What is this course about?

- This course is about programming languages
- We will study different ways of specifying programs
- We will learn how to give (precise) meaning to programs
- We will see how to use programming languages to prevent run-time errors
- We will explore these concepts in real-world languages

Why should you take this course?

- Understanding programming languages means that you will be able to program in any existing or future programming language almost immediately
- You will be able to choose the right language for the right problem
- You will have techniques to give precise semantics to any string, not just programs.
- You will have a much easier time getting (and keeping) jobs ;-)

Course Administration

- (Tentative) syllabus is on class website at cs.utexas.edu/~tdillig/cs345H
- Instructor: Prof. Thomas Dillig
- TAs: Wenzhi Cui
- Office hours: See course website for updates
- We also use Piazza (piazza.com) for grades and assignment submissions.
- Check this website and Piazza!

Course Administration - Dates

The following exams are scheduled:
- Midterm 1: 9/23 in class
- Midterm 2: 10/26 in class
- Final: December 12th, 7-10pm
- You must be available at these dates, no alternate exams.
- If you miss an exam, your score is 0.
Grading

- Grades breakdown
 - 15%: each midterm
 - 25% Final
 - 20% Written Assignments
 - 25% Programming Assignments

- Each written assignment is due at the beginning of class, each programming assignment at midnight on the due date.
- You have 3 24-hour period late days to use, but you cannot use more than 2 late days on one assignment.
- Anything handed in after this will receive 0 credit.

- The final grades will be curved

- However: Your grade will never get worse from curving, only better
- You will receive lots of feedback through assignments and midterms
- We will post average and standard deviations on all scores, so you know how you are doing

Getting Help

- We will use the newsgroup function in Piazza for any questions about homework, programming assignments and material.
- We will not answer any emails about these topics
- For any personal issues reach out directly to me via email.
- Office Hours: M 2:00pm-3:00pm, TA office hours TBD

Collaboration

- You must complete the written assignments individually
- If you discuss the assignment with other students, you must acknowledge their names on your assignment
- You may complete the programming assignments alone or in pairs; you can change your partner on each project, but not during one project
- We use plagiarism-detection software to ensure your programs are not copied. Any cheating will result in an F for the course and referral to the UT honor code violation committee

Other Policies

- Some comments:
 - No makeup anything to improve grades
 - Grades are final, I will never change the course grade after the semester
 - It is your responsibility to check for grading mistakes on Canvas when assignments are handed back. If we don’t hear from you within a week, your score is final
 - You are responsible for anything announced in class

Let’s get started!
History of Programming Languages

- It all started in 1954, with the IBM 704 computer
- This computer was programmed with assembly instructions written on punch cards
- Problem: For the first time in IBM’s history, software development costs exceeded hardware cost!
- Solution proposed: Program computer in a higher-level language than assembly

FORTRAN I

- Enter John Backus
- Translation from higher-level language to assembly had already been tried before...
- And did not work out (at all)
- But team lead by John Backus produced first practical programming language called FORTRAN and a compiler to translate it to assembly

Impact of FORTRAN

- Within 2 years: 80% of programs written for the IBM 704 were written in FORTRAN
- This is even though FORTRAN I is a pretty awful language (by today’s standards)
- After this: Almost all programming done in (increasingly) higher level languages
- Programming languages have greatly improved programmer productivity, enabling software that would never have been possible otherwise

Language Goals:

- In the beginning, overarching concern when developing languages was performance
- As hardware got faster, many different goals emerged: Reliability, Security, Ease of Use, Re-usability, etc
- This resulted in thousands of actual programming languages

Language Evolution
Language Design Today

- We understand pretty well how to design good programming languages
- However, many bad languages are still designed
- After this class, you will be able to recognize bad programming languages

Lambda Calculus

- There are many programming languages we could talk about
- But pretty much all real languages are complex, large and obscure many important issues in irrelevant details
- We want: "as simple as possible" language to study properties of programming languages
- This language is known as lambda calculus

Lambda Calculus Syntax

- There are only four expressions in lambda calculus:
 - Expression 1: constants
 - 1, 7, "yourName" are all valid expressions in lambda calculus
 - Expression 2: identifiers
 - Will usually use x, y, etc for those
 - Expression 3: lambda abstraction
 - written as $\lambda x.e$
 - Expression 4: application
 - written as $e_1 e_2$

Consider the expression: $A = (\lambda x.x) 3$

Now, recalling the syntax:

$$e = c \mid id \mid \lambda id.e \mid e_1 e_2$$

we can give a derivation proving that A is valid:

$$e \rightarrow e_1 e_2 \rightarrow e_1 3 \rightarrow (\lambda x.e) 3 \rightarrow (\lambda x.x) 3$$

Any expression for which we can find a derivation is syntactically valid lambda calculus

Are we done?

- We can now decide if any string is lambda calculus
- But we have no idea (yet) what these expressions mean!
- Just because we defined a syntax, this does not mean we have given meaning to expressions
- Giving meaning to syntax is called semantics
- Big chunk of this class: How to define syntax and semantics of programming languages
Lambda calculus semantics

- Let’s define the meaning for each expression in our production:
 - Constant c: The meaning of c is the value of c
 - Identifier id: The meaning of id is id
 - Lambda λx.e: The meaning: λx.e
 - Application λx.e e2: The meaning: e[e2/x]

- e[e2/x] is substitution. We replace all free occurrences of x by e2 in expression e

- An occurrence of a variable is free if it is not bound by a λ

Example (λx.x)[2/x] = λx.x

- Upshot: We can define anonymous functions with binding operator λ.

Examples

- Meaning (or value) of (λx.x) 1?
 - (λx.x) 1 → x[1/x] → 1
 - (λx.(λx.x)x)1 → ((λx.x)x)[1/x] → (λx.x)1 → ...

- Substitution is capture-avoiding: Does not replace variables bound by other λ’s

- Convention: We assume that λ-bindings extend as far to the right as possible

- We read λx.λy.xy as (λx.(λy.xy)) But use parenthesis to be safe

More Examples

- To make lambda calculus slightly more interesting, we will also allow arithmetic operators with their usual meaning.

- We could give them precise semantics, but too boring. We all know their semantics

 - (λx.5 * x) 1 → (5 * x)[1/x] → (5 * 1) → 5
 - (λx.λy.x + y) 3 5 → ((λy.x + y)[3/x]) 5 → (λy.3 + y) 5 → (3 + y)[5/y] → (3 + 5) → 8

Properties of lambda expressions

- We have seen that to compute the value of lambda expressions, we only needed to define application: λx.e e2 as e[e2/x]

- In lambda calculus, this is called β-reduction.

- Confluence: Order of reductions is provably irrelevant

- Other property of lambda expressions: λx.e ⇔ λy.(e[y/x])

- This is called α-reduction

- Simply encodes that the name of lambda bound variables is irrelevant

- Analogy: \(\int_0^\infty e^{-x} \, dx = \int_0^\infty e^{-y} \, dy \)

Expression Equivalence

- Using α- and β-reductions, we can prove equivalence of expressions by computing their values using β-reduction and (if necessary) applying α-reductions.

- Example: e1 = (λx.x + 1) and e2 = (λz.z + 1).

- Using α-reduction, we can rewrite e1 = (λx.x + 1) → \(e' = (λz.z + 1) \)

- Have now proven that e1 and e2 are equivalent

What else?

- Lambda calculus looks very far from a real programming language.

 - On the face of it, many features missing.
 - Multi-argument functions
 - Declarations
 - Conditionals
 - Named Functions
 - Recursion
 - ...

 - Next: How to express these features in basic lambda calculus
Multi-argument functions

- How can we express adding two numbers?
- Recall earlier example: \((\lambda x.\lambda y.x + y)\) 3 5
- Here, we first reduce to
 \[(\lambda x.\lambda y.x + y)\ 3\ 5 \rightarrow ((\lambda y.x+y)(3/y))\ 5 \rightarrow (\lambda y.3 + y)\ 5\]
- In other words, we partially evaluate \(\lambda x\), resulting in a new function \((\lambda y.3 + y)\).
- This is equivalent to having a \(\lambda\)-binding with multiple arguments
- This is known as Currying

Declarations

- Any ideas?
- One possibility: let \(x = e_1\) in \(e_2\) means \(e_2[e_1/x]\)
- Or equivalently: let \(x = e_1\) in \(e_2\) means \((\lambda x.e_2)e_1\)
- Why are these definitions equivalent?

Conditionals

- Conditional: if \(x\) then \(e_1\) else \(e_2\)
- Trick: We first define true and false as functions:
 let true = ... but we won’t in class
- Recall: \(\lambda\)-bindings extend as far to the right as possible:
 \((\lambda x.\lambda y.x)\) \(\equiv\) \((\lambda x.(\lambda y.x))\)
- Then define conditional as:
 if \(p\) then \(e_1\) else \(e_2\) \(\rightarrow\) \((\lambda p.\lambda e_1.\lambda e_2.p\ e_1\ e_2)\)
- Here, \(p\) is a predicate, i.e. function evaluating to true or false
- Example predicates are EQZ, GTZ, etc.
- Observation: If we define numbers carefully in \(\lambda\) calculus, we can also define those precisely, but we won’t in class

Named Functions

- We want to add functions with names

 - Solution: Use the let-construct to name anonymous \(\lambda\) terms:
 - Write function definition as
 fun \(f\) with \(x = e_1\) in \(e_2\) \(\equiv\) let \(f = (\lambda x.e_1)\) in \(e_2\)
 - Function call is now just application \((f\ e_2) \rightarrow (\lambda x.e_1)e_2\)

Named Functions Examples

- How about a function that adds 3 to its argument?
 fun add with \(x = x + 3\) in \(e\) \(\rightarrow\) let add = \((\lambda x.x + 3)\) in \(e\)