CS345H: Programming Languages
Lecture 1: Introduction and Lambda Calculus |

Thomas Dillig

What is this course about?

» This course is about programming languages

v

We will study different ways of specifying programs

v

We will learn how to give (precise) meaning to programs

v

We will see how to use programming languages to prevent
run-time errors

v

We will explore these concepts in real-world languages

Thomas Dillg, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus |

Thomas Dillg, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus | 2/36

Why should you take this course?

» Understanding programming languages means that you will be
able to program in any existing or future programming
language almost immediately

» You will be able to choose the right language for the right
problem

> You will have techniques to give precise semantics to any
string, not just programs.

> You will have a much easier time getting (and keeping) jobs ;-)

Course Administration

v

(Tentative) syllabus is on class website at
cs.utexas.edu/"tdillig/cs345h

> Instructor: Prof. Thomas Dillig

v

TAs: Pengxiang Cheng

v

Office hours: See course website for updates
> We also use Piazza

Check this website and Piazza!

v

Thomas Dillg, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus |

Thomas Dillg, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus | 4/36

Course Administration

This class has the following requirements:
> You will build an interpreter for a realistic language.

» Substantial project, but broken up into 4 manageable
programming assignments

v

One larger, open-ended project

v

We will have approx. weekly written homeworks
» Two in-class midterms and final during finals week.

This is a difficult class with a substantial workload

v

Course Administration - Dates

The following exams are scheduled:
» Midterm 1: 10/11 in class

v

Midterm 2: 11/15 in class

v

Final: 12/11 in class

v

You must be available at these dates, no alternate exams.

v

If you miss an exam, your score is 0.

Thomas Dillg, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus |

Thomas Dillg, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus | 6/36

Grading

» Grades breakdown
» 15%: each midterm

» 25% Final
» 20% Written Assignments
> 25% Programming Assignments

» Each written assignment is due at the beginning of class, each
programming assignment at midnight on the due date.

» You have 3 24-hour period late days to use, but you cannot
use more than 2 late days on one assignment.

> Anything handed in after this will receive 0 credit.

Grading

> The final grades will be curved

» However: Your grade will never get worse from curving, only
better

> You will receive lots of feedback through assignments and
midterms

> We will post average and standard deviations on all scores, so
you know how you are doing

Thomas Dillg, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus |

Thomas Dillg, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus | 8/36

Getting Help

» We will use the newsgroup function in Piazza for any questions
about homework, programming assignments and material.

» We will not answer any emails about these topics

» For any personal issues reach out directly to me via email.

Collaboration

> You must complete the written assignments individually

» |If you discuss the assignment with other students, you must
acknowledge their names on your assignment

> You may complete the programming assignments alone or in
pairs; you can change your parter on each project, but not
during one project

» We use plagiarism-detection software to ensure your programs
are not copied. Any cheating will result in an F for the course
and referral to the UT honor code violation committee

Thomas Dillg, CS345H: Programming Languages Lecture 1: Ints

Thomas Dillg, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus | 10/36

Other Policies

Some comments:

> No makeup anything to improve grades

> Grades are final, | will never change the course grade after the
semester

» It is your responsibility to check for grading mistakes on
Canvas when assignments are handed back. If we don't hear

from you within a week, your score is final

> You are responsible for anything announced in class

Let's get started!

Thomas Dillg, €S345H: Programming Languages Lecture 1 Introduction and Lambda Calculus |

11/36

Thomas Dillg, CS345H: Programming Languages Lecture 1: Intro 12/36

History of Programming Languages

History of Programming Languages

> This computer was programmed with assembly instructions
written on punch cards

» Problem: For the first time in IBM's history, software
development costs exceeded hardware cost!

» Solution proposed: Program computer in a higher-level
language than assembly

Thomas Dillg, CS345H: Programming Languages Lecture 1 Introduction and Lambda Calculus |

13/36

Thomas Dillg, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus | 14/36

FORTRAN |

Enter John Backus

v

» Translation from higher-level
language to assembly had already
been tried before...

> And did not work out (at all)

» But team lead by John Backus
produced first practical
programming language called
FORTRAN and a compiler to
translate it to assembly

Impact of FORTRAN

» Within 2 years: 80% of programs written for the IBM 704
were written in FORTRAN

» This is even though FORTRAN | is a pretty awful language
(by today’s standards)

> After this: Almost all programming done in (increasingly)
higher level languages

> Programming languages have greatly improved programmer
productivity, enabling software that would never haver been
possible otherwise

Thomas Dillg, €S345H: Programming Languages Lecture 1 Introduction and Lambda Calculus |

15/36

Thomas Dillg, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus | 16/36

Language Goals:

> In the beginning, overarching concern when developing
languages was performance

» As hardware got faster, many different goals emerged:
Reliability, Security, Ease of Use, Re-usability, etc

> This resulted in thousands of actual programming languages

Language Evolution

Thomas Dillg, €S345H: Programming Languages Lecture 1: Introduction and Lambda Calculus |

17/36

Thomas Dillg, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus | 18/36

Language Design Today

» We understand pretty well how to design good programming
languages

» However, many bad languages are still designed

» After this class, you will be able to recognize bad
programming languages

Lambda Calculus

v

v

There are many programming languages we could talk about

But pretty much all real languages are complex, large and
obscure many important issues in irrelevant details

We want: "as simple as possible” language to study properties
of programming languages

This language is known as lambda calculus

Thomas Dillg, CS345H: Programming Languages Lecture 1 Introduction and Lambda Calculus |

10/36

Thomas Dillg,

CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus | 20/36

Lambda Calculus

> There are only four expressions in lambda calcus:

» Expression 1: constants
» 1, 7, "yourName" are all valid expressions in lambda calculus

» Expression 2: identifiers
> Will usually use x, vy, etc for those

v

Expression 3: lambda abstraction
> written as Az.e

> Expression 4: application

> written as e; es

Lambda Calculus Syntax

Or, more concisely, the syntax of a lambda calculus expression
as context-free grammar is given by:

e=c|id|Aid.e | e e

This is a production that defines the left hand side (here an
expression e)

Observe that this production is recursive

With this production, we can now check if any expression is
valid lambda calculus

Thomas Dillg, €S345H: Programming Languages Lecture 1 Introduction and Lambda Calculus |

21/36

Thomas Dillg,

CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus | 22/36

Lambda Calculus Syntax

v

Consider the expression: A = (A\z.z) 3

v

Now, recalling the syntax

e=c|id | Aid.e | e e
we can give a derivation proving that A is valid
> e—e ea— e 3= (Are) 3— (Az.z) 3

» Any expression for which we can find a derivation is
syntactically valid lambda calculus

Are we done?

We can now decide if any string is lambda calculus
But we have no idea (yet) what these expressions mean!

Just because we defined a syntax, this does not mean we have
given meaning to expressions

Giving meaning to syntax is called semantics

Big chunk of this class: How to define syntax and semantics
of programming languages

Thomas Dillg, €S345H: Programming Languages Lecture 1 Introduction and Lambda Calculus |

23/36

Thomas Dillg,

CS345H: Programming Languages Lecture 1: Intro

24/36

Lambda calculus semantics

> Let's define the meaning for each expression in our
production:
» Constant ¢: The meaning of ¢ is the value of ¢
» |dentifier id: The meaning of id is id
» Lambda Az.e: The meaning: A\z.e

> Application A\z.e ey: The meaning: e[ex/]

> eles/x] is substitution. We replace all free occurrences of z by
ez in expression e

» An occurrence of a variable is free if it is not bound by a A
Example: (Az.z)[2/z] = Az.x

» Upshot: We can define anonymous functions with binding
operator .

Examples

» Meaning (or value) of (Az.z) 1?7

v

(Az.z) 1 = 2[l/z] =1

v

Az.(Az.2)z)l — ((Az.2)z)[1/2] = (Az.2)1 — ...

v

Substitution is capture-avoiding: Does not replace variables
bound by other \'s

v

Convention: We assume that A-bindings extend as far to the
right as possible

v

We read Az.\y.zy as (Az.(Ay.zy)) But use parenthesis to be
safe

Thomas Dillg, €S345H: Programming Languages Lecture 1 Introduction and Lambda Calculus |

25/36

Thomas Dillg, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus | 26/36

More Examples

v

To make lambda calculus slightly more interesting, we will
also allow arithmetic operators with their usual meaning.

v

We could give them precise semantics, but too boring. We all
know their semantics

> (Az.5*xz) 1 — (5xz)[l/z] > (5x1) =5

v

Az dyz+y) 35— ((Oye+y)[3/z]) 5= (Ay3+y)5—
B+y)[5/y] = (3+5) —8

Properties of lambda expressions

> We have seen that to compute the value of lambda
expressions, we only needed to define application: Az.e ey as

elez/z]
> In lambda calculus, this is called S-reduction.
» Confluence: Order of reductions is provably irrelevant
> Other property of lambda expressions: Az.e < Ay.(e[y/z])
> This is called a—reduction

» Simply encodes that the name of lambda bound variables is
irrelevant

> Analogy: [e "dz = [C e ¥dy

Thomas Dillg, €S345H: Programming Languages Lecture 1 Introduction and Lambda Calculus |

27/36

Thomas Dillg, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus | 28/36

Expression Equivalence

» Using a— and S—reductions, we can prove equivalence of
expressions by computing their values using S—reduction and
(if necessary) applying a.—reductions.

> Example: e; = (Az.z + 1) and e = (Az.2 + 1).

» Using a—reduction, we can rewrite
e; = Az +1)=* A2z +1)

» Have now proven that e; and e are equivalent

What else?
» Lambda calculus looks very far from a real programming
language.

> On the face of it, many features missing.
> Multi-argument functions

» Declarations
» Conditionals
» Named Functions

» Recursion

> Next: How to express these features in basic lambda calculus

Thomas Dillg, €S345H: Programming Languages Lecture 1: Introduction and Lambda Calculus |

20/36

Thomas Dillg, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus | 30/36

Multi-argument functions

» How can we express adding two numbers?
» Recall earlier example: (Az.A\y.z +)3 5

» Here, we first reduce to
Az Ay.z+y) 35— ((Aye+y)[3/z]) 5= Ay3+y) 5

> In other words, we partially evaluate Az, resulting in a new
function (A\y.3 + y).

» This is equivalent to having a A-binding with multiple
arguments

» This is known as Currying

Declarations

» We want to be able to give names to subexpressions

» Equivalence in typical programming languages: Local
declarations

» Specifically, we want to add a let-construct of the following
form to lambda calculus

> letz=ein ey

> Insight: Can define meaning of let-construct in in terms of
basic lambda calculus:

Thomas Dillg, €S345H: Programming Languages Lecture 1 Introduction and Lambda Calculus |

31/36

Thomas Dillg, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus | 32/36

Declarations

v

Any ideas?

v

One possibility: let z = e; in ez means ez[e1/z]

» Or equivalently: let z = e; in e; means (Az.ez)e;

v

Why are these definitions equivalent?

Conditionals

» Conditional: if z then e else ey

» Trick: We first define true and false as functions:
let true = (A\zAy.z) let false = (AzAy.y)

> Recall: A-bindings extend as far to the right as possible:
(AzAy.z) = (Az(Ny.z))

» Then define conditional as:
if p then e; else e2 — (ApAerdea.p e €3)

> Here,p is a predicate, i.e. function evaluating to true or false
> Example predicates are EQZ, GTZ, etc.

» Observation: If we define numbers carefully in A calculus, we
can also define those precisely, but we won't in class

Thomas Dillg, CS345H: Programming Languages Lecture 1 Introduction and Lambda Calculus |

33/36

Thomas Dillg, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus | 34/36

Named Functions

We want to add functions with names

v

v

Solution: Use the let-construct to name anonymous A terms:

v

Write function definition as
fun f with z = e1 in eg = let f = (Az.e1) in ey

v

Function call is now just application (f e2) — (Az.e1)e2

Named Functions Examples

» How about a function that adds 3 to its argument?

> fun add with 2 =2 +3in e = let add = (Az.z +3) in e

Thomas Dillg, €S345H: Programming Languages Lecture 1: Introduction and Lambda Calculus |

35/36

Thomas Dillg, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus | 36/36

