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Abstract. This paper describes a new bottom-up, subset-based, and
context-sensitive pointer analysis for Java. The main novelty of our tech-
nique is the constraint-based handling of virtual method calls and instan-
tiation of method summaries. Since our approach generates polymorphic
method summaries, it can be context-sensitive without reanalyzing the
same method multiple times. We have implemented this algorithm in
a tool called Scuba, and we compare it with k-CFA and k-obj algo-
rithms on Java applications from the DaCapo and Ashes benchmarks.
Our results show that the new algorithm achieves better or comparable
precision to k-CFA and k-obj analyses at only a fraction of the cost.

1 Introduction

Pointer analysis is a key enabling technology underlying many program analysis,
software engineering, and compiler optimization tasks. Given a pointer variable
p, pointer analysis statically determines the set of all heap objects that p may
point to. The result of such an analysis can be used to resolve important program
analysis questions, such as whether two pointers can be aliases or whether a heap
location may be referenced in a given piece of code.

While existing pointer analysis algorithms differ along many dimensions, a
key feature that determines the precision of an algorithm is context-sensitivity.
In particular, a context-sensitive analysis respects the call/return semantics of
procedure calls and does not yield spurious points-to facts that arise from inter-
procedurally unrealizable paths. Furthermore, a context-sensitive analysis dis-
tinguishes heap objects that are allocated at the same program location, but due
to different invocations of the same method. While more precise than context-
insensitive ones, context-sensitive algorithms are much harder to scale to real
programs, and many existing techniques use approximations of full context-
sensitivity. For instance, object-sensitive analyses [14, 15, 23] only distinguish
callsites where the receiver objects are different, and k-CFA analyses [22, 12]
differentiate contexts by tracking callstrings up to some fixed length k.

Context-sensitivity can be achieved either by performing a top-down or bottom-
up interprocedural analysis. Top-down analyses start at entry methods of a pro-
gram and analyze callers before callees. In contrast, bottom-up analyses start at
leaf methods of the callgraph and analyze callees before callers. Since top-down
algorithms analyze every method in a known calling context, they are simpler
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Fig. 1. Code example to illustrate our approach

to design and implement, but they need to re-analyze the same method multi-
ple times under different contexts. In contrast, bottom-up analyses generate a
polymorphic method summary that may be used in any calling context to get
context-sensitive results. While generating a polymorphic points-to summary is
trickier than determining points-to information at a particular call site, bottom-
up analyses do not need to reanalyze the same method several times1 and have
the potential to scale better. In addition, the results of a bottom-up pointer
analysis are reusable: For instance, using a bottom-up pointer analysis, we can
analyze a library just once and reuse its summary for many different clients.

In this paper, we present a bottom-up context- and field-sensitive pointer
analysis algorithm for Java. A key novel feature of our approach is the constraint-
based treatment of virtual method calls. Similar to many other approaches, our
method starts with an imprecise callgraph and refines the callgraph as points-to
facts are discovered. However, we construct the callgraph in a purely bottom-
up fashion by predicating points-to facts on the possible dynamic types of the
receiver object. As method summaries are propagated up the call chain, these
dynamic types are resolved, thereby allowing the refutation of infeasible call
targets and spurious points-to facts in a context-sensitive manner.

Another salient feature of our approach is that it can generate polymorphic
method summaries without performing expensive case splits on possible aliasing
patterns at call sites. In particular, a key challenge in bottom-up pointer analysis
is how to generate method summaries that soundly capture the aggregate effect
of a call to method m under any possible aliasing relation at m’s call sites. Most
previous techniques deal with this difficulty either by performing case splits on
all possible aliasing patterns [6, 3] (which can cause exponential blow-up) or by
using unification-based methods [10, 28, 13, 27] (which are imprecise compared to
subset-based methods). A main advantage of our technique is that it is as precise
as subset-based methods despite modeling the unknown state of the heap in a
simple and uniform way. In particular, since our technique does not perform
strong updates 2 to heap locations, it can soundly account for the callee’s side
effects by performing a fixed-point computation during summary instantiation.

1 Bottom-up algorithms only re-analyze methods that belong to SCCs in the callgraph.
2 A strong update to memory location o kills the existing points-to facts for o, while

a weak update does not.
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Fig. 2. Method summaries computed by our algorithm

We have implemented our algorithm in a tool called Scuba , and we compare
its scalability and precision with top-down pointer analysis algorithms imple-
mented in Chord [16]. Our experimental results on programs from the DaCapo
and Ashes benchmark suites indicate that Scuba achieves better or comparable
precision to k-CFA and k-object-sensitive algorithm at a fraction of the cost.

To summarize, this paper makes the following contributions:

– We present a bottom-up, subset-based, and context-sensitive pointer analysis
for Java. A key novelty of our approach is the handling of virtual method
calls using constraint-based techniques.

– We describe a new method for summarizing and instantiating points-to facts.
Unlike previous techniques, our approach does not case-split on aliasing pat-
terns and guarantees soundness by performing fixed-point computation dur-
ing summary instantiation.

– We describe an implementation of our algorithm and compare it with k-CFA
and k-obj algorithms on the DaCapo and Ashes benchmarks.

2 Example

This section illustrates our approach on an example that showcases virtual
method calls and the need for context-sensitivity. Consider the code shown in
Figure 1, which defines classes X, Y, and A. Here, Y is a subclass of X and over-
rides X’s bar method. Class A has two instance variables x and y of type X. For
concreteness, suppose we want to know whether x.f and y.g can be aliases at
the end of a1 and a2.

Our algorithm starts by analyzing X::bar and Y::bar, which are leaf pro-
cedures in the callgraph. The summaries for X::bar and Y::bar are shown in
Figure 2 (a) and (b). We depict both method summaries as well as local points-
to facts in the form of a graph, where nodes correspond to abstract heap objects
and directed edges denote may-point-to relations. Our method summaries only
include points-to edges that may be added due to an invocation of the summa-
rized method. In particular, method summaries do not include points-to relations
that already exist on method entry, and since our analysis does not apply strong
updates, no points-to edges can be removed as a result of analyzing a method.
Hence, the summary for a method m can be thought of as a bag of (symbolic)
points-to edges that are introduced due to an invocation of m.
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Fig. 3. Dashed lines indicate points-to edges added after the foo call.

Now, consider the summary for X::bar shown in Figure 2(a). We use arg0
to denote the this pointer, and arg1, arg2 to denote the first and second formal
parameters. For parameter i, we use argi.ε to denote the heap object pointed
to by argi on method entry. Hence, according to the summary in Figure 2(a),
X::bar adds a points-to edge via field f from the object pointed to by the this

pointer to the object pointed to by X::bar’s first parameter. Note that, at a
call site of X::bar, parameter z may have multiple points-to targets, hence, the
single edge in X::bar’s summary may introduce multiple points-to edges at a
call site. The summary for Y::bar, which is shown in Figure 2(b), is very similar.

Now consider method A::foo, whose summary is shown in Figure 2(c). Since
x has type X, the call x.bar(a) could either invoke X::bar or Y::bar. Hence,
to analyze the method call, we instantiate the summaries of both X::bar and
Y::bar, but the points-to edges induced by instantiating method T::bar are
qualified by a constraint that stipulates that the dynamic type of x is T.

As an example, consider the potential target X::bar of the call x.bar(a).
Here, the only points-to edge in the summary for X::bar is from the f field of
arg0.ε to arg1.ε. Since arg0 of X::bar corresponds to this.x at the call site,
arg0.ε instantiates to arg0.ε.x, which denotes the memory location pointed to by
this.x. On the other hand, arg1 in X::bar corresponds to parameter z at the
call site, hence arg1.ε translates to a location with the same name, i.e., arg1.ε.
Therefore, as shown in Figure 2(c), instantiating the summary of X::bar for this
call site induces an edge from arg0.ε.x to arg1.ε, but this edge is qualified by
the constraint type(arg0.ε.x) = X.

Continuing with the method invocation y.bar(a) in the second line of A::foo,
we again instantiate the summaries of X::bar and Y::bar, since the type of y
is X. However, this time, the location named arg1.ε used in the summaries of
X::bar and Y::bar correspond to the location pointed to by this.y, which is
denoted by arg0.ε.y in method foo. Hence, as shown in Figure 2(c), the sum-
mary for foo includes points-to edges from the f and g fields of arg0.ε.y to
arg1.ε, again qualified by the appropriate type constraints. Observe that our
approach is context-sensitive because two different invocations of bar induce
different points-to relations. Also, even though this.x and this.y may alias at
a call site of foo, we represent their points-to targets on method entry using
two separate locations called arg0.ε.x and arg0.ε.y. As we explain shortly, this
approach is sound as long as we do not perform strong updates.



Now consider method a1 defined in A. The solid black edges in Figure 3(a)
denote points-to facts that hold right before the call to foo. In particular, the
location named arg0.ε denotes the object pointed to by the this pointer, and
both the x and y fields of arg0.ε point to a location called alloc(Y)@a1 : 1, which
corresponds to the memory allocated at the first line of method a1. Throughout
the paper, we use the notation alloc(T)@Ctx to denote heap objects of type T

that are allocated in context Ctx.
We now turn to the method invocation foo(z) in a1. Here, arg1.ε in foo’s

summary corresponds to the location pointed to by z in a1, which is alloc(Z)@a1 : 3.
On the other hand, the locations named arg0.ε.x and arg0.ε.y in foo represent
the locations pointed to by this.x and this.y in a1 respectively. Following the
chain of points-to edges in Figure 3(a), we see that arg0.ε.x and arg0.ε.y both
correspond to the location alloc(Y)@a1 : 1. Since this allocation is tagged with
type Y, the constraints type(arg0.ε.x) = X and type(arg0.ε.y) = X evaluate to
false, while type(arg0.ε.x) = Y and type(arg0.ε.y) = Y evaluate to true. Hence,
instantiating foo’s summary induces a single points-to edge from the g field of
alloc(Y)@a1 : 1 to alloc(Z)@a1 : 3, which is shown with the dotted edge in Fig-
ure 3(a). A similar chain of reasoning allows us to obtain the points-to facts
shown in Figure 3(b) for method a2.

As we can see from Figure 3, the analysis determines that x.f and y.g are
not aliases in either a1 or a2. Observe that an analysis that is either context-
insensitive or based on an imprecise callgraph would conclude otherwise. Also,
even though there are two different calls to foo and four different calls to bar,
observe that our algorithm analyzes each method only once.

3 Conceptual Foundations

Before describing our analysis in detail, we first describe a conceptual framework
that lays the foundations of our algorithm. We describe the main ideas using a
may-points-to graph, which we refer to as an abstract heap:

Definition 1 (Abstract heap) An abstract heap H is a graph (N,E) where
N is a set of nodes corresponding to abstract memory locations, and E is a set
of directed edges between nodes labeled with field names or ε. An edge (o1, o2, f)
indicates that the f field of o1 may point to o2.

Here, an abstract memory location represents either the stack location of a
variable or a set of heap objects. The edge label ε is used to model points-to
relations from stack locations to heap objects. The root nodes of an abstract
heap denote locations of variables, and we write root(H) to indicate the set of
root nodes of H. Given two abstract heaps H1 and H2, H1 ∪H2 represents the
abstract heap containing nodes and edges from both H1 and H2. Given a heap
H and edges E, we write H\E to denote the heap that contains all nodes and
edges in H except the set of edges E.

3.1 Normalization of Abstract Heaps
Given an abstract heap H, we define a normalization operation N(H), which
yields a normalized heap H∗ and a mapping ζ from nodes in H to nodes in H∗.
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Fig. 4. An abstract heap and its normal form

Definition 2 (Normal form) Given heap H = (N,E), N(H) yields normal-
ized heap H∗ = (N∗, E∗) and mapping ζ : N → 2N

∗
such that:

1. If x ∈ root(H), then x ∈ N∗ and ζ(x) = {x}.
2. If (o, o′, f) ∈ E and o∗ ∈ ζ(o), then o∗.f ∈ N∗, o∗.f ∈ ζ(o′), and (o∗, o∗.f, f) ∈ E∗.

We use the notation N(H) = H∗ to indicate that H∗ is in normal form, and we
write Map(H,H∗) = ζ to indicate that ζ maps nodes of H to nodes in H∗.

Example 1. Consider the abstract heap H shown in Figure 4(a) and its normal
form H∗ in Figure 4(b). Here, Map(H,H∗) yields the following mapping ζ:

ζ(x) = {x} ζ(y) = {y} ζ(A) = {x.ε}
ζ(B) = {x.ε, y.ε} ζ(C) = {y.ε} ζ(D) = {x.ε.f}
ζ(E) = {x.ε.f, y.ε.f} ζ(F ) = {x.ε.f, y.ε.f}

We use heap normal forms to model the heap on entry to a method. In
particular, H∗ corresponds to a “generic” heap representing the unknown points-
to targets of object o’s f field as o.f . While the mapping ζ from abstract heap H
to its normal form H∗ differs for each call site, the normalized heap for a method
m is the same irrespective of calling context. Observe that no pair of abstract
memory locations alias each other in a normalized heap, and every location has
exactly one points-to target for a given field.

Given an abstract heap H = (N,E) and its normal form H∗ = (N∗, E∗)
such that Map(H,H∗) = ζ, we define ζ−1 to be a mapping from N∗ to 2N such
that n ∈ ζ−1(n∗) iff n∗ ∈ ζ(n). In general, there is a many-to-many relationship
between the nodes of an abstract heap and its corresponding normal form.
Example 2. Consider the heap from Ex 1. We have:

ζ−1(x) = {x} ζ−1(y) = {y} ζ−1(x.ε) = {A,B}
ζ−1(y.ε) = {B,C} ζ−1(x.ε.f) = {D,E, F} ζ−1(y.ε.f) = {E,F}

The mapping ζ−1 is important in summary-based analysis because it allows us
to instantiate a method summary to a particular abstract heap at a call site. We
use the notation ζ−1 to denote the extension of ζ−1 that maps any element that
is not in the domain of ζ−1 to itself. Given heap H∗ = (N∗, E∗), we also write
ζ−1(H∗) to denote a heap H = (N,E) where (o1, o2, f) ∈ E iff there exists an
edge (o∗1, o

∗
2, f) ∈ E∗ such that o1 ∈ ζ−1(o∗1) and o2 ∈ ζ−1(o∗2)

Definition 3 (Default edge) We say an edge (n, n′, f) is a default edge of an
abstract heap if n′ = n.f .
Given a heap H, we write default(H) to denote the set of default edges in H.



SumAnalyze(H,S,A):
input: abstract heap H, code S, intraprocedural analysis A
output: abstract heap H ′

(1) let H∗ = NormalForm(H)
(2) let H ′∗ = Analyze(H∗, S,A)
(3) let ∆ = H ′∗\default(H ′∗)
(4) let ζ0 = Map(H,H∗)
(5) let H ′ = H; let ζ = ζ0
(6) do {
(7) ζ0 = ζ

(8) H ′ = ζ−1(∆) ∪H ′
(9) ζ = Map(H ′, H∗)
(10) }
(11) while(ζ 6= ζ0)
(12) return H ′

Fig. 5. Basic structure of summary-based analysis

3.2 Summary-Based Pointer Analysis

We now explain the basic idea underlying our summary-based analysis, assum-
ing a family of pointer analyses that are sound and weakly-updating. Given
code snippet S, an abstract heap H, and pointer analysis A, we write H ′ =
Analyze(H,S,A) to indicate that, if statement S is executed in an environment
that satisfies abstract heap H, then analyzing code S using pointer analysis A
yields a heap H ′ which conservatively models the concrete heap after S.

The basic structure of our summary-based pointer analysis is shown in Fig-
ure 5. The algorithm SumAnalyze takes as input an abstract heap H, a code
snippet S, and a weakly-updating pointer analysis A, and works as follows. Line
(1) constructs the normalized heap H∗ representing the unknown state of the
heap before executing S, and line (2) analyzes S without making any assump-
tions about points-to facts that hold before S. Line (3) generates a polymorphic
points-to summary ∆ which characterizes side effects of code S. Lines (4)-(11)
instantiate the summary ∆ by performing a fixed-point computation. Finally,
H ′ at line (12) models the state of the heap after S when S is executed in an
environment satisfying H.

Before discussing details, let us first understand in what way this algorithm
is “summary-based”. Since H∗ can be constructed in a context-independent
manner, we can analyze S in isolation and compute its side effects without
knowing the points-to facts that hold before S. Hence, lines (1)-(3) in Figure 5
correspond to summary generation. On the other hand, lines (4)-(11) perform
summary instantiation by computing the context-specific mapping ζ0 and by
adding all points-to edges that represent S’s side effects.

The most involved part of the above algorithm is the fixed-point computation
at lines (4)-(11). Intuitively, the algorithm maps each edge in the summary to
a set of edges at the callsite by using the mapping ζ−1 and adds these edges
to the initial abstract heap H. However, as new edges are added to H, the



Program P := C+

ClassDecl C := class T1 [extends T2]? {F ∗;M∗}
FieldDecl F := T fld name;
MethodDecl M := m(T0 v0, . . . , Tk vk) = {V ∗; I; }
VarDecl V := T var name;
Instruction I := v1 = v2 | v1 = v2.f | v1.f = v2| v = newρ T

| if(∗) I1 else I2 | I1; I2| mρ@T (v1, . . . , vn) | v0.mρ(v1, . . . , vn)

Fig. 6. Core language used for our formalization

mapping ζ must to be recomputed since locations used in the summary may
map to new additional locations after the summary has been applied. Hence, H ′

is recomputed until the mapping ζ from H ′ to H∗ stabilizes. It is easy to see
that SumAnalyze is sound because (i) the underlying pointer analysis does not
apply strong updates to memory locations, and (ii) the summary is applied to a
fixed-point. In particular, observe that H ′ overapproximates H and {H ′}S{H ′}
is a valid Hoare triple [8].

The reader may wonder why it is necessary to re-apply the summary until
the mapping ζ reaches a fixed point in Figure 5. This is necessary because our
summary ∆ encodes all possible side effects of code snippet S, but not the order
in which they happen. Hence, while the fixed point computation is required for
soundness, an immediate corollary is that the procedure SumAnalyze can be
less precise than Analyze if the underlying pointer analysis A is flow-sensitive.

4 Formalization of Algorithm

While the previous section describes core ideas of the analysis, it omits many
important details. In this section, we describe our full algorithm using the core
object-oriented language of Figure 6. Here, a program consists of one or more
class declarations C, which defines a class T1 with optional superclass T2. In-
structions include assignments, loads, stores, heap allocations (marked with
a unique program point ρ), non-deterministic conditionals, sequences, static
method calls mρ@T (...) (also marked with program point ρ), and virtual method
calls v0.m

ρ(. . .). We assume that the first argument of a method is always the
this pointer, and if a class T inherits a method m from its superclass T ′, then
T ′ also contains a definition of m with the same implementation.

4.1 Abstract Domains

Figure 7 shows the abstract domains that we need for describing our algorithm.
Since our analysis is bottom-up, we differentiate between two kinds of heap ob-
jects o: Access paths of the form ai.η represent (caller-allocated) unknown heap
objects reachable through the i’th argument, whereas objects named alloc(T )@ρ
represent heap objects of type T that are allocated either in the currently an-
alyzed method or in a transitive callee. Specifically, ai.f1...fn denotes the un-
known locations reachable on method entry through a series of field accesses
f1...fn from the i’th argument. We use the notation ai.(f1...fn)? to denote all



(Field selector) η : f | η.f | η?
(Heap obj) o : ai.η | alloc(T )@ρ
(Abstract loc) π : o | ai | vi@ρ
(Pts set) θ : o→ φ
(Abstract heap) Γ : (π × f)→ θ
(Summaries) Υ : (T ×M)→ Γ

Fig. 7. Abstract domains used in our analysis

unknown locations reachable from ai through any combination of field selectors
f1, ..., fn. For instance, a0.(f.g)? represents the infinite set of access paths a0.f ,
a0.g, a0.f.f , a0.g.f and so on. As we will see in Section 4.3, access paths in our
analysis correspond to node labels of the normalized heap from Section 3.

Abstract memory locations π are either heap objects o or stack locations. In
particular, ai denotes the stack location of the i’th argument, and vi@ρ denotes
the location of local variable vi under context ρ. We represent calling contexts
using a sequence of program points ρ1, . . . , ρn, where each ρi corresponds to some
call or allocation site. For instance, a memory location named alloc(T )@ρ1ρ2 cor-
responds to a heap object allocated at program point ρ2 of some method m which
is invoked at call site ρ1. Similarly, v@ρ1 denotes the local variable v of some
method m when m is invoked at callsite ρ1. Since our analysis builds contexts
in a bottom-up way, local variables declared in the currently analyzed method
m do not have any context information; hence, we abbreviate the locations of
locals in the current method as vi.

Definition 4 (Argument-derived location) We say location π is derived
from an argument, written arg(π), if it is either (i) ai representing the location
of the i’th argument or (ii) a heap object represented with an access path ai.η.

An abstract heap Γ maps each field f of location π to a points-to set. A
(guarded) points-to set θ is a set of pairs (o, φ) where o is a heap object and φ is
a constraint. As discussed in Section 2, we use constraints to predicate points-to
facts on dynamic types of receivers. Constraints φ belong to the theory of equality
with uninterpreted functions, defined according to the following grammar:

Function f := pts | alloc | ςi
Term t := c | v | f(t)
Formula φ := > | ⊥ | type(t) = T | φ1 ∧ φ2 | φ1 ∨ φ2

Here, terms include constants c, variables v, and function applications f(v)
where f is either the binary function pts, alloc, or an n-ary function drawn
from ς1, . . . , ςk. Formulas are composed of > (true), ⊥ (false), and conjunctions
and disjunctions of equality constraints of the form type(t) = T , where T is a
type constant. In addition to the usual function and equality axioms, the alloc
and type functions obey the additional axiom ∀x. type(alloc(T,ρ)) = T , which
states that the type of an allocation of type T is T .

Since we will convert heap objects to terms, we define an operation called
lift(π), abbreviated π, as follows:

ai = ai alloc(T )@ρ = alloc(T,ρ) π.f = pts(π, f) π.(f)? = ςi(π,f) (ςi fresh)



We also assume an operation lift−1(t) which is the inverse of lift(π). Given a
term t, lift−1(t) yields an abstract memory location representation of that term.

Example 3. The constraint type(a.ε.f) = A ∧ type(a.ε.f) = B is unsatisfiable
since the dynamic type of a.ε.f cannot simultaneously be A and B. But the con-
straint type(a.ε.g?) = A∧type(a.ε.g?) = B, which translates to type(ς1(pts(a, ε), g)) =
A ∧ type(ς2(pts(a, ε), g)) = B, is satisfiable because two distinct occurrences of
a.ε.g? may correspond to different objects (e.g., a.ε.g and a.ε.g.g).

We now define a function has type(θ, T ) which generates a constraint that
evaluates to true if some element in points-to set θ can have dynamic type T :

Definition 5 has type(θ, T ) Given a points-to set θ, the function has type(θ, T )
yields the following constraint:∨

(πi,φi)∈θ

(((type)(πi) = T ) ∧ φi)

Now, going back to Figure 7, an environment Υ maps each method M in class
T to its corresponding summary, which is an abstract heap Γ summarizing M ’s
side effects. Applying the summary at a call site allows us to determine points-to
relations of the caller without having to reanalyze the callee. In addition, our
method summaries include points-to information for locals in the summarized
method. In particular, this design choice allows us to determine points-to sets
for all program variables without employing a separate top-down pass.

4.2 Operations on Abstract Domains

In this section, we describe some operations on abstract domains that simplify
the description of our algorithm. Since our algorithm constructs the initial heap
on method entry in a demand-driven way, we first define default targets for
argument-derived locations:

Definition 6 (Default target) Given an argument-derived location π and a
field f , the default target of the f field of π, written def(π, f), is given as follows:

def(π, f) =

{
π if π = π′.(f)? and f ∈ f (1)
π′.(f.g)? if π = π′.f.g (2)
π.f otherwise (3)

In other words, if field f is not part of a recursive field cycle (line 3), then the
default target for field f of an argument derived location π is π.f , just like the
normal form heaps from Section 3. However, if f is part of a recursive field cycle,
then our analysis collapses this cycle into a single abstract memory location (lines
1-2). For example, def(a.next,next) = a.next? (line 2), and def(a.next?,next) =
a.next? (line 1). The summarization of recursive field cycles into access paths of
the form a.f? is needed to ensure termination of the fixed-point computation
performed by our algorithm.

Next, we define a field lookup operation on abstract heaps Γ :



Definition 7 (Field look-up) Given heap Γ , field f , and location π, the field
lookup operation Γ [π, f ] retrieves the points-to target for π’s f field:

Γ [π, f ] =

{
Γ (π, f) ∪ {(def(π, f),>)} if arg(π)
Γ (π, f) otherwise

Since our algorithm does not explicitly add default edges to the abstract
heap, Γ [π, f ] always yields def(π, f) as part of the points-to set of π.f if π is an
argument derived location. Now, since our analysis performs weak updates, we
need to merge two points-to sets using the following join operator:

Definition 8 (Join t of points-to sets θ1, θ2)

(θ1 t θ2)(o) =

{
θ1(o) ∨ θ2(o) if o ∈ dom(θ1) ∩ dom(θ2)
θ1(o) if o ∈ dom(θ1) and o 6∈ dom(θ2)
θ2(o) if o ∈ dom(θ2) and o 6∈ dom(θ1)

Observe that if an object o is in both points to sets θ1 and θ2, we take
the disjunction of the constraints associated with o. We also extend this join
operator to abstract heaps in the expected way. That is, for a location π and
field f , (Γ1 t Γ2)(π, f) yields Γ1(π, f) t Γ2(π, f). In our analysis, we sometimes
need to predicate points-to information on constraints. For this purpose, an
operation θ ↓ φ conjoins φ with every constraint in θ:

Definition 9 (Projection of θ on φ ) θ ↓ φ = {(πi, φi ∧ φ) | (πi, φi) ∈ θ}

Finally, we extend the field lookup operation on points-to sets as follows:

Definition 10 (Field lookup for pts-to set) Γ [θ, f ] =
⊔

(πi,φi)∈θ Γ [πi, f ] ↓ φi

That is, Γ [θ, f ] includes the points-to target of every element in θ under the
appropriate constraints.

4.3 Intraprocedural Analysis

Figure 8 describes the intraprocedural analysis using judgements of the form
Υ, Γ ` I : Γ ′. which indicates that, if statement I is executed in an environment
that satisfies summary environment Υ and abstract heap Γ , we obtain a new
heap Γ ′. Since the analysis is (partially) flow-sensitive, we distinguish between
heaps Γ, Γ ′ before and after executing I.

Rule (1) in Figure 8 describes the analysis of assignments. Although our anal-
ysis only performs weak updates to heap objects, it does apply strong updates
to variables. Hence, rule (1) updates the points-to set for (v1, ε) to be Γ [v2, ε],
where the lookup operation is defined in Section 4.2. Rule (2) for memory allo-
cations v = newρ T introduces a new abstract location named alloc(T )@ρ and
assigns v1 to this singleton.

Rule (3) concerns loads of the form v1 = v2.f . Here, we first look up the
points-to set θ of v2 and then use Γ [θ, f ] to retrieve the targets of memory
locations in θ. Finally, since our analysis applies strong updates to variables, we
override v1’s existing targets and change its points-to set to Γ [θ, f ].



(1)
Γ ′ = Γ [(v1, ε)← Γ [v2, ε]]

Υ, Γ ` v1 = v2 : Γ ′
(2)

Γ ′ = Γ [v ← {(alloc(T )@ρ,>)}]
Υ, Γ ` v = newρ T : Γ ′

(3)

θ = Γ [v2, ε]
Γ ′ = Γ [(v1, ε)← Γ [θ, f ]]

Υ, Γ ` v1 = v2.f : Γ ′

(4)

θ1 = Γ [v1, ε] θ2 = Γ [v2, ε]
Γ ′ = Γ [(oi, f)← (Γ (oi, f) t (θ2 ↓ φi)) | (oi, φi) ∈ θ1]

Υ, Γ ` v1.f = v2 : Γ ′

(5)

Υ, Γ ` I1 : Γ1

Υ, Γ ` I2 : Γ2

Υ, Γ ` if(∗) I1 else I2 : Γ1 t Γ2
(6)

Υ, Γ ` I1 : Γ1

Υ, Γ1 ` I2 : Γ2

Υ, Γ ` I1; I2 : Γ2

Fig. 8. Rules for intraprocedural analysis

M, Γ, ρ ` inst loc(ai) : {M(ai),>}
M, Γ, ρ ` inst loc(π) : θ

M, Γ, ρ ` inst loc(π.f) : Γ [θ, f ]

M, Γ, ρ ` inst loc(π) : θ0
θi =

⊔
1≤j≤n Γ [θi−1, fj ]

M, Γ, ρ ` inst loc(π.(f1...fn)? :
⊔
i≥0 θi)

ρnew = new ctx(ρ,ρ)

M, Γ, ρ ` inst loc(v@ρ) : {(v@ρnew,>)}

ρnew = new ctx(ρ,ρ)

M, Γ, ρ ` inst loc(alloc(T )@ρ) : {(alloc(T )@ρnew,>)}

Fig. 9. Rules for instantiating memory locations

Rule (4) analyzes stores v1.f = v2. First, we look up the points-to sets θ1 and
θ2 of v1 and v2. Now, the store operation will update every location oi such that
(oi, φi) ∈ θ1. However, since we apply only weak updates to heap objects, we
preserve the existing points-to targets Γ (oi, f) for each oi. Furthermore, since v1
points to oi under constraint φi, oi points to elements in θ2 only when φi holds.
Hence, the new points-to set for oi is given by (θ2 ↓ φi) t Γ (oi, f) where the ↓
operation is given by Definition 9. Since rules (5) and (6) for if statements and
sequencing and are fairly standard, we do not describe them in detail.

4.4 Interprocedural Analysis

We now describe the instantiation of summaries at call sites. Since a key part
of summary instantiation is constructing the mapping from locations in the
summary to those at the call site, we first start with the rules in Figure 9
which describe the instantiation of memory locations. Informally, the rules of
Figure 9 construct the mapping ζ−1 from Section 3. More formally, they produce
judgements of the form M, Γ, ρ ` inst loc(π) : θ where M maps formals to
actuals, and Γ and ρ are the abstract heap and program point associated with
a call site respectively. The meaning of the judgement is that, under M, Γ, ρ,
location π used in the summary maps to (guarded) location set θ.

The first rule Figure 9 maps formal parameter ai to the actual M(ai). The
second rule instantiates argument-derived locations of the form π.f . For this



M, Γ, ρ ` inst loc(lift−1(t)) : θ
φ = has type(θ, T )

M, Γ, ρ ` instφ(type(t) = T ) : φ

? ∈ {∧,∨}
M, Γ, ρ ` instφ(φ1) : φ′1
M, Γ, ρ ` instφ(φ2) : φ′2

M, Γ, ρ ` instφ(φ1 ? φ2) : φ′1 ? φ
′
2

Fig. 10. Rules for instantiating constraints

M, Γ, ρ ` inst loc(π1) : θ1 . . . inst loc(πn) : θn
M, Γ, ρ ` instφ(φ1) : φ′1 . . . instφ(πn) : φ′n

M, Γ, ρ ` inst pts({(π1, φ1), . . . , (πn, φn)}) : ti(θi ↓ φi)

M, Γ, ρ ` inst loc(π) : θ′

M, Γ, ρ ` inst pts(θ) : θ′′

∆ = [(πi, f)← (θ′′ ↓ φi) | (πi, φi) ∈ θ′]
M, Γ, ρ ` inst partial heap(π, f, θ) : ∆

∆ = {(π1, f11) 7→ θ11, . . . , (πn, fnk) 7→ θnk}
M, Γ, ρ ` inst partial heap(π1, f11, θ11) : ∆11

. . .
M, Γ, ρ ` inst partial heap(πn, fnk, θnk) : ∆nk

M, Γ, ρ ` inst heap(∆) : tij∆ij

Fig. 11. Rules for instantiating summaries

purpose, we first instantiate prefix π to location set θ, then retrieve the points-to
targets of the f field of locations in θ. The third rule instantiates access paths of
the form π.(f1 . . . fn)?. As in the previous rule, we first instantiate prefix π, which
yields θ0. Now, recall that the access path π.(f1 . . . fn)? describes the infinite set
of access paths given by the regular expression π.(f1 + . . . + fn)∗. Hence, to
instantiate π.(f1 . . . fn)?, we need to compute all locations that are reachable
from θ0 using any combination of field selectors f1, . . . , fn. The resulting set⊔
i≥0 θi is the reflexive transitive closure of θ0 with respect to fields f1, . . . , fn.

The last two rules in Figure 9 describe the instantiation of allocations and
local variables. Both rules use a helper new ctx method defined as follows:

new ctx(ρ,ρ) =

{
ρ,ρ if |ρ| ≤ k
ρ otherwise

In other words, new ctx appends call site ρ to context ρ if the length of ρ
is less than some pre-determined threshold k. Hence, our analysis uses a k-CFA
style context-sensitive heap abstraction where the value of k is configurable.

We now turn to the instantiation of constraints, summarized in Figure 10.
To translate a constraint type(t) = T , we map t to its corresponding location set
θ by using inst loc. The function has type(θ, T ) then yields the condition under
which some element in θ has dynamic type T (recall Definition 5).

Using these ingredients, Figure 11 shows how to instantiate an abstract heap
∆. Given location πi and field fj from the callee heap, inst partial heap instan-
tiates all points-to edges from πi labeled with fj and yields instantiated partial
heap ∆ij . The instantiation of ∆ is obtained by taking the join over all ∆ij ’s.

Finally, Figure 12 describes the analysis of method calls. First, consider a
static call to m with corresponding summary ∆ (rule (1)). To analyze it, we
construct the formal-to-actual mappingM and perform a least fixed-point com-
putation that instantiates the summarized heap∆ until we obtain an overapprox-
imation of the set ∆′ of m’s side effects. The abstract heap after the method call
is obtained by taking the union of the existing heap Γ and the new “edges” ∆′.



(1)

Υ (T,m) = ∆
M = [a1 7→ v1, . . . , an 7→ vn]
M, Γ t∆′, ρ ` inst heap(∆) : ∆′

Υ, Γ ` mρ@T (v1, . . . , vn) : Γ t∆′ (2)

static type(v0) = T T1 <: T, . . . , Tn <: T
φi = has type(Γ (v0), Ti)

Υ, Γ ` mρ@T1(v0, . . . , vk) : Γ1

. . .
Υ, Γ ` mρ@Tn(v0, . . . , vk) : Γn

Υ, Γ ` v0.mρ(v1, . . . , vk) : ti(Γi ↓ φi)

Fig. 12. Analysis of method calls

The second rule of Figure 12 describes the analysis of virtual calls. Here,
we first overapproximate the call’s targets and then use the previous rule for
analyzing static method calls to obtain heap Γi assuming the called method is
Ti :: m. Now, since the target of the virtual call is Ti :: m under the assumption
that v0 has dynamic type Ti, we generate the constraint φi = has type(Γ (v0), Ti).
Then, the final abstract heap after the call is obtained as ti(Γi ↓ φi).

5 Implementation and Extensions

We implemented the proposed algorithm in a tool called Scuba (http://www.
cs.utexas.edu/~yufeng/scuba.html) which is built on top of Chord [16]. Scuba
performs analysis on the Quad representation of Joeq [25] and obtains an initial
callgraph by running the context-insensitive pointer analysis implemented in
Chord. It also uses the Z3 SMT solver [5] for checking satisfiability of constraints.

Our implementation performs several optimizations over the core algorithm
described here. One optimization is memoizing instantiation results. For exam-
ple, consider an access path a0.ε.f.g.h used in m’s summary. Since this access
path may be instantiated many times when analyzing a call site of m, our anal-
ysis maintains a cache per callsite that records instantiation results. A second
optimization concerns constraint generation for virtual method calls. Consider
a call v.m(...) where the static type of v is T0. Further, suppose T0 has a large
number of subclasses T1, . . . , Tn all of which inherit T0’s m method except Tn.
Assuming v points to heap object o, we need to introduce constraints of the form∨

0≤i<n type(o) = Ti. Since such constraints can be very large, our implementa-
tion allows subtyping constraints and translates them to linear inequalities by
assigning integer identifiers to types in reverse topological order.

6 Evaluation

We evaluated Scuba on ten large Java applications from the DaCapo and Ashes
benchmark suites [2, 1]. These applications range between 92615 and 227507 lines
of statements in the Quad IR and contain between 4634 and 9653 reachable
methods. To evaluate our algorithm, we compared Scuba against the k-CFA
and k-object-sensitive algorithms implemented in Chord [16]. All analyses are
Anderson-style flow-insensitive pointer analyses that allow customizing the value
of k. Chord also allows customizing the context-sensitivity associated with heap
objects using a value h. For example, a 2-obj-1-h analysis uses the abstract
allocation site of the receiver as a context up to depth 2, and it also differentiates
heap allocations with different contexts up to depth 2.



Benchmark # methods # statements CIPA 2-CFA 2-obj Scuba-2 Scuba-3 Scuba-4

antlr 5411 112831 29 1380 355 30 37 50

hedc 4967 103066 25 1337 446 25 28 31

avrora 5230 104948 24 1328 336 53 55 59

polyglot 4634 92615 21 608 284 14 17 16

toba-s 4702 101501 24 930 299 15 18 17

weblech 5816 115937 27 1657 506 41 35 39

xalan 6405 131332 27 1100 3600 173 180 211

hsqldb 6767 137947 33 2474 1348 63 65 77

luindex 6157 127451 28 2525 532 93 147 315

sunflow 9653 227507 66 T/O T/O 411 405 521

Table 1. Analysis time in seconds. Runs exceeding the time-limit of 3600s are labeled
T/O.

Benchmark Alias pairs CIPA 2-CFA 2-obj Scuba-2 Scuba-3 Scuba-4

antlr 6839 0 1082 2785 3219 3231 3231

hedc 1728 0 725 962 1025 1055 1055

avrora 1182 0 406 687 738 741 745

polyglot 165 0 59 103 128 128 128

toba-s 5118 0 3354 3350 3589 3589 3595

weblech 1417 0 662 654 656 681 763

xalan 124 0 24 24 24 24 24

hsqldb 5254 0 2746 2724 3318 3318 3426

luindex 4649 0 1326 1420 1353 1400 1400

sunflow 4303 0 N/A N/A 339 339 339

Table 2. May-alias results. The bigger the better.

Before describing the results, we first explain how our algorithm relates to k-
CFA and k-obj-sensitive analyses. Similar to k-CFA, Scuba uses call sites rather
than receiver objects as contexts. However, unlike k-CFA, we do not impose a
fixed value of k since our algorithm instantiates method summaries differently
for each call site. On the other hand, we can customize the context-sensitivity
associated with heap objects by varying the parameter k used in the new ctx
function from Section 4.4. Hence, for a given value of k in the new ctx function,
Scuba is roughly comparable to a ∞-CFA-k-h analysis. In what follows, we
write Scuba-k to refer to different configurations of Scuba for different values
of parameter k used in the new ctx function from Section 4.4.

Table 1 compares the running times of Scuba-k (for 2 ≤ k ≤ 4) against the
context-insensitive(CIPA), 2-CFA, and 2-obj-sensitive analyses using h value of
1. While we also tried comparing Scuba against k-CFA and k-obj-sensitive
analyses for k = 3 and k = 4, these analyses did not complete within an hour for
most of the benchmarks; hence, we do not include these results in Table 1. We
also note that the running times shown in Figure 1 include the analysis time for
libraries (e.g., JDK, Swing, Sun Security) as well as the application code (i.e.,
we did not use manually provided stub methods for analyzing libraries). As the
results in Table 1 show, Scuba-k is significantly faster compared to k-CFA and
k-obj analyses.

To compare the precision of Scuba against k-CFA and k-obj analyses, we
used two typical pointer analysis clients, namely may-alias and downcast anal-
yses. Table 2 compares the precision of different analysis configurations in the



Benchmark # downcasts CIPA 2-CFA 2-obj Scuba-2 Scuba-3 Scuba-4

antlr 76 18 21 48 45 52 52

hedc 28 5 6 23 23 23 23

avrora 21 0 0 8 15 18 18

polyglot 13 2 3 9 13 13 13

toba-s 59 23 23 34 37 37 37

weblech 48 16 23 33 38 38 38

xalan 14 7 10 13 13 13 13

hsqldb 45 22 24 32 28 28 35

luindex 213 104 106 180 177 177 177

sunflow 81 19 N/A N/A 25 52 52

Table 3. Downcast results. Bigger numbers indicate higher precision.

context of the may-alias client. The column labeled “Alias pairs” shows the num-
ber of variable pairs that are queried by the may-alias client. To generate these
pairs, we first ran a context-insensitive pointer analysis to identify potential
may-alias in the application code. From these variables, we further filtered those
pairs that are “obviously” aliases (e.g., due to a direct assignment). Columns 3-
11 in Table 2 show the number of variables proven not to be aliases according to
each analysis configuration. Hence, a higher number indicates better precision.
Observe that every configuration of Scuba-k yields better precision on average
compared to 2-CFA and 2-obj analyses 3.

Table 3 shows the precision of each analysis in the context of the downcast
client. Here, the second column labeled “# downcasts” shows the total number
of downcasts in the application, and the subsequent columns show the number of
downcasts that can be proven safe. The number of downcasts shown in Table 3
only include the downcasts performed in the application code rather than in
external libraries 4. According to the results shown in Table 3, Scuba-k has
better precision on average compared to both 2-CFA and 2-obj.

7 Related Work

Top-down pointer analysis. Most existing context-sensitive pointer analysis
algorithms are top-down [12, 14, 26, 24, 7]. Generally speaking, top-down context-
sensitivity comes in two flavors: call-site sensitivity [22] (k-CFA) and k-object-
sensitivity [14]. Specifically, CFA-based algorithms use method call sites as the
context, while object-sensitive approaches use the receiver’s abstract allocation
site. The recent work described in [9] has proposed selectively combining k-CFA
and k-object sensitivity to achieve better precision. Several papers have used
BDD-based methods for top-down context-sensitive pointer analysis [26, 31, 11].
The use of BDDs exposes commonalities between different contexts and allows
the technique to scale better. The Chord framework [16] used in our experimental
evaluation also uses BDDs to exploit equivalences between calling contexts.

Bottom-up pointer analysis. While not as widely-studied as top-down al-
gorithms, several papers propose bottom-up pointer analysis. However, many

3 We manually inspected a randomly selected subset of the may-alias queries that could
only be discharged by Scuba and confirmed that these are not false negatives.

4 Since most benchmarks use the same libraries, this strategy avoids double counting.
Furthermore, clients are typically interested in finding defects in the application.



of these approaches are unification-based [10, 18, 13]. The algorithm proposed
in [28] is also bottom-up but uses a combined equality- and subset-based ap-
proach. By contrast, our algorithm is subset-based and therefore more precise.

The algorithm described in [4] presents a subset-based, partially bottom-
up pointer analysis for C. Unlike our approach, it incorporates both top-down
and bottom-up phases where the top-down phase is used for precise handling of
function pointers. Also unlike our approach, it tracks alias pairs as opposed to an
explicit heap model and is meant for C rather than Java. Another subset-based
pointer analysis for C that combines top-down and bottom-up phases is based
on the observation that context-insensitivity does not result in a loss of precision
if function side effects are accounted for [17]. In contrast to our approach, that
technique handles SCCs in a context-insensitive way and employs a top-down
phase that removes callee side effects. The algorithms described in [3, 6] perform
bottom-up pointer analysis for C++ programs. Unlike the method presented
in this paper, they perform case splits on possible aliasing patterns. Since the
approach of [6] performs strong updates, it is more precise but less scalable
compared to our technique.

Another related work is the algorithm described in [27], which describes a
compositional pointer and escape analysis for Java. While this analysis is flow-
sensitive and applies strong updates, it assumes that parameters do not alias
and generates a summary that is valid under this assumption. However, if this
assumption is violated at a call site, the analysis corrects the summary through
a complex mechanism that involves merging of memory locations. Another dif-
ference is that [27] does not precisely handle virtual method calls.

Summarization. Many papers describe general frameworks for interprocedu-
ral analysis [19–21]. The work described in [29], [30] compute polymorphic sum-
maries for dataflow problems but both rely on global points-to sets.

8 Conclusion

We described a new bottom-up, summary-based pointer analysis for Java. The
experimental evaluation demonstrates that our algorithm runs significantly faster
than top-down pointer analyses with comparable precision. We believe that
Scuba is able to scale better because the cost of instantiating a method sum-
mary is smaller compared to the cost of re-analyzing the function.
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