CS345H: Programming Languages

Lecture 1: Introduction and Lambda Calculus I

Thomas Dillig

Thomas Dillig,

S345H: Programming Languages | Lecture 1: Introduction and Lambda Calculus I

What is this course about?

- ► This course is about programming languages
- ▶ We will study different ways of specifying programs
- ▶ We will learn how to give (precise) meaning to programs
- ► We will see how to use programming languages to prevent run-time errors
- ▶ We will explore these concepts in real-world languages

1/36

CS345H: Programming Languages | Lecture 1: Introduction and Lambda Calculus I

Why should you take this course?

- Understanding programming languages means that you will be able to program in any existing or future programming language almost immediately
- You will be able to choose the right language for the right problem
- You will have techniques to give precise semantics to any string, not just programs.
- ► You will have a much easier time getting (and keeping) jobs ;-)

Course Administration

- ► (Tentative) syllabus is on class website at cs.utexas.edu/~tdillig/cs345h
- ▶ Instructor: Prof. Thomas Dillig
- ► TAs: Pengxiang Cheng
- ▶ Office hours: See course website for updates
- ▶ We also use Piazza
- ► Check this website and Piazza!

Thomas Dillig

CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I

Thomas Dilli

CS345H: Programming Languages | Lecture 1: Introduction and Lambda Calculus I

Course Administration

This class has the following requirements:

- ▶ You will build an interpreter for a realistic language.
- Substantial project, but broken up into 4 manageable programming assignments
- ► One larger, open-ended project
- ▶ We will have approx. weekly written homeworks
- ► Two in-class midterms and final during finals week.
- ► This is a difficult class with a substantial workload

Thomas Dillig,

CS345H: Programming Languages | Lecture 1: Introduction and Lambda Calculus I

Course Administration - Dates

The following exams are scheduled:

▶ Midterm 1: 10/11 in class

▶ Midterm 2: 11/15 in class

► Final: 12/11 in class

- ▶ You must be available at these dates, no alternate exams.
- ▶ If you miss an exam, your score is 0.

Thomas Dillig,

CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I

6/36

Grading

- ► Grades breakdown
 - ▶ 15%: each midterm
 - ▶ 25% Final
 - ▶ 20% Written Assignments
 - ▶ 25% Programming Assignments
- ► Each written assignment is due at the beginning of class, each programming assignment at midnight on the due date.
- ➤ You have 3 24-hour period late days to use, but you cannot use more than 2 late days on one assignment.
- ▶ Anything handed in after this will receive 0 credit.

Thomas Dillie

CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I

Thomas Dillig,

Grading

▶ The final grades will be curved

you know how you are doing

CS345H: Programming Languages | Lecture 1: Introduction and Lambda Calculus I

► However: Your grade will never get worse from curving, only

▶ You will receive lots of feedback through assignments and

▶ We will post average and standard deviations on all scores, so

Getting Help

- We will use the newsgroup function in Piazza for any questions about homework, programming assignments and material.
- ▶ We will not answer any emails about these topics
- ▶ For any personal issues reach out directly to me via email.

Collaboration

midterms

- ▶ You must complete the written assignments individually
- ► If you discuss the assignment with other students, you must acknowledge their names on your assignment
- You may complete the programming assignments alone or in pairs; you can change your parter on each project, but not during one project
- ▶ We use plagiarism-detection software to ensure your programs are not copied. Any cheating will result in an F for the course and referral to the UT honor code violation committee

Thomas Dillig,

CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I

Thomas Dil

CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I

10/36

Other Policies

Some comments:

- ▶ No makeup anything to improve grades
- Grades are final, I will never change the course grade after the semester
- ▶ It is your responsibility to check for grading mistakes on Canvas when assignments are handed back. If we don't hear from you within a week, your score is final
- ▶ You are responsible for anything announced in class

Thomas Dillig,

:S345H: Programming Languages | Lecture 1: Introduction and Lambda Calculus I

Let's get started!

nas Dillig,

CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I

12/36

History of Programming Languages

▶ It all started in 1954, with the IBM 704 computer

Thomas Dillig.

CS345H: Programming Languages | Lecture 1: Introduction and Lambda Calculus I

History of Programming Languages

- ► This computer was programmed with assembly instructions written on punch cards
- ▶ Problem: For the first time in IBM's history, software development costs exceeded hardware cost!
- ► Solution proposed: Program computer in a higher-level language than assembly

Thomas Dill

Impact of FORTRAN

were written in FORTRAN

(by today's standards)

higher level languages

possible otherwise

5345H: Programming Languages | Lecture 1: Introduction and Lambda Calculus I

▶ Within 2 years: 80% of programs written for the IBM 704

▶ This is even though FORTRAN I is a pretty awful language

► After this: Almost all programming done in (increasingly)

Programming languages have greatly improved programmer

productivity, enabling software that would never haver been

FORTRAN I

- ► Enter John Backus
- Translation from higher-level language to assembly had already been tried before...
- ► And did not work out (at all)
- ▶ But team lead by John Backus produced first practical programming language called FORTRAN and a compiler to translate it to assembly

Thomas Dillig,

CS345H: Programming Languages | Lecture 1: Introduction and Lambda Calculus I

Thomas Dillig

CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I

Language Goals:

- ► In the beginning, overarching concern when developing languages was performance
- ► As hardware got faster, many different goals emerged: Reliability, Security, Ease of Use, Re-usability, etc
- \blacktriangleright This resulted in thousands of actual programming languages

Language Evolution

Thomas Dillig

S345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I

Thomas Dillig

:S345H: Programming Languages | Lecture 1: Introduction and Lambda Calculus I

Language Design Today

- ► We understand pretty well how to design good programming languages
- ▶ However, many bad languages are still designed
- ► After this class, you will be able to recognize bad programming languages

Thomas Dillig.

S345H: Programming Languages | Lecture 1: Introduction and Lambda Calculus I

Lambda Calculus

- ▶ There are many programming languages we could talk about
- ► But pretty much all real languages are complex, large and obscure many important issues in irrelevant details
- We want: "as simple as possible" language to study properties of programming languages
- ► This language is known as lambda calculus

CS345H: Programming Languages | Lecture 1: Introduction and Lambda Calculus I

20/26

Lambda Calculus

- ▶ There are only four expressions in lambda calcus:
- ► Expression 1: constants
 - ▶ 1, 7, "yourName" are all valid expressions in lambda calculus
- ► Expression 2: identifiers
 - ► Will usually use x, y, etc for those
- ► Expression 3: lambda abstraction
 - written as $\lambda x.e$
- ► Expression 4: application
 - ightharpoonup written as e_1 e_2

Thomas Dillig,

CS345H: Programming Languages | Lecture 1: Introduction and Lambda Calculus I

Lambda Calculus Syntax

► Or, more concisely, the syntax of a lambda calculus expression as context-free grammar is given by:

$$e = c \mid \mathsf{id} \mid \lambda \mathsf{id}.e \mid \mathit{e}_1 \ \mathit{e}_2$$

- ► This is a production that defines the left hand side (here an expression *e*)
- ► Observe that this production is recursive
- With this production, we can now check if any expression is valid lambda calculus

Thomas Dillig

CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I

22/36

Lambda Calculus Syntax

- ▶ Consider the expression: $A = (\lambda x.x) \ 3$
- ► Now, recalling the syntax

$$e = c \mid \mathsf{id} \mid \lambda \mathsf{id}.e \mid e_1 \ e_2$$

we can give a derivation proving that A is valid

- $e \rightarrow e_1 \ e_2 \rightarrow e_1 \ 3 \rightarrow (\lambda x. e) \ 3 \rightarrow (\lambda x. x) \ 3$
- Any expression for which we can find a derivation is syntactically valid lambda calculus

Thomas Dillig,

CS345H: Programming Languages | Lecture 1: Introduction and Lambda Calculus I

Are we done?

- ▶ We can now decide if any string is lambda calculus
- ▶ But we have no idea (yet) what these expressions mean!
- ► Just because we defined a syntax, this does not mean we have given meaning to expressions
- ► Giving meaning to syntax is called semantics
- ► Big chunk of this class: How to define syntax and semantics of programming languages

Thomas Dillig

CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I

24/36

Lambda calculus semantics

- ► Let's define the meaning for each expression in our production:
 - ightharpoonup Constant c: The meaning of c is the value of c
 - ightharpoonup Identifier id: The meaning of id is id
 - ▶ Lambda $\lambda x.e$: The meaning: $\lambda x.e$
 - ▶ Application $\lambda x.e$ e_2 : The meaning: $e[e_2/x]$
- $e[e_2/x]$ is substitution. We replace all free occurrences of x by e_2 in expression e
- An occurrence of a variable is free if it is not bound by a λ Example: $(\lambda x.x)[2/x] = \lambda x.x$
- Upshot: We can define anonymous functions with binding operator λ.

Thomas Dillig,

CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I

Examples

- ▶ Meaning (or value) of $(\lambda x.x)$ 1?
- $(\lambda x.x) \ 1 \to x[1/x] \to 1$
- $(\lambda x.(\lambda x.x)x)1 \to ((\lambda x.x)x)[1/x] \to (\lambda x.x)1 \to \dots$
- Substitution is capture-avoiding: Does not replace variables bound by other λ 's
- ightharpoonup Convention: We assume that λ -bindings extend as far to the right as possible
- We read $\lambda x.\lambda y.xy$ as $(\lambda x.(\lambda y.xy))$ But use parenthesis to be safe

Thomas Dilli

5345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I

More Examples

- ► To make lambda calculus slightly more interesting, we will also allow arithmetic operators with their usual meaning.
- We could give them precise semantics, but too boring. We all know their semantics
- $(\lambda x.5 * x) \ 1 \to (5 * x)[1/x] \to (5 * 1) \to 5$
- $(\lambda x.\lambda y.x + y)$ 3 5 \rightarrow $((\lambda y.x + y)[3/x])$ 5 \rightarrow $(\lambda y.3 + y)$ 5 \rightarrow $(3 + y)[5/y] \rightarrow$ (3 + 5) \rightarrow 8

Thomas Dillig,

CS345H: Programming Languages | Lecture 1: Introduction and Lambda Calculus I

Properties of lambda expressions

- ▶ We have seen that to compute the value of lambda expressions, we only needed to define application: $\lambda x.e$ e_2 as $e[e_2/x]$
- ▶ In lambda calculus, this is called β -reduction.
- ► Confluence: Order of reductions is provably irrelevant
- \blacktriangleright Other property of lambda expressions: $\lambda x.e \Leftrightarrow \lambda y.(e[y/x])$
- ▶ This is called $\alpha-$ reduction
- Simply encodes that the name of lambda bound variables is irrelevant
- ► Analogy: $\int_0^\infty e^{-x} dx \equiv \int_0^\infty e^{-y} dy$

Thomas Dillig,

CS345H: Programming Languages | Lecture 1: Introduction and Lambda Calculus I

28/36

Expression Equivalence

- Using α and β —reductions, we can prove equivalence of expressions by computing their values using β —reduction and (if necessary) applying α —reductions.
- ▶ Example: $e_1 = (\lambda x.x + 1)$ and $e_2 = (\lambda z.z + 1)$.
- ► Using α -reduction, we can rewrite $e'_1 = (\lambda x.x + 1) \rightarrow^{\alpha} (\lambda z.z + 1)$
- lacktriangle Have now proven that e_1 and e_2 are equivalent

What else?

- Lambda calculus looks very far from a real programming language.
- ▶ On the face of it, many features missing.
 - ► Multi-argument functions
 - Declarations
 - Conditionals
 - Named Functions
 - Recursion
 - **•** ...
- ▶ Next: How to express these features in basic lambda calculus

Thomas Dillig

S345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I

30/36

Thomas Dillig,

CS345H: Programming Languages | Lecture 1: Introduction and Lambda Calculus I

Multi-argument functions

- ▶ How can we express adding two numbers?
- ▶ Recall earlier example: $(\lambda x.\lambda y.x + y)3$ 5
- ▶ Here, we first reduce to $(\lambda x.\lambda y.x+y)$ 3 5 \rightarrow $((\lambda y.x+y)[3/x])$ 5 \rightarrow $(\lambda y.3+y)$ 5
- ▶ In other words, we partially evaluate λx , resulting in a new function $(\lambda y.3 + y)$.
- \blacktriangleright This is equivalent to having a $\lambda\text{-binding}$ with multiple arguments
- ► This is known as Currying

Thomas Dillie

CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I

Declarations

- ▶ We want to be able to give names to subexpressions
- Equivalence in typical programming languages: Local declarations
- Specifically, we want to add a let-construct of the following form to lambda calculus
- $\blacktriangleright \ \text{let} \ x = e_1 \ \text{in} \ e_2$
- ► Insight: Can define meaning of let-construct in in terms of basic lambda calculus:

Thomas Dilli

S345H: Programming Languages | Lecture 1: Introduction and Lambda Calculus I

Declarations

- ► Any ideas?
- ▶ One possibility: let $x = e_1$ in e_2 means $e_2[e_1/x]$
- Or equivalently: let $x = e_1$ in e_2 means $(\lambda x. e_2)e_1$
- ▶ Why are these definitions equivalent?

S345H: Programming Languages | Lecture 1: Introduction and Lambda Calculus I

Conditionals

- ▶ Conditional: if x then e_1 else e_2
- ► Trick: We first define true and false as functions: let true = $(\lambda x \lambda y.x)$ let false = $(\lambda x \lambda y.y)$
- ▶ Recall: λ -bindings extend as far to the right as possible: $(\lambda x \lambda y.x) \equiv (\lambda x (\lambda y.x))$
- ▶ Then define conditional as: if p then e_1 else $e_2 \rightarrow (\lambda p \lambda e_1 \lambda e_2. p \ e_1 \ e_2)$
- ightharpoonup Here, p is a predicate, i.e. function evaluating to true or false
- ► Example predicates are EQZ, GTZ, etc.
- ightharpoonup Observation: If we define numbers carefully in λ calculus, we can also define those precisely, but we won't in class

Thomas Dillig

CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I

Named Functions

- ▶ We want to add functions with names
- ▶ Solution: Use the let-construct to name anonymous λ terms:
- ▶ Write function definition as fun f with $x=e_1$ in $e_2\equiv \operatorname{let} f=(\lambda x.e_1)$ in e_2
- $lackbox{ Function call is now just application } (f\ e_2)
 ightarrow (\lambda x. e_1) e_2$

Named Functions Examples

- ► How about a function that adds 3 to its argument?
- \blacktriangleright fun add with x=x+3 in $e\to {\rm let}$ add $=(\lambda x.x+3)$ in e

Thomas

S345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I

Thomas Dillig