?

Reconstructing Species Trees from Gene Trees

- Simplest approach could fail to reflect the overall support for another tree if a series of less common trees were nearly in agreement and together were much more numerous than the modal tree
- Parsimony procedure to explain evolutionary events

Reconstructing Species Trees from Gene Trees

- Example
 - Ten gene loci sampled from species A, B, C and D
 - (a) and (b) occurs in three genes each
 - (c) occurs in four genes

- Simplest approach count number of transfers required. But how?
- Common Algorithms used
 - Brooks parsimony analysis
 - Nearest Neighbor Interchange metric (NNI)

- Brooks parsimony analysis
 - Uses algorithm for mapping character state trees onto species trees
 - Considers transfer events as character state changes
- Drawback
 - Their cost of gene transfer depends on distance between entering and resident genes

- Nearest Neighbor Interchange
 - Counts branch moves to convert one tree into another
- Drawback
 - Horizontal transfer in nature is not restricted to series of neighbor events

- Required Method that
 - counts minimal number of branch moves required to convert one tree into another
 - Does not violate linear time order
 eg. Move from branch A to branch B and from
 descendant of B to ancestor of A

Reconstructing Species Trees [Considering Horizontal Transfer] Maddison's Approach

- Direct manual examination of species trees and gene trees
- If gene tree and species tree match, number of transfer events = 0
- Complete explanation requires complicated events to happen (like extinct species to split early and survive long enough to transfer gene
 - ghost lineage)

			Gene tree									
	(<i>A</i> (<i>B</i> (<i>C</i> , <i>D</i>)))			((A,C)(B,D))			(C(A(B,D)))			Totals		
Species tree	HT	DC	D/E	HT	DC	D/E	HT	DC	D/E	HT	DC	D/E
(A(B(C,D)))	0	0	0/0	1	2	1/4	1 + g ^a	2	1/4	7 + 4g	14	7/28 ^b
(A(C(B,D)))	1	1	1/3	1	1	1/3	1	1	1/3	10	10 ^b	10/30
(A(D(C,B)))	1	1	1/3	1	2	1/4	1 + g	2	1/4	10 + 4g	17	10/37
(B(A(C,D)))	1	1	1/2	1	2	1/4	2	3	2/7	14	21	14/46
(B(C(A,D)))	2	2	1/4	1	2	1/4	1	3	2/7	13	24	14/52
(B(D(C,A)))	2	2	1/4	1	1	1/3	2	3	2/7	17	21	14/49
(C(A(B,D)))	1	3	2/7	1	1	1/3	0	0	0/0	6 ^b	12	9/30
(C(B(A,D)))	2	3	2/7	1	2	1/4	1	1	1/2	13	19	13/41
(C(D(B,A)))	2	3	2/7	1	2	1/4	1	1	1/2	13	19	13/41
(D(A(B,C)))	1	3	2/7	1	2	1/4	2	3	2/7	14	27	17/61
(D(B(A,C)))	2	3	2/7	1	1	1/3	2	3	2/7	17	24	17/58
(D(C(B,A)))	2	3	2/7	1	2	1/4	1	3	2/3	13	27	17/45
((A,B)(C,D))	1	1	1/3	2	2	1/4	1	2	2/6	13	17	14/45
((A,C)(B,D))	1	2	2/6	0	0	0/0	1	1	1/3	7	10 ^ь	10/30
((A,D)(C,B))	1	2	2/6	2	2	1/4	1	2	2/6	13	20	17/54

a g = "ghost" species lineage, which is unobserved and survived long enough to effect transfer.

^b Preferred species tree(s) for each model.

- Here in this case E is a "ghost" species lineage
- E could have gone extinct after the horizontal transfer to C

Reconstructing Species Trees [Considering Lineage Sorting]

- Number of 'extra' gene lineages on species branches – used for MP
- Bold lines coexisting gene lineages that fail to coalescence
 - Extra lineage Count: number of gene lineages minus one

Reconstructing Species Trees [Considering Duplication / Extinction]

- Goodman et al
 - Developed algorithm that counts duplication and extinction events when fitting gene tree on species tree

Considering all events together

- Gene tree may be mapped onto species tree invoking bit of all three events
- Problems
 - Algorithm difficulties of assessing multitude of possible scenarios that could be used to fit any given gene tree
 - Difficulty of weighting these different events

Considering all events together

- Each event depend on different circumstances for its occurrence
- Example
 - With longer generations, deep coalescence not favored
 - If vectors and other means are unavailable, horizontal transfer unlikely
 - At small scales, near species level, gene duplication unlikely

Considering all events together

- Depending on process assumed, most parsimonious species tree could be chosen by counting minimal numbers of transfers, extra gene lineages or duplication and extinction events
- multiple species occupying an area coexist without competition – then behavior more like duplicated genes
- If competition exist, behavior more like alleles at a locus

Species Tree Using MLE

- Considering deep coalescence
 - Coalescence theory provides probability to coalesce
 - Using parameter related to length versus width of the branch
 - Likelihood of species tree calculated using probability of obtaining set of gene trees from proposed species phylogeny
 - Likelihood depends on
 - Coalescence theory
 - Model of nucleotide evolution

Species Tree Using MLE

The likelihood of a given species tree would then be the product, over all loci, of the probability of obtaining the sequences observed at the locus given the species tree:

·*P*(gene tree|species tree)]

Species Tree Using MLE

- Probability of occurrence of gene trees given species trees – from coalescence theory
- Probability of occurrence of sequences given gene trees – from model of nucleotide evolution
- Searching ML tree extremely tedious due to consideration of every species tree for all gene trees
- Felsenstein pointed out possibility of sampling among gene trees in proportion to coalescence probabilities

Phylogeny as a Cloud of Gene Histories

- Using Coalescence theory, ancestors of two sampled gene copies B and C will coalesce with each other about 76 % of the time
- Species phylogeny composed 76% of fig b, 12% of fig c ...

Phylogeny as a Cloud of Gene Histories

- Phylogeny statistical distribution of samples from population
- Uncertainty intrinsic part of phylogeny
- Analogous to uncertainty in determining exact position of an electron

Phylogeny as a Cloud of Gene Histories

- To prevent fuzz, can we delimit our species broadly enough?
- Unlikely
 - Since species delimitations would broaden considerably – if gene coalescence exclusivity were applied in its strictest conceivable form
 - May guarantee phylogenetic cleanliness, but tree could still misbehave in its deeper areas
 - because trees of different genes can still disagree on how two species relate

Phylogeny as a Model of Probabilities of Interbreeding

- Phylogeny more than composite of gene histories
- Under model of realized gene histories, species tree consists of gene trees
- Under a model of species tree as fragmenting container that stands apart from and constrains descent of gene trees

Overview

- Gene Trees and Species Trees
- Processes of Discord
 - Horizontal Transfer
 - Lineage Sorting or Deep Coalescence
 - Gene Duplication/Extinction
- Reconstructing Species Tree Using Gene Trees
- Using MLE for Deep Coalescence
- Species Phylogeny New interpretation
- Conclusion

Conclusion

- Other concepts of phylogeny
 - Could be viewed as extended pedigree of individual organisms, a summary of realized matings
- Important conclusion
 - "History of genetic descent does not take the form of a simple tree with stick-like branches"
 - Need to confront the composite, cloud like nature of genetic history