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Abstract. This paper presents a new synthesis-based approach for writ-
ing low-level memory-safe code. Given a partial program with missing
guards, our algorithm synthesizes concrete predicates to plug in for the
missing guards such that all buffer accesses in the program are memory
safe. Furthermore, guards synthesized by our technique are the simplest
and weakest among guards that guarantee memory safety, relative to the
inferred loop invariants. Our approach is fully automatic and does not
require any hints from the user. We have implemented our algorithm in a
prototype synthesis tool for C programs, and we show that the proposed
approach is able to successfully synthesize guards that closely match
hand-written programmer code in a set of real-world C programs.

1 Introduction

Memory safety errors are a perennial source of crashes and vulnerabilities in
programs written in unsafe languages, and even expert programmers often write
erroneous code that accesses out-of-bounds buffers or invalid memory. Over the
past few decades, there has been much research on helping programmers write
memory safe code. Broadly speaking, existing approaches fall into two categories:

Dynamic instrumentation. Many approaches, such as those employed in
memory managed languages like Java and C#, add run-time checks to guaran-
tee the safety of each memory access. While such approaches prevent memory
corruption and associated security vulnerabilities, they do not prevent run-time
failures and often add significant performance overhead.

Static verification. Much recent research has focused on statically guaran-
teeing memory safety of programs written in unsafe languages [1–5]. While these
techniques can uncover all potential memory safety errors, the errors identified
by the verifier may be hard to understand, debug, and fix.

In this paper, we propose a new approach based on program synthesis to the
design of memory-safe low-level code. Concretely, suppose that a programmer
wishes to write a region of code R implementing a given functionality, but R can
access out-of-bounds memory under certain assumptions about program inputs
or previously taken branches. In our approach, the programmer embeds R within
the scope of an unknown guard predicate whose sole purpose is to ensure the
memory safety of R. This is done using a syntax of the form:

if(??) {R} else { /* handle error */ }



where the unknown guard is indicated by ??. Our approach uses a new guard
synthesis algorithm to compute a predicate P over program variables such that,
when ?? is replaced by P, all memory accesses within R are provably memory-safe.

Unlike dynamic approaches, our method does not require run-time instru-
mentation to track allocation sizes or pointer offsets, thereby avoiding the as-
sociated performance overhead. Instead, we statically infer a single guard that
guarantees the safety of all memory accesses within a code block. Furthermore,
our approach goes beyond static verification: It not only guarantees memory
safety, but also helps the programmer write safe-by-construction code. The pro-
grammer is only asked to tell us which code snippets must be protected by a
guard, rather than the tedious, low-level details of how to protect them.

Our synthesis algorithm is based on the principle of logical abduction. Ab-
duction is the problem of finding missing hypotheses in a logical inference task.
In more detail, suppose we have a premise P and a desired conclusion C for an
inference (P and C will be typically generated as constraints from a program)
such that P 6|= C. Given P and C, abduction infers a simplest and most general
explanation E such that P ∧ E |= C and P ∧ E 6|= false.

Previous work has shown how to use abduction for program verification, by
framing unknown invariants as missing hypotheses in a logical inference prob-
lem [6, 7, 5]. While adapting abduction to synthesis is a nontrivial technical chal-
lenge, the end result is an algorithm with several appealing properties:

Optimality of synthesis. Our algorithm gives a guarantee of optimal
synthesis — i.e., the synthesized guards are optimal according to a quantitative
criterion among all guards that guarantee memory safety. Optimality has been
argued to be an important criterion in program synthesis. For instance, Alur et
al. [8] argue that “Ideally, [in synthesis] we would like to associate a cost with each
[synthesized] expression, and consider the problem of optimal synthesis which
requires the synthesis tool to return the expression with the least cost among
the correct ones. A natural cost metric is the size of the expression.” However,
few existing approaches to software synthesis take on such an optimality goal.

The notion of costs used in this paper is two-dimensional: one dimension
quantifies expression complexity (we use the number of variables as a proxy
for complexity), and the other quantifies generality (weaker guards have lower
costs). The guards we synthesize are Pareto-optimal with respect to this notion
of costs — i.e., there is no solution that is weaker as well as less complex.

Automation. Unlike most recent approaches to program synthesis [9–11],
our algorithm can synthesize expressions without the aid of user-specified struc-
tural hints. In particular, the programmer does not need to provide expression
templates with unknown coefficients to be inferred.

Practicality. Our algorithm incorporates precise reasoning about array
bounds and low-level pointer arithmetic, which are necessary ingredients for
synthesizing guards to guarantee memory safety. Furthermore, as shown in our
experimental evaluation, the proposed synthesis algorithm can successfully syn-
thesize guards required for memory safety in real C applications and produces
guards that closely match hand-written code.



1. int main(int argc, char** argv) {

2. char *command = NULL;

3. if (argc <= 1) {

4. error (0, 0, _("too few arguments"));

5. usage (EXIT_FAIL);

6. }

7. argv++; argc--;

8. while ((optc = getopt(argc, argv, ...)) != -1) {

9. switch(optc) {

10. case ’c’:

11. command = optarg; break;

12. ...

13. }

14. }

15. if (??) usage (EXIT CANCELED);

16. timeout = parse (argv[optind++]);

17. files = argv + optind;

18. if (!target_dir) {

19. if (! (mkdir_and_install ? install_in_parents(files[0], files[1])

20 : install_in_file(files[0], files[1])))

21. ...

22. }

23. }

Fig. 1: Motivating example

2 Motivating example and overview

We now present an overview of our approach using a motivating example. Con-
sider the code snippet shown in Figure 1, which is based on the Unix coreutils.
This program parses command line arguments with the help of a clib function
called getopt. Specifically, lines 8-14 process the optional command line argu-
ments while the code after line 16 performs the program’s required functionality.
Here, variable optind used at lines 16-17 is initialized by getopt to be the index
of the next element to be processed in argv. Looking at lines 16-23, the pro-
grammer expects the user to pass some required arguments and accesses them
at lines 16, 19, and 20. However, since the user may have forgotten to pass the
required arguments, the programmer must explicitly check whether the mem-
ory accesses at lines 16,19,20 are safe in order to prevent potentially disastrous
buffer overflow or underflow errors. If her assumptions are not met, the program-
mer wishes to terminate the program by calling the exit function called usage.
However, coming up with the correct condition under which to terminate the
program is tricky even on the small code snippet shown here: The programmer
has performed pointer arithmetic on argv at line 7, and the variable files is
an alias of argv at offset optind which has previously been modified at line 16.

Using our technique, the programmer can use the ?? predicate at line 15 to
indicate the unknown check required for ensuring memory safety of the remainder
of the program. Our technique then automatically synthesizes the guard (argc

- optind) > 2 as a sufficient condition for the safety of all buffer accesses in
lines 16-23. Since the check inferred by our technique is correct-by-construction,
the remainder of the program is guaranteed to be memory safe.



Algorithm overview. Our algorithm proceeds in two phases, consisting of con-
straint generation and solving. During constraint generation, we represent the
unknown guards using placeholder formulas χ and then generate verification con-
ditions over these unknown χ’s. The constraint solving phase, which employs an
iterative abduction-based algorithm, infers a concrete predicate for each χ that
makes all generated VCs valid. In addition to guaranteeing Pareto-optimality,
this approach does not require the user to specify templates describing the shape
of the unknown guards. Furthermore, since the abduced solutions imply the va-
lidity of the VCs, we do not need to externally validate the correctness of the
synthesized program using a separate verifier or model checker.

The constraint generation phase consists of

p

Fig. 2: Auxiliary variables

two key ingredients: First, to reason about out-
of-bounds memory accesses, we introduce ghost
variables that track allocation sizes and pointer
offsets. Specifically, for each pointer p, a variable
p− indicates the offset of p in the block of memory

it points to, and p+ tracks the size of p relative to p−. This is shown in Figure 2.
These ghost variables enable reasoning about pointer arithmetic in a precise way
and allow us to generate symbolic verification conditions for memory safety.

The second key ingredient of constraint generation is a dual forwards and
backwards static analysis that simultaneously computes strongest postcondi-
tions and weakest preconditions. For each unknown guard to be synthesized, the
forwards analysis computes a formula φ representing facts that are known at
this program point, while the backwards analysis provides a weakest precondi-
tion ψ for the safety of the code protected by this unknown guard. Now, given
a statement S involving an unknown guard and the two formulas φ and ψ , our
technique generates the VC (φ ∧ χ(v)) → ψ where χ is a predicate represent-
ing the unknown guard and v represents all program variables in scope at this
program point. Here, formulas φ and ψ may also contain other unknowns.

In the constraint solving phase, we use an iterative, worklist-based algorithm
that employs abduction to solve for the unknown χ predicates. Given a set of
constraints C of the form (F1(χ1, . . . χi−1) ∧ χi)→ F2(χi+1, . . . χn) where F (χ)
denotes a formula over unknowns χ, we show how to infer a solution for each
χi such that all constraints in C become valid. Our algorithm guarantees the
Pareto-optimality of the solution relative to the inferred loop invariants. That
is, assuming a fixed set of loop invariants, if we pick any unknown guard and
try to improve it according to our cost metric, then the resulting set of guards
is no longer a solution to our synthesis problem.

Example redux. We now go back to the code example from Figure 1 to illus-
trate our approach. Initially, we assume that argv points to the beginning of an
allocated block of size argc; hence, our analysis starts with the fact:

argv+ = argc ∧ argv− = 0 (1)



Next, we perform forward reasoning to compute the strongest postcondition
of (1) right before line 20. Here, the forward analysis yields the condition:

φ : argc > 0 ∧ argv+ = argc ∧ argv− = 1 ∧ optind ≥ 0 (2)

The first part of the conjunct (argc > 0) comes from the condition at line 3: Since
usage is an exit function, we know argc > 1 at line 6, which implies argc > 0
after line 7. The second part (argv+ = argc) states that the size of argv is still
argc; this is because argc is decremented while argv is incremented at line 7.
According to the third conjunct (argv− = 1), argv points to the second element
in the original argument array due to the pointer increment at line 7. Finally, the
last conjunct (optind ≥ 0) is a postcondition established by the call to getopt.

Next, we focus on the backwards analysis. To guarantee the safety of the
buffer access files[1] at line 19, we need 1 < files+ and 1 ≥ −files− to ensure
there are no buffer overflows and underflows respectively. Using similar reason-
ing for the accesses files[0] and argv[optind++], our analysis generates the
following necessary condition for the safety of the code after line 15:

optind < argv+ ∧ optind ≥ −argv− ∧
ψ : target dir = 0→ (1 < argv+ − optind− 1) ∧

target dir = 0→ 0 ≥ −argv− − optind− 1)
(3)

Observe that files− and files+ do not appear in this formula because the
backwards analysis relates the size and offset of files to those of argv when
computing the weakest precondition of files = argv + optind at line 17. Now,
to synthesize the unknown guard at line 15, we generate the following constraint:

(φ ∧ χ(v))→ ψ (4)

where φ and ψ come from Equations 2 and 3, χ is the unknown guard, and v
represents program variables in scope at line 15. Note that, since argv−, argv+

etc. are ghost variables, they are not allowed to appear in our solution for χ.
Now, inferring a formula to plug in for χ that makes Equation 4 valid is

a logical abduction problem. By using abduction to solve for χ, we obtain the
solution argc - optind > 2. Observe that there are other guards that also
guarantee memory safety in this example, such as:

(S1) argc > optind ∧ (target dir = 0→ argc− optind > 2), or
(S2) argc = 4 ∧ optind = 1

However, both of these solutions are undesirable because (S1) is overly compli-
cated, while (S2) is not sufficiently general.

3 Language and Preliminaries

We describe our techniques using the small imperative language given in Fig-
ure 3. Here, a program takes inputs v and consists of one or more statements. We



Program P := λv. S
Guard G := ??i | C
Statement S := skip | v := E | S1;S2 | [p] := alloc(E) | [p1] := [p2]⊕ E

| access([p], E) | if(G) then S1 else S2;
| while(C) do S | while(C∧??i) do S

Conditional C := E1 comp E2 (comp ∈ {<,>,=}) | C1 ∧ C2 | C1 ∨ C2 | ¬C
Expression E := int | v | E1 + E2 |E1 − E2 | E1 · E2

Fig. 3: Language used for the formal development

syntactically differentiate between scalar variables v and pointers [p], which are
always written inside brackets. Statements include skip, scalar assignments (v :=
E), sequencing, memory allocations ([p] = alloc(E)), and pointer arithmetic
([p1] = [p2]⊕E) which makes p1 point to offset E in the memory block pointed
to by [p2]. The statement access([p], E) accesses the E’th offset of [p]. Since our
main concern is to guarantee the safety of memory accesses, we use the access
statement to model both array reads and writes. In particular, access([p], E) fails
if E is not a valid offset in the memory region pointed to by E. We say that
an access is safe if it can never fail in any execution; otherwise, it is unsafe. A
program P is memory-safe if all accesses in P are safe. Appendix A gives a more
precise definition of memory safety based on the operational semantics.

In this language, unknown predicates ??i occur either as tests in if statements
or as continuation conditions of while loops. We say a guard G1 is an ancestor
of guard G2 if G2 is nested inside G1; conversely, we say G2 is a descendant of G1.
We call a program complete if it does not contain any unknown guards. Given
a program P and a mapping σ from unknown guards to concrete predicates, we
write P [σ] to denote the program obtained by substituting each ??i with σ(??i).

Definition 1 Mapping σ is a solution to the guard synthesis problem defined
by program P iff (i) P [σ] is a complete and memory-safe program, and (ii)
∀v ∈ dom(σ). σ(v) 6⇒ false.

According to the second condition, a valid solution cannot instantiate any
unknown predicate with false. Hence, the synthesis problem is unsolvable if we
cannot guarantee memory safety without creating dead code.

Definition 2 Given solutions σ and σ′ to the synthesis problem, we say that
σ refines σ′, written σ′ � σ, if for some unknown χ ∈ dom(σ), we have either
(i) σ′(χ)⇒ σ(χ) and σ(χ) 6⇒ σ′(χ), or (ii) |vars(σ(χ))| < |vars(σ′(χ))|.

In other words, solution σ refines σ′ if it improves some guard either in terms of
generality or simplicity.

Definition 3 Solution σ is a Pareto-optimal solution to the synthesis problem
if for all other solutions σ′, we have σ′ � σ.

Intuitively, this means that, if we take solution σ and try to improve any
guard in σ according to our cost metric, then the resulting mapping is no longer
a solution. In the rest of the paper, we use the word “optimality” to mean
Pareto-optimality in the above sense.



(1)
φ, ψ ` skip : φ, ψ, ∅

(2)
φ′ = ∃v′.(v = E[v′/v] ∧ φ[v′/v])

φ, ψ ` v := E : φ′, ψ[E/v], ∅

(3)
φ, ψ1 ` S1 : φ1, ψ2, C1 φ1, ψ ` S2 : φ2, ψ1, C2

φ, ψ ` S1;S2 : φ2, ψ2, C1 ∪ C2

(4)
φ, ψ ` p− := 0; p+ := E : φ′, ψ′, ∅
φ, ψ ` [p] := alloc(E) : φ′, ψ′, ∅

(5)

φ, ψ ` (p−1 := p−2 + E) : φ1, ψ1, ∅
φ1, ψ1 ` (p+1 := p+2 − E) : φ2, ψ2, ∅
φ, ψ ` [p1] := [p2]⊕ E : φ2, ψ2, ∅

(6)
ϕsafe = (E ≥ −p− ∧ E < p+)

φ, ψ ` access([p], E) : φ ∧ ϕsafe, ψ ∧ ϕsafe, ∅

(7a)

φ ∧ C,ψ ` S1 : φ1, ψ1, C1 φ ∧ ¬C,ψ ` S2 : φ2, ψ2, C2
ψ′ = (C → ψ1) ∨ (¬C → ψ2)

φ, ψ ` if(C) then S1 else S2 : φ1 ∨ φ2, ψ′, C1 ∪ C2

(7b)

φ ∧ χi(v), true ` S1 : , ϕ, C1
VC = (φ ∧ χi(v)→ ϕ)

φ ∧ χi(v), ψ ` S̃1 : φ1, ψ1,
φ ∧ ¬χi(v), ψ ` S2 : φ2, ψ2, C2

ψ′ = (χi(v)→ ψ1) ∧ (¬χi(v)→ ψ2)

φ, ψ ` if(??i) then S1 else S2 : φ1 ∨ φ2, ψ′,VC ∪ C1 ∪ C2

(8a)
I ∧ C, I ` S : , I ′, C I ∧ C ⇒ I ′

φ, ψ ` while(C) do S : I ∧ ¬C, I, C

(8b)

, I ` S̃ : , I ′, I ∧ C ⇒ I ′

I ∧ C ∧ χi(v), true ` S : , ψ, C
VC = (I ∧ C ∧ χi(v)→ ψ)

φ, ψ ` while(C∧??i) do S : I ∧ ¬(C ∧ χi(v)), I, C ∪VC

(9)
true, true ` S : φ, ψ, C
` λv.S : φ, ψ, ψ ∪ C

Fig. 4: Inference Rules for Constraint Generation

4 Constraint Generation

The constraint generation phase is shown in Figure 4 as inference rules of the
form φ, ψ ` S : φ′, ψ′, C where S is a statement, φ, ψ, φ′, ψ′ are formulas, and C
is a set of constraints. The meaning of this judgment is that, if all constraints
in C are valid, then {φ}S{φ′} and {ψ′}S{ψ} are valid Hoare triples. We call the
computation of postcondition φ′ from φ the forward analysis and the computa-
tion of precondition ψ′ from ψ the backward analysis. The constraints C track
assumptions about unknown predicates that must hold to ensure memory safety.



Since some of the rules in Figure 4 describe standard pre- and post-condition
computation, we only explain some of these rules. Rule (4) for memory allocation
[p] = alloc(E) uses ghost variables p− and p+. Since [p] points to the beginning of
a memory block of size E, the allocation has the effect of assigning p− to 0 and p+

to E. Hence, φ′ and ψ′ are obtained by computing the strongest postcondition of
φ and weakest precondition of ψ with respect to the statement p− := 0; p+ := E.

Rule (5) for pointer arithmetic computes the effect of this statement on p−1
and p+1 . Since [p2] points to offset p−2 in memory block M , [p1] points to offset
p−2 +E within M . Hence, we obtain φ1 as sp(p−1 := p−2 +E, φ) and ψ1 as wp(p−1 :=
p−2 +E,ψ). Similarly, φ2 = sp(p+1 := p+2 −E, φ1) and ψ2 = wp(p+1 := p+2 −E,ψ1).

Rule (6) describes memory accesses. To guarantee that ψ holds after the
memory access, expression E must evaluate to a valid offset in the memory
block pointed to by [p]. Using ghost variables p− and p+, we can express this as
ϕsafe ≡ E < p+ ∧ E ≥ −p− Hence, the weakest precondition of ψ with respect
to the access statement is ψ ∧ ϕsafe.

Constraint generation for conditionals with unknown guards is given in Rule
(7b). The first line of this rule computes a weakest sufficient condition for en-
suring memory safety of statement S1. Here, we compute the precondition of S1

with respect to true rather than ψ because the unknown guard is only required
to guarantee the safety of S1 rather than the remainder of the entire program.
Thus, the formula ϕ computed here represents the weakest sufficient condition
for ensuring memory safety of S1. When we analyze S1, observe that the forward
analysis propagates φ ∧ χi(v) as the precondition of S1; hence, statement pre-
conditions computed by the forward analysis may refer to unknown predicates
χi. The constraints C1 obtained in this rule describe the restrictions that must
be satisfied by the unknown guards nested inside S1.

The second line in rule (7b) generates a constraint (VC) on the unknown
predicate χi. Specifically, VC stipulates that the conjunction of the unknown
guard χi and the precondition φ should be strong enough to imply the safety of
memory accesses within S1. Note that the generated VC may contain multiple
unknown predicates since both φ and ϕ may refer to other χj ’s.

The third line in rule (7b) uses the notation S̃, which denotes statement S
with each access([p], E) statement within S replaced by skip. Here, we analyze
statement S1 a second time but with two important differences from our previous
analysis. First, since we consider S̃1, we ignore any memory accesses within S1.
Second, we compute the weakest precondition of S̃1 with respect to ψ rather than
true because we need to ensure the safety of memory accesses that come after
S1. However, we ignore all memory accesses within S1 because the synthesized
guard already ensures the safety of these accesses. Also, observe that this rule
discards constraints generated when analyzing S̃1, which is sound because any
constraints generated while analyzing S̃1 are trivially valid.

Another important point to note about rule (7b) is that the backwards anal-
ysis propagates the constraint (χi(v) → ψ1) ∧ (¬χi(v) → ψ2) as the weakest
precondition for the if statement. Hence, statement postconditions computed by
the backwards analysis may also refer to unknown predicates.



Example 1. Consider the following code example:

1. [p] := alloc(n); [q] := alloc(n); [p] := [p]⊕ 1;
2. if(??1) then
3. n := n+ 1; access([p], 3);
4. if(??2) then access([q], n− 2) else skip
5. else skip

In the forward direction, our analysis computes the following precondition φ
for the if statement at line 2: φ : p− = 1 ∧ p+ = n − 1 ∧ q− = 0 ∧ q+ = n.
Before the assignment at line 3, the forwards analysis computes the precondition
χ1(n)∧p− = 1∧p+ = n−1∧q− = 0∧q+ = n where χ1 denotes unknown guard
??1 and n is the only scalar variable in scope at this point. For the if statement
at line 4, we have the following precondition:

∃n′. (χ1(n′) ∧ n = n′ + 1 ∧ p− = 1 ∧ p+ = n′ − 1
∧ q− = 0 ∧ q+ = n′ ∧ p+ > 3 ∧ p− ≥ −3)

Note that, since there is an assignment to n at line 3, the variable n inside the
unknown predicate χ1(n) gets substituted by n′.

Now, in the backwards direction, the precondition for the then branch of the
second if statement is (n− 2) < q+ ∧ (n− 2) ≥ −q−. Hence, when analyzing the
if statement at line 4, we generate the following VC:

VC2 :
(χ2(n) ∧ ∃n′. (χ1(n′) ∧ n = n′ + 1 ∧ p− = 1 ∧ p+ = n′ − 1 ∧ q− = 0
∧ q+ = n′ ∧ p+ > 3 ∧ p− ≥ −3))→ ((n− 2) < q+ ∧ (n− 2) ≥ −q−)

where χ2 represents ??2 and the right-hand-side of the implication is the safety
precondition for the then branch. For the if statement at line 2, the backwards
analysis computes the precondition for the then branch as ϕ : 3 < p+∧3 ≥ −p−.
Using ϕ and formula φ obtained through the forward analysis, we generate the
following VC for the if statement at line 2:

VC1 : (χ1(n) ∧ p− = 1 ∧ p+ = n− 1 ∧ q− = 0 ∧ q+ = n) → (3 < p+ ∧ 3 ≥ −p−)

Hence, our algorithm generates the constraints VC1 ∪VC2.

Continuing with the inference rules in Figure 4, rules (8b) and (8a) describe
the analysis of while loops with and without unknown safety guards respectively.
Rule (8a) gives the standard Hoare rule for while loops, asserting that I is an
inductive loop invariant. Since the automatic inference of loop invariants is an
orthogonal problem, this paper assumes that loop invariants are provided by
an oracle, and our implementation uses standard abstract interpretation based
techniques for loop invariant generation.

In rule (8b), our goal is to infer an additional guard as part of the loop
continuation condition such that all memory accesses within the loop body are
safe. As in rule (8a), the first line of rule (8b) asserts that I is inductive. However,

an important difference is that we check the inductiveness of I with respect to S̃
rather than S because I is not required to be strong enough to prove the safety
of memory accesses inside the loop body. In fact, if I was strong enough to prove
memory safety, this would mean the additional unknown guard is unnecessary.



The last two lines of rule (8b) compute the safety precondition ψ for the loop
body (i.e., ψ = wp(true, S)) and generate the constraint VC : I∧C∧χi(v)→ ψ.
In other words, together with continuation condition C and known loop invariant
I, unknown predicate χi should imply the memory safety of the loop body.

Example 2. Consider the following code snippet:

1. [p] = alloc(n); i = 0;
2. while(true ∧ ??1) do
3. access([p], 1); [p] = [p]⊕ 1; i = i+ 1;

Assume we have the loop invariant I : p− + p+ = n ∧ i ≥ 0 ∧ i = p−. The
safety precondition ψ for the loop body is 1 < p+ ∧ 1 ≥ −p−. Hence, rule (8b)
from Figure 4 generates the following verification condition:

(χ1(i, n) ∧ p− + p+ = n ∧ i ≥ 0 ∧ i = p−)→ (1 < p+ ∧ 1 ≥ −p−)

The last rule in Figure 4 generates constraints for the entire program. Since
we add the program’s weakest precondition to C, the synthesis problem has a
solution only if all accesses that are not protected by unknown guards are safe.

5 Constraint Solving

The rules described in Section 4 generate constraints of the form:

Ci : (F1(χ1, . . . χi−1) ∧ χi(v))→ F2(χi+1, . . . χn) (5)

where F1 and F2 are arbitrary formulas containing program variables and un-
knowns. In each constraint, there is exactly one key unknown χi that does not
appear inside boolean connectives or quantifiers. Hence, we refer to Ci as the
constraint associated with χi (or the χi-constraint). Also, the only unknowns
appearing on the right hand side of an implication (i.e., inside F2) in a χi-
constraint represent unknown guards that are syntactically nested inside χi.
Hence, we refer to χi+1, . . . χn as the descendants of Ci, denoted Descends(Ci).
In contrast, the unknowns that appear inside F1 are either ancestors of χi or
appear in the code before χi. We say that Ci sequentially depends on χj if χj
appears inside F1 and is not an ancestor of χi. We write SeqDep(Ci) to denote
the set of χj-constraints such that Ci is sequentially dependent on χj .

Example 3. Consider the following code snippet:

1. [a] := alloc(x);
2. if(??1) then access([a], 1) else skip
3. if(??2) then
4. if(??3) then access([a], x− 3); [b] := alloc(4); else [b] := alloc(2);
5. access([b], 3);
6. else skip

Let χ1, χ2, χ3 denote the unknowns ??1, ??2, and ??3, and let Ci denote each χi
constraint. Here, we have:

C1 : (a− = 0 ∧ a+ = x ∧ χ1(x))→ (1 < a+ ∧ 1 ≥ −a−)
C2 : (a− = 0 ∧ a+ = x ∧ χ1(x) ∧ χ2(x))→ ((χ3(x)→ 3 < 4) ∧ (¬χ3(x)→ 3 < 2))
C3 : (a− = 0 ∧ a+ = x ∧ χ1(x) ∧ χ2(x) ∧ χ3(x))→ (x− 3 < a+ ∧ x− 3 ≥ −a−)



Therefore, Descends(C1) = ∅, Descends(C2) = {C3}, and Descends(C3) = ∅.
Also, SeqDeps(C1) = ∅, SeqDeps(C2) = {C1}, SeqDeps(C3) = {C1}.

Our constraint solving algorithm is given in Figure 5. A key underlying insight
is that we only solve a constraint Ci when all sequential dependencies of Ci are
resolved. The intuition is that if χi sequentially depends on χj , χj will appear in
a χi-constraint, but not the other way around. Hence, by fixing the solution for
χj before processing χi, we cannot break the optimality of the solution for χj .

The Solve algorithm shown in Figure 5 takes as input constraints C and
returns a mapping S from each unknown χ to a concrete predicate or ∅ if no
solution exists. Initially, we add all constraints C to worklist W and initialize
Resolved to ∅. In each iteration of the Solve loop, we dequeue constraints ∆
that have their sequential dependencies resolved (line (3)) and substitute any
resolved unknowns in ∆ with the solution given by S, yielding a new set ∆′ (line
4). Hence, a χi-constraint in ∆′ does not contain any unknowns that χi sequen-
tially depends on. Now, to solve ∆′, we first obtain a sound, but not necessarily
optimal, solution using the function SolveInit. In particular, although the so-
lutions returned by SolveInit may be stronger than necessary, we iteratively
weaken this initial solution using Weaken until we obtain an optimal solution.

The procedure SolveInit processes constraints C top-down, starting with
the outermost guard χi. In each iteration, we pick an unsolved constraint Ci
that has only one unknown on the left-hand side of the implication (line 13).
However, since we don’t yet have a solution for the unknowns V on the right-hand
side, we strengthen Ci to Φ by universally quantifying V (line 16).3 Observe that
the universal quantification of V has the same effect as treating any unknown
guard inside χi as a non-deterministic choice. The resulting constraint Φ is of the
form (χi(v)∧φ1)→ φ2 where φ1 and φ2 do not contain any unknowns; hence, we
can solve for unknown χi using standard logical abduction. In the algorithm of
Figure 5, this is done by calling an abduction procedure called Abduce (line 17).
We do not describe the Abduce procedure in this paper and refer the interested
reader to [12] for a description of an abduction algorithm which computes a
logically weakest solution containing a fewest number of variables. Now, given
solution γ for χi, we add it to our solution set S and eliminate unknown χi from
other constraints in C using the Substitute procedure.

Because of the universal quantification of the unknowns on the right-hand
side, the solution S0 returned by SolveInit may be stronger than necessary.
Hence, procedure Weaken iteratively weakens the initial solution until we ob-
tain an optimal solution. In contrast to SolveInit, Weaken processes the con-
straints bottom-up, starting with the innermost guard first. Specifically, the
solution computed by SolveInit for the innermost guard χi cannot be further
weakened, as it is not possible to obtain a weaker solution for χi by plugging
in weaker solutions for the unknowns appearing on the left-hand side of a χi-
constraint. Hence, we add all constraints with no descendants in ∆ to Resolved
and update S with the corresponding solutions given by S0 (lines 21-23).

3 Recall that ∀χj .Φ ≡ Φ[true/χj ] ∧ Φ[false/χj ].



procedure Solve(C):
input: set of constraints C
output: mapping S from each χi to γ or ∅ if no solution exists

(1) Resolved := ∅; S:= ∅; W := C
(2) while(W 6= ∅ )
(3) ∆ := {Ci | Ci ∈W ∧ SeqDep(Ci) ⊆ Resolved }
(4) W := W −G
(5) ∆′ := Substitute(∆,S)
(6) S0 := SolveInit(∆′)
(7) S := Weaken(∆′, S0, S, Resolved)
(8) if(S = ∅) return ∅
(9) Resolved := Resolved ] ∆
(10) return S;

procedure SolveInit(C):
(11) S := ∅
(12) while(C 6= ∅)
(13) let Ci ∈ C with one unknown χ on LHS
(14) C := C − Ci
(15) V := unknowns of Ci on RHS
(16) Φ := ∀V.Ci
(17) γ := Abduce(Φ)
(18) S := S ] [χ 7→ γ]
(19) C := Substitute(C, S)
(20) return S

procedure Weaken(∆,S, S0, Resolved)
(21) Done := {∆i | ∆i ∈ ∆ ∧ Descends(∆i) = ∅}
(22) Resolved := Resolved ] Done
(23) S := S ] {[χi 7→ γi] | Ci ∈ Done ∧ S0(χi) = γi}
(24) ∆ := ∆− Done; S0 := S0− Done
(25) while(∆ 6= ∅)
(26) let Cur ∈ ∆ s/t Descends(Cur) ⊆ Resolved
(27) let χ = Unknown(Cur)
(28) ∆ := ∆− Cur; S0 := S0 − χ
(29) θ := Cur ]{Ci|Ci ∈ Resolved ∧χ ∈ Unknowns(Ci) }
(30) θ′ := Substitute(S ] S0)
(31) γ := Abduce(θ′)
(32) if Unsat(γ) return ∅
(33) S := S ] [χ 7→ γ]
(34) Resolved := Resolved ] Cur
(35) return S

Fig. 5: The constraint solving algorithm

The while loop in lines 25-34 iterates over the constraints bottom-up and,
in each iteration, picks a χ-constraint Cur all of whose descendants have been
resolved (line 26). Now, the solution given by S0 for χ could be stronger than
necessary; thus, we would like to weaken it using the new optimal solutions
for χ’s descendants. However, since χ will appear on the left-hand side of a



constraint Ci associated with a descendant χi of χ, we need to take care not to
invalidate the solution for χi as we weaken χ. Hence, at line 29, we collect in
set θ all resolved constraints in which χ appears. The idea here is that, when
we abduce a new solution for χ, we will simultaneously solve all constraints in
θ so that we preserve existing solutions for χ’s descendants. Now, to solve for
χ using abduction, we first eliminate all unknowns in θ except for χ. For this
purpose, we substitute all resolved unknowns in θ with their solution given by
S (line 30). However, observe that there may also be unknowns in θ that have
not yet been resolved; these unknowns correspond to ancestors of χ, which only
appear (unnegated) on the outerlevel conjunction of the left-hand side of the
constraints in θ. Hence, to eliminate the unresolved unknowns, we will use the
initial solution given by S0 (also line 30). Observe that we can do this without
undermining optimality because we will later only further weaken the solutions
given by S0, which cannot cause us to further weaken the solution for χ.

After performing the substitution at line 30, the set of constraints θ′ only
contains one unknown χ, which we can now solve using standard abduction (line
31).4 If the resulting solution γ is false, this means our synthesis problem does
not have a solution. Otherwise, we add the mapping χ 7→ γ to our solution set
and continue until all constraints in θ have been processed.

Let us call a solution S to the synthesis problem optimal relative to a set of
loop invariants if, among the set of solutions that any algorithm can generate
using these loop invariants, S is optimal. We have:

Theorem 1. Consider program P such that ` P : φ, ψ, C according to Figure 4,
and let S be the result of Solve(C). If S 6= ∅, then P [S] is memory safe. Fur-
thermore, S is an optimal solution to the synthesis problem defined by P relative
to the loop invariants used during constraint generation.

Proof. Given in Appendix B.

Example 4. Consider the constraints VC1 and VC2 from Example 1. Here, nei-
ther VC1 nor VC2 have sequential dependencies, and since VC1 contains only
one unknown, we first solve for χ1 in SolveInit, for which abduction yields the
solution n > 4. Next, we plug this solution into VC2 (renaming n to n′), which
yields the following constraint in Prenex Normal Form:

∀n′.(n′ > 4 ∧ χ2(n) ∧ n = n′ + 1 ∧ p− = 1 ∧ p+ = n′ − 1 ∧ q− = 0 ∧ q+ = n′

∧ p+ > 3 ∧ p− ≥ −3)→ (n− 2) < q+ ∧ (n− 2) ≥ −q−)

Since VC2 has only one unknown left, we solve it using Abduce and obtain
χ2(n) = true. Next, we attempt to weaken the solution for χ1 in Weaken, but
since χ2 does not appear on the right hand side of VC1, we cannot further weaken
the solution for χ1. Hence, we obtain the solution [χ1 7→ n > 4, χ2 7→ true].

4 Observe that we can simulatenously solve all constraints in θ using abduction because
a pair of constraints of the form χ∧φ1 ⇒ φ2 and χ∧ψ1 ⇒ ψ2 (where the φ’s and ψ’s
are unknown free) can be rewritten as (χ∧φ1 ∧ψ1)⇒ (φ2 ∧ψ2), which corresponds
to a standard abduction problem.



Program Lines # holes Time (s) Memory Synthesis successful? Bug?

Coreutils hostname 160 1 0.15 10 MB Yes No

Coreutils tee 223 1 0.84 10 MB Yes Yes

Coreutils runcon 265 2 0.81 12 MB Yes No

Coreutils chroot 279 2 0.53 23 MB Yes No

Coreutils remove 710 2 1.38 66MB Yes No

Coreutils nl 758 3 2.07 80 MB Yes No

SSH - sshconnect 810 3 1.43 81 MB Yes No

Coreutils mv 929 4 2.03 42 MB Yes No

SSH - do authentication 1,904 4 3.92 86 MB Yes Yes

SSH - ssh session 2,260 5 4.35 81 MB Yes No

Fig. 6: Experimental benchmarks and results

Example 5. Consider constraints C1, C2, and C3 from Example 3. Since C1 does
not have sequential dependencies, we first solve C1 and obtain the solution χ1 =
(x > 1). In the next iteration, both C2 and C3 have their sequential dependencies
resolved; hence we plug in x > 1 for χ1 in C2 and C3. In SolveInit, we first
solve C2 since it now contains only one unknown (χ2) on the left hand side. When
we universally quantify χ3 on the right hand side, Abduce yields the solution
χ2 = false. In the next iteration of SolveInit, we obtain the solution true for
χ3. Observe that our initial solution for χ2 is stronger than necessary; hence we
will weaken it. In the procedure Weaken, we simultaneously solve constraints C2
and C3, using existing solutions for χ1 and χ3. Abduce now yields χ2 = x > 2.
Hence, the final solution is [χ1 = x > 1, χ2 = x > 2, χ3 = true].

Example 6. For the constraint generated in Example 2, the Solve procedure
computes the solution χ1(i, n) = i < n− 1.

6 Implementation and Evaluation

We implemented a prototype tool for synthesizing safety guards for C programs.
Our tool is based on the SAIL infrastructure [13] and uses the Mistral SMT
solver [12] for solving abduction problems in linear integer arithmetic.

We evaluated our tool on ten benchmark programs written in C. As shown in
Figure 6, all of our benchmarks are taken either from the Unix coreutils, which
implements basic command line utilities for Unix [14], or OpenSSH, which pro-
vides encrypted communication sessions based on the SSH protocol [15]. For each
benchmark program, we manually removed 1-5 safety guards from the source
code and then used our algorithm to infer these missing guards. 5 In total, we
used our tool to synthesize 27 different safety guards.

The results of our experimental evaluation are shown in Figure 6. Our tool
was able to successfully synthesize all of the missing guards present in these
benchmarks. For 23 of these 27 missing guards, our tool inferred the exact same

5 The URL http://www.cs.utexas.edu/~tdillig/cav14-benchmarks.tar.gz con-
tains all benchmarks, where each missing guard is indicated with SYN.



predicate that the programmer had originally written, and for 4 out of the 27
missing guards, it inferred a syntactically different but semantically equivalent
condition (e.g., our tool synthesized the guard x 6= 0 when the programmer had
originally written x > 0 but x is already known to be non-negative). In two
applications (Coreutils tee and SSH do authentication), the guards synthesized
by our tool did not match the guards in the original program. However, upon
further inspection, we found that both of these programs were in fact buggy.
For example, in Coreutils tee, the program could indeed access the argv array
out-of-bounds. We believe that the existence of such bugs in even extremely
well-tested applications is evidence that writing memory safe code is hard and
that many programmers can benefit from our guard synthesis technique.

As shown in Figure 6, the running time of our algorithm ranges from 0.15 sec-
onds to 4.35 seconds with an average memory consumption of 49 MB. We believe
these results suggest that our approach can be integrated into the development
process, helping programmers write safe-by-construction low level code.

7 Related work

Program Synthesis. The last few years have seen a flurry of activity in
constraint-based software synthesis [9, 10, 16, 17]. As the first abduction-based
approach to synthesis, our work is algorithmically very different from prior
methods in this area. A concrete benefit is that, unlike prior constraint-based
approaches to synthesis [10, 18, 11, 19], our method does not require a template
for the expressions being synthesized. A second benefit is that we can show the
synthesized expressions to be optimal relative to loop invariants.

There are a few approaches to synthesis that consider optimality as an ob-
jective [20–23]. However, in these papers, optimality is defined with respect to
an explicit quantitative aspect of program executions, for example execution
time. In contrast, in the current work, the cost metric is on the guards that we
synthesize; we want to infer guards that are as simple and as general as possible.

Program Analysis for Memory Safety. Memory safety is a core concern
in low-level programming, and there is a huge literature on program analysis
techniques to guarantee memory safety [24–31, 3, 32, 33]. While many of these
techniques can statically detect memory safety errors, they do not help the
programmer write safe-by-construction code. Furthermore, unlike dynamic ap-
proaches to memory safety [32, 33, 27, 28], our technique guarantees the absence
of runtime failures and does not require additional runtime book-keeping.

Abduction-based Verification. Many memory safety verifiers based on sep-
aration logic use abductive (or bi-abductive) reasoning for performing modular
heap reasoning [5, 34, 35]. In these approaches, abductive reasoning is used to
infer missing preconditions of procedures. A more algorithmic form of abduction
for first-order theories is considered in [12]. The abduction algorithm described
in [12] computes a maximally simple and general solution and is used as a key
building block in the constraint solving phase of our synthesis algorithm. This
form of SMT-based abduction has also been used for loop invariant generation [6,



7] and for error explanation and diagnosis [36]. The contribution of the present
paper is to show how abduction can be used in program synthesis.
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Appendix A: Operational Semantics and Memory Safety

Figure 7 presents the operational semantics of the language from Section 3 us-
ing judgments of the form (S, Γ, Λ) ⇓ (Γ ′, Λ′) where Γ maps scalars to their
values and Λ keeps track of the offset and relative size of pointers. The auxiliary
judgments (E,Γ ) ⇓ c and (C, Γ ) ⇓ b give the evaluation rules for expressions
E and conditionals C under environment Γ . Since the evaluation of expressions
and conditionals are standard, the definitions of (E,Γ ) ⇓ c and (C, Γ ) ⇓ b are
omitted from Figure 7.

According to our semantics, only those programs that do not have memory
errors complete their evaluation. We can now precisely define memory-safety of
a program as follows:

Definition 4 Program P is memory safe iff ∀Γ,Λ. ∃Γ ′, Λ′. (P, Γ, Λ) ⇓ (Γ ′, Λ′)

In other words, a program in our language is memory safe if it is guaranteed to
complete its evaluation for all inputs.



(skip, Γ, Λ) ⇓ (Γ,Λ)

(E,Γ ) ⇓ c
(v := E,Γ,Λ) ⇓ (Γ [v 7→ c], Λ)

(S1, Γ, Λ) ⇓ (Γ1, Λ1)
(S2, Γ1, Λ1) ⇓ (Γ2, Λ2)

(S1;S2, Γ, Λ) ⇓ (Γ2, Λ2)

(E,Γ ) ⇓ c
Λ′ = Λ[[p] 7→ 〈0, c〉])

([p] := alloc(E), Γ, Λ) ⇓

(E,Γ ) ⇓ c
Λ([p2]) = 〈o, s〉

Λ′ = Λ[[p1] 7→ 〈o+ c, s− c〉]
([p1] = [p2]⊕ E, Γ, Λ) ⇓ (Γ ′, Λ′)

(E,Γ ) ⇓ c
Λ([p]) = 〈o, s〉
−o ≤ c < s

(access([p], E), Γ, Λ) ⇓ Γ,Λ

(C, Γ ) ⇓ true
(S1, Γ, Λ) ⇓ (Γ1, Λ1)

(if(C) then S1 else S2, Γ, Λ) ⇓ (Γ1, Λ1)

(C, Γ ) ⇓ false
(S2, Γ, Λ) ⇓ (Γ2, Λ2)

(if(C) then S1 else S2, Γ, Λ) ⇓ (Γ2, Λ2)

(C, Γ ) ⇓ true
(while(C) do S, Γ, Λ) ⇓ (Γ ′, Λ′)

(while(C) do S, Γ, Λ) ⇓ (Γ ′, Λ′)

(C, Γ ) ⇓ false

(while(C) do S, Γ, Λ) ⇓ Γ,Λ

Fig. 7: Operational semantics

Appendix B: Proof Sketch of Theorem 1

Soundness of the technique follows from the correctness of VC generation (which
is based on standard strongest postcondition and weakest precondition compu-
tation) and the correctness of the underlying abduction algorithm. Hence, we
only focus on showing optimality. For this, we will first prove the following helper
lemma:



Lemma 1. Let Ci be a χi constraint in ∆′ (from line 5 of the Solve algorithm)
of the form:

((χ1 ∧ . . . ∧ χi−1) ∧ φ ∧ χi)⇒ F (χi+1, . . . , χi+k)

where χ1, . . . , χi1 are ancestors of χi, χi+1, . . . , χi+k are its descendants, and φ
is a formula without any unknowns. Then, we have: S0(χi)⇒ S(χi).

Proof. In S0, we obtain a solution for χi by solving the following abduction
problem:

(S0(χ1) ∧ . . . ∧ S0(χk) ∧ χi ∧ φ) ⇒ ∀χi+1, . . . , χi+k.F (χi+1, . . . , χi+k)

In S, we obtain a solution for χi by solving:

(S0(χ1) ∧ . . . ∧ S0(χk) ∧ χi ∧ φ)⇒ F (φ1/χi+1, . . . , φk/χi+k)

for some φ1, . . . , φk. The left hand sides of the two implications are the same,
but for the right hand side, we have:

(∀χi+1, . . . , χi+k. F (χi+1, ...χi+k))⇒ F (φ1/χi+1, . . . , φk/χi+k)

for any φ1, . . . , φk, Therefore, it follows that S0(χi)⇒ S(χi).

The proof of the optimality part of the theorem is by induction. For this
purpose, we will assume a consecutive numbering scheme [0−N ] for each of the
unknowns χi such that i < j if either χi is nested inside χj or χj is sequentially
dependent on χi.
Base case: i = 0. Observe that χ0 is the first constraint that we add to Resolved
because it has no sequential dependencies and no descendants. Therefore, we
have S(χ0) = S0(χ0). Now suppose S(χ0) was not optimal. The only constraint
χ0 must satisfy is of the form:

χ1 ∧ . . . ∧ χk ∧ χ0 ∧ φ1 ⇒ φ2 (∗)

where χ1, . . . , χk are ancestors of χ0 and φ1 and φ2 are unknown free formulas.
(Observe that φ2 cannot contain any unknowns since χ0 has no descendants.)
Since SolveInit solves for χ0 after χ1, . . . , χk have been fixed and since we
assume optimality of the Abduce procedure, S0(χ0) is optimal with respect to
S0(χ1), . . . , S0(χk). That is, for the abduction problem:

(S0(χ1) ∧ . . . S0(χk) ∧ χ0 ∧ φ1)⇒ φ2 (1)

S0(χ0) is an optimal solution. If S(χ0) was not optimal, this would imply that
S0(χ0) is not optimal with respect to S(χ1), . . . , S(χk). That is, we can find a
solution γ0 for χ0 such that:

(S(χ1) ∧ . . . ∧ S(χk) ∧ γ0 ∧ φ1)⇒ φ2 (2)



is valid and (i) S0(χ0)⇒ γ0 and γ0 6⇒ S0(χ0) or (ii) γ0 contains fewer variables
than S0(γ0) while not being logically stronger. But by the above lemma, we
have S0(χi) ⇒ S(χi) for each χi, hence, γ0 cannot be strictly weaker than
S0(χ0), i.e., (i) is not possible. Observe that (ii) is also not possible because, since
S0(χi) ⇒ S(χi) for each χi, γ0 would have been a strictly better solution for
abduction problem (1), contradicting the optimality of our abduction procedure.
Induction: i = k. By the inductive hypothesis, S(χ0), . . . , S(χk−1) are optimal.
The constraint for χk is of the following form:

F1(D1) ∧
∧
χi∈A

χi ∧ χk ⇒ F2(D2)

where D1 are the unknowns that χk is sequentially dependent on, D2 are de-
scendants of χk, and A are the ancestors of χk. Since solutions for D1 and D2

are optimal by the inductive hypothesis, F1(D1) and F2(D2) are fixed to some
φ1 and φ2 respectively. Observe that we obtain a solution for χk by solving the
following abduction problem:

(φ1 ∧
∧
χi∈A

S0(χi) ∧ χk)⇒ φ2

By optimality of the abduction procedure, S(χk) is optimal with respect to
S0(χi). Now, suppose S(χk) was not optimal, i.e., there exists a γk such that:

(φ1 ∧
∧
χi∈A

S(χi) ∧ γk)⇒ φ2 (3)

is valid and γk is a strictly better solution that S(χk). Now, observe that
SeqDep(χi) ⊆ SeqDep(χk) for any ancestor χi of χk; hence, by Lemma 1,
S0(χi) ⇒ S(χi). Hence, by the same reasoning as used in the base case, γk
cannot be a better solution than S(χk) for abduction problem (3).


