
CS345H: Programming Languages

Lecture 1: Introduction and Lambda Calculus I

Thomas Dillig

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 1/36

What is this course about?

I This course is about programming languages

I We will study different ways of specifying programs

I We will learn how to give (precise) meaning to programs

I We will see how to use programming languages to prevent
run-time errors

I We will explore these concepts in real-world languages

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 2/36

Why should you take this course?

I Understanding programming languages means that you will be
able to program in any existing or future programming
language almost immediately

I You will be able to choose the right language for the right
problem

I You will have techniques to give precise semantics to any
string, not just programs.

I You will have a much easier time getting (and keeping) jobs ;-)

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 3/36

Course Administration

I (Tentative) syllabus is on class website at
cs.utexas.edu/˜tdillig/cs345h

I Instructor: Prof. Thomas Dillig

I TAs: Pengxiang Cheng

I Office hours: See course website for updates

I We also use Piazza

I Check this website and Piazza!

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 4/36

Course Administration

This class has the following requirements:

I You will build an interpreter for a realistic language.

I Substantial project, but broken up into 4 manageable
programming assignments

I One larger, open-ended project

I We will have approx. weekly written homeworks

I Two in-class midterms and final during finals week.

I This is a difficult class with a substantial workload

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 5/36

Course Administration - Dates

The following exams are scheduled:

I Midterm 1: 10/11 in class

I Midterm 2: 11/15 in class

I Final: 12/11 in class

I You must be available at these dates, no alternate exams.

I If you miss an exam, your score is 0.

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 6/36

1

Grading

I Grades breakdown
I 15%: each midterm

I 25% Final

I 20% Written Assignments

I 25% Programming Assignments

I Each written assignment is due at the beginning of class, each
programming assignment at midnight on the due date.

I You have 3 24-hour period late days to use, but you cannot
use more than 2 late days on one assignment.

I Anything handed in after this will receive 0 credit.

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 7/36

Grading

I The final grades will be curved

I However: Your grade will never get worse from curving, only
better

I You will receive lots of feedback through assignments and
midterms

I We will post average and standard deviations on all scores, so
you know how you are doing

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 8/36

Getting Help

I We will use the newsgroup function in Piazza for any questions
about homework, programming assignments and material.

I We will not answer any emails about these topics

I For any personal issues reach out directly to me via email.

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 9/36

Collaboration

I You must complete the written assignments individually

I If you discuss the assignment with other students, you must
acknowledge their names on your assignment

I You may complete the programming assignments alone or in
pairs; you can change your parter on each project, but not
during one project

I We use plagiarism-detection software to ensure your programs
are not copied. Any cheating will result in an F for the course
and referral to the UT honor code violation committee

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 10/36

Other Policies

Some comments:

I No makeup anything to improve grades

I Grades are final, I will never change the course grade after the
semester

I It is your responsibility to check for grading mistakes on
Canvas when assignments are handed back. If we don’t hear
from you within a week, your score is final

I You are responsible for anything announced in class

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 11/36

Let’s get started!

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 12/36

2

History of Programming Languages

I It all started in 1954, with the IBM 704 computer

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 13/36

History of Programming Languages

I This computer was programmed with assembly instructions
written on punch cards

I Problem: For the first time in IBM’s history, software
development costs exceeded hardware cost!

I Solution proposed: Program computer in a higher-level
language than assembly

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 14/36

FORTRAN I

I Enter John Backus

I Translation from higher-level
language to assembly had already
been tried before...

I And did not work out (at all)

I But team lead by John Backus
produced first practical
programming language called
FORTRAN and a compiler to
translate it to assembly

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 15/36

Impact of FORTRAN

I Within 2 years: 80% of programs written for the IBM 704
were written in FORTRAN

I This is even though FORTRAN I is a pretty awful language
(by today’s standards)

I After this: Almost all programming done in (increasingly)
higher level languages

I Programming languages have greatly improved programmer
productivity, enabling software that would never haver been
possible otherwise

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 16/36

Language Goals:

I In the beginning, overarching concern when developing
languages was performance

I As hardware got faster, many different goals emerged:
Reliability, Security, Ease of Use, Re-usability, etc

I This resulted in thousands of actual programming languages

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 17/36

Language Evolution

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 18/36

3

Language Design Today

I We understand pretty well how to design good programming
languages

I However, many bad languages are still designed

I After this class, you will be able to recognize bad
programming languages

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 19/36

Lambda Calculus

I There are many programming languages we could talk about

I But pretty much all real languages are complex, large and
obscure many important issues in irrelevant details

I We want: ”as simple as possible” language to study properties
of programming languages

I This language is known as lambda calculus

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 20/36

Lambda Calculus

I There are only four expressions in lambda calcus:

I Expression 1: constants
I 1, 7, ”yourName” are all valid expressions in lambda calculus

I Expression 2: identifiers
I Will usually use x, y, etc for those

I Expression 3: lambda abstraction
I written as λx .e

I Expression 4: application
I written as e1 e2

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 21/36

Lambda Calculus Syntax

I Or, more concisely, the syntax of a lambda calculus expression
as context-free grammar is given by:

e = c | id | λid.e | e1 e2

I This is a production that defines the left hand side (here an
expression e)

I Observe that this production is recursive

I With this production, we can now check if any expression is
valid lambda calculus

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 22/36

Lambda Calculus Syntax

I Consider the expression: A = (λx .x) 3

I Now, recalling the syntax

e = c | id | λid.e | e1 e2

we can give a derivation proving that A is valid

I e → e1 e2 → e1 3→ (λx .e) 3→ (λx .x) 3

I Any expression for which we can find a derivation is
syntactically valid lambda calculus

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 23/36

Are we done?

I We can now decide if any string is lambda calculus

I But we have no idea (yet) what these expressions mean!

I Just because we defined a syntax, this does not mean we have
given meaning to expressions

I Giving meaning to syntax is called semantics

I Big chunk of this class: How to define syntax and semantics
of programming languages

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 24/36

4

Lambda calculus semantics
I Let’s define the meaning for each expression in our

production:
I Constant c: The meaning of c is the value of c

I Identifier id : The meaning of id is id

I Lambda λx .e: The meaning: λx .e

I Application λx .e e2: The meaning: e[e2/x]

I e[e2/x] is substitution. We replace all free occurrences of x by
e2 in expression e

I An occurrence of a variable is free if it is not bound by a λ
Example: (λx .x)[2/x] = λx .x

I Upshot: We can define anonymous functions with binding
operator λ.

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 25/36

Examples

I Meaning (or value) of (λx .x) 1?

I (λx .x) 1→ x [1/x]→ 1

I (λx .(λx .x)x)1→ ((λx .x)x)[1/x]→ (λx .x)1→ ...

I Substitution is capture-avoiding: Does not replace variables
bound by other λ’s

I Convention: We assume that λ-bindings extend as far to the
right as possible

I We read λx .λy .xy as (λx .(λy .xy)) But use parenthesis to be
safe

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 26/36

More Examples

I To make lambda calculus slightly more interesting, we will
also allow arithmetic operators with their usual meaning.

I We could give them precise semantics, but too boring. We all
know their semantics

I (λx .5 ∗ x) 1→ (5 ∗ x)[1/x]→ (5 ∗ 1)→ 5

I (λx .λy .x + y) 3 5→ ((λy .x + y)[3/x]) 5→ (λy .3 + y) 5→
(3 + y)[5/y]→ (3 + 5)→ 8

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 27/36

Properties of lambda expressions

I We have seen that to compute the value of lambda
expressions, we only needed to define application: λx .e e2 as
e[e2/x]

I In lambda calculus, this is called β-reduction.

I Confluence: Order of reductions is provably irrelevant

I Other property of lambda expressions: λx .e ⇔ λy .(e[y/x])

I This is called α−reduction

I Simply encodes that the name of lambda bound variables is
irrelevant

I Analogy:
∫∞
0 e−x dx ≡

∫∞
0 e−y dy

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 28/36

Expression Equivalence

I Using α− and β−reductions, we can prove equivalence of
expressions by computing their values using β−reduction and
(if necessary) applying α−reductions.

I Example: e1 = (λx .x + 1) and e2 = (λz .z + 1).

I Using α−reduction, we can rewrite
e ′1 = (λx .x + 1)→α (λz .z + 1)

I Have now proven that e1 and e2 are equivalent

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 29/36

What else?

I Lambda calculus looks very far from a real programming
language.

I On the face of it, many features missing.
I Multi-argument functions

I Declarations

I Conditionals

I Named Functions

I Recursion

I ...

I Next: How to express these features in basic lambda calculus

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 30/36

5

Multi-argument functions

I How can we express adding two numbers?

I Recall earlier example: (λx .λy .x + y)3 5

I Here, we first reduce to
(λx .λy .x + y) 3 5→ ((λy .x + y)[3/x]) 5→ (λy .3 + y) 5

I In other words, we partially evaluate λx , resulting in a new
function (λy .3 + y).

I This is equivalent to having a λ-binding with multiple
arguments

I This is known as Currying

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 31/36

Declarations

I We want to be able to give names to subexpressions

I Equivalence in typical programming languages: Local
declarations

I Specifically, we want to add a let-construct of the following
form to lambda calculus

I let x = e1 in e2

I Insight: Can define meaning of let-construct in in terms of
basic lambda calculus:

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 32/36

Declarations

I Any ideas?

I One possibility: let x = e1 in e2 means e2[e1/x]

I Or equivalently: let x = e1 in e2 means (λx .e2)e1

I Why are these definitions equivalent?

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 33/36

Conditionals
I Conditional: if x then e1 else e2

I Trick: We first define true and false as functions:
let true = (λxλy .x) let false = (λxλy .y)

I Recall: λ-bindings extend as far to the right as possible:
(λxλy .x) ≡ (λx (λy .x))

I Then define conditional as:
if p then e1 else e2 → (λpλe1λe2.p e1 e2)

I Here,p is a predicate, i.e. function evaluating to true or false

I Example predicates are EQZ, GTZ, etc.

I Observation: If we define numbers carefully in λ calculus, we
can also define those precisely, but we won’t in class

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 34/36

Named Functions

I We want to add functions with names

I Solution: Use the let-construct to name anonymous λ terms:

I Write function definition as
fun f with x = e1 in e2 ≡ let f = (λx .e1) in e2

I Function call is now just application (f e2)→ (λx .e1)e2

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 35/36

Named Functions Examples

I How about a function that adds 3 to its argument?

I fun add with x = x + 3 in e → let add = (λx .x + 3) in e

Thomas Dillig, CS345H: Programming Languages Lecture 1: Introduction and Lambda Calculus I 36/36

6

