CS345H: Programming Languages
Lecture 10: Basic Type Checking

Thomas Dillig

Outline

» We will write type systems for multiple languages
> We will formally see how to define soundness

> We will learn how to prove soundness of a type system

Thomas Dillg, CS345H: Programming Languages Lecture 10: Basic Type Checking

Thomas Dillg, CS345H: Programming Languages Lecture 10: Basic Type Checking.

The let language

» Recall from last time the following small language (let
language):
S — integer | string | identifier
ISl+SQ ‘ Sl Z:Sg
|letid:7 = Sin Sy
T — Int| String

> Here are again its operational semantics:

E"S]Zil
integer i string s identifier id EF S i
Etri:i Ebs:s Etrid:E(d) EFS+S:i+i
E)—Slzsl E)—Slzel
EFSQISQ E[id%el]FSQZez

EF S; 2 Sy :concat(sy, s2) Ebletid:7=251in S3: e

Type System

> We also saw last time how we can write typing rules that
compute the type of an expression.

integer i
Tki:Int

identifier id
TFid:T(id)

string s
't s: String

THS : Int
TFSy: Int
'8+ 5y Int

T'+ 8y : String
T'E Sy : String
T'F Sy Sy String

F}*Sli’rl

T=T1

Tlid <« 7] F Sy : 73
T'Hletid:7=511in Sy:73

Thomas Dillg, CS345H: Programming Languages Lecture 10: Basic Type Checking

Thomas Dillg, CS345H: Programming Languages Lecture 10: Basic Type Checking.

Correspondence between Concrete and Abstract Semantics

» Observe that there is a strong relationship between the
operational semantics (concrete semantics) and the typing
rules (abstract semantics)

» The concrete environment E corresponds to the abstract type
environment I"

> The structure of the abstract and concrete rules are analogous

» Key Difference: Concrete semantics compute a particular
value, while abstract semantics compute a type

Some Notation

> We write y(7) for the concretization of the abstract value 7.
We call v the concretization function

» Example: y(Int) ={...,-1,0,1,2,3,...}

» We write a(v) for the abstraction of the concrete value v. We
call a the abstraction function

> Example: a(42) = Int

» Definition: An abstraction is a Galois Connection if
a(y(7)) = 7 for all abstract values 7

> Question: Is our abstract domain of types a Galois
connection? Yes, a(y(Int)) = Int and a(y(String)) = String

Thomas Dillg, €S345H: Programming Languages Lecture 10: Basic Type Checking

5/33

Thomas Dillg, CS345H: Programming Languages Lecture 10: Basic Type Checking

Galois Connection

Galois connection means that if we want to relate a concrete
value v and abstract value 7, the following are equivalent:

v

> a(v) =71
> v € y(T)

Think of it as a well-formed abstraction

v

v

In this class, we are only interested in Galois connections

Soundness

» For out type system to be sound, we require that for any
program, the concrete value v of this program is compatible
with the type 7 computed.

» Formally, we state this property as follows:

» IfEFe:vand Tk e: 7, then v € y(7)

> This means that the type we give to every expression always
overapproximates the type of the concrete value

» We can safely rely on the static types computed

> Slogan: "Well-typed programs cannot go wrong”

Thomas Dillg, CS345H: Programming Languages Lecture 10: Basic Type Checking 7/33

Thomas Dillg, CS345H: Programming Languages Lecture 10: Basic Type Checking. 8/33

Soundness Cont.

» Clearly, not every type system is sound or useful to prevent
run-time errors

» Therefore, we need a way to prove that a type system we
design is actually sound and useful.

» There are many ways of proving correspondence between
abstract and concrete semantics, but the most popular
strategy for types is to split the problem into two:

1. Preservation: Soundness is preserved under transition rules

2. Progress: A well-typed program never “gets stuck” when
executing operational semantics (no run-time errors).

> Preservation states that your type system is an
overapproximation while progress states that your type system
is expressive enough to prevent all run-time errors

How to Prove Preservation

> Preservation: If E-e:vand ' e: 7, then v € I'(7) (or
equivalently a(v) = 1)

» Preservation must be argued inductively, specifically via
structural induction on the program expressions
» We first need to argue preservation for all the base cases:
Base case: rules with no I in their hypotheses

» Then, for the inductive rules, we assume that preservation
holds for all subexpressions and prove that it holds for the

current expression.

> This is a very powerful proof technique!

Thomas Dillg, CS345H: Programming Languages Lecture 10: Basic Type Checking /33

Thomas Dillg, CS345H: Programming Languages Lecture 10: Basic Type Checking 10/33

Proving Preservation

> Let's prove preservation of our type system, first without
identifiers and let bindings:

» Base case 1: .)
integer 1

Eri:i
Need to prove that (i) = Int
= This follows directly from the hypothesis that i is an
integer

integer @
T'Fi:Int

Proving Preservation

» Base case 2: . .
string s string s

EFs:s T'Fs:String
Also follows immediately that a(s) = String

Thomas Dillg, CS345H: Programming Languages Lecture 10: Basic Type Checking. 11/33

Thomas Dillg, CS345H: Programming Languages Lecture 10: Basic Type Checking 12/33

Proving Preservation

» Inductive case 1:
EFS 9
EF Sy
EE ST +8:4 +i

FI—Slzfnt
FI—SQ:]nt

FI—Sl—i-Sg:Int

» By the inductive hypothesis we know that «(i;) = Int and
a(iy) = Int. Since the value i; + iy is also an integer,
a(iy + i) = Int

Proving Preservation

» Inductive case 2:
E+ Sl L8
E+ Sz)
E+ Sp Sy concat(sy, $2)

T'E Sy : String
I'E Sy : String
T'E Sy Sy String

» By the inductive hypothesis we know that «(s;) = String and
a(sy) = String. Since the value concat(s1, s2) is also a string,
a(concat(s1, $2)) = String

Thomas Dillg, CS345H: Progr: anguages Lecture 10: Basic Type Checking

13/33

Thomas Dillg, CS345H: Programming Languages Lecture 10: Basic Type Checking 14/33

Proving Preservation with ldentifiers

» But what about the two rules involving identifiers?

identifier id identifier id
EFid:E(id) TFid:T(id)
T }’ Sl 1T
E+ Sl L e T=T

E[id%el]FSQ:GQ
Ebletid:7=51inS:e

F[id%T]FSz:Tg
T'Hletid:7=511in Sy:73

» To prove the base case, we need to know that the values in T’
and E agree.

» Definition: Concrete environment F and abstract environment
T agree if for any identifier z T'(z) = a(E(z)), written as
I'~F

> Therefore, we first need to prove agreement before showing
the preservation of the identifier rules

Proving Agreement

> Fortunately, proving agreement of £ and I' is easy, again by
induction, on the number of mappings in £ and T'

> Base case: F and I are empty: = they trivially agree

> Clearly, rules that do not change E or I' cannot break
agreement.

» Therefore, we only have to prove agreement for the following
rule:

'S :n

T=T1

Tlid < 7] F Sy : 73
T'Hletid:7=51in S :73

EFSlzel
E[id<—31]|—52:62
Etletid:7=51in S : e

Thomas Dillg, CS345H: Programming Languages Lecture 10: Basic Type Checking.

15/33

Thomas Dillg, CS345H: Programming Languages Lecture 10: Basic Type Checking 16/33

Proving Agreement

I'ES:n

T=T1

Ilid < 7] S2: 73
T'Hletid:7=511in Sy:73

EFSlzel
E[id(—el]l—SQZGQ
Ebtletid:7=5inS: e

» Here, assuming preservation, we know that a(e;) = 7. By the
inductive hypothesis, we also know that T ~ E.

> Therefore, we also know that I'[id < 7] ~ E[id + e1]

» Important: We proved agreement in the inductive case
assuming preservation!

Proving Preservation with ldentifiers

> Now, we can assume agreement when proving preservation:

» Base case:
identifier id
TFid:T(id)

identifier id
Etid: E(id)

> This follows immediately since by our assumption I' ~ F

Thomas Dillg, CS345H: Programming Languages Lecture 10: Basic Type Checking.

17/33

Thomas Dillg, €S345H: Programming Languages Lecture 10: Basic Type Checking 18/33

Proving Preservation with Identifiers cont.

» Inductive case:

'S :m

T=T

F[id(—T]FSzZTg
T'Hletid:7=511in Sy: 73

EFSi:e
E[id(—el]FSQ:eg
Etbletid:7=51in S : e

» By the inductive hypothesis, we know that «(ez) = 73. This is
what we want to prove.

> Observe: We combined agreement and preservation for this
proof to work.

» The preservation proof works assuming that agreement holds
» The agreement proof works assuming that preservation holds

» As long as both properties hold initially, this is fine!

C5345H: Programming Languages _Lecture 10: Basic Type Checking 10/33

On to Progress

» We have now shown preservation of our type system

> Intuitively: We now know that that abstract value we
compute will always overapproximate the concrete value for
any program

» Now, we want to prove that our type system is powerful
enough to prevent run-time type errors

> Or more formally, our operational semantics never “get stuck”

> Progress: We need to prove that every program that can be
typed under our typing rules will not not “get stuck” in the
operational semantics

> Progress is a very strong property that few real type systems
obey!

Thomas Dillg, CS345H: Programming Languages Lecture 10: Basic Type Checking 20/33

Proving Progress

» We will again prove progress by structural induction:
» Base case 1: Integer

integer ¢
EFi:i

integer ¢
Pki:Int

Clearly, if 7 types as an integer, the corresponding operational
semantics rule applies

> Base case 2: String

string s
Eks:s

string s
'k s: String

Clearly, if s types as a string, the corresponding operational
semantics rule applies

CS345H: Pre

es Lecture 10: Basic Type Checking 21/33

Proving Progress

» Base case 3: Identifier
identifier id
Tk id:T(id)

identifier id
Etid: E(id)

Assuming agreement, we know that if the mapping id — 7 is
present in I', the mapping id — v is present in E. Since this
is the only hypothesis (precondition) of the operational
semantics rule, it must therefore always apply in all well-types
programs

Thomas Dillg, CS345H: Proy

Lecture 10: Basic Type Checking 22/33

Proving Progress

» Inductive case 1:
E+ Sl : an
EF Sy
EF S+ S0+

'S Int
' Sy: Int
I'E S+ Sy Int

We know from the inductive hypothesis that the evaluation of
S1 and Sy will never get stuck. We also know from
preservation that the expressions S; and Sy must evaluate to
integers if they are typed Int, therefore the operational
semantics rule for plus will always apply since the hypotheses
only require that ¢; and i are integers

CS345H: Pre

Lecture 10: Basic Type Checking 23/33

Proving Progress

» Inductive case 2:
E+ Sl IS5
EESy: s
E+ 51 :: Sy concat(sy, s2)

T'E Sy : String
'k Sy : String
T'E S 0 Sy 0 String

We know from the inductive hypothesis that the evaluation of
S1 and Sy will never get stuck. We also know from
preservation that the expressions S; and Sy must evaluate to
strings if they are typed String, therefore the operational
semantics rule for concatenation will always apply since the
hypotheses only require that s; and s are strings

CS345H: Proy

Lecture 10: Basic Type Checking 24/33

Proving Progress

» Inductive case 3:

'S :n

T=T1

Tlid < 7] S2: 73
T'Hletid:7=511in Sy:73

EFSlzel
E[id(—el]l—SQZGQ
Etletid:7=5inS8: e

Here, we know from the inductive hypothesis that £ F S : ¢;
and E[id < e1] F S5 : ey will not get stuck since they are
well-typed. Therefore, this rule will also always apply.

Preservation + Progress

» We now proved both preservation and progress of our small
type system on the let language.

> Important Point: You can only prove progress and preservation
of a type system with respect to an operational semantics

» Poofs of preservation and progress are always by structural
induction

> If you have an environment, you usually need to show
agreement to prove preservation

» These proofs tend to always follow the same pattern, so follow
this strategy on homeworks/exams

CS345H: Progr.

Thomas Dillg, anguages Lecture 10: Basic Type Checking

25/33

Thomas Dillg, CS345H: Programming Languages Lecture 10: Basic Type Checking

26/33

Adding the Lambda to our language

> Let us add the lambda construct to the let-language. | will
call this the lambda-language:

S — integer | string | identifier
‘ Sl+52 ‘ Sl Z:SQ
“etid:T = S1in Sy
| Az : 7.5
[(S1 S2)

T — Int| String | 71 = T

» The operational semantics of the new constructs are as
follows:

EES) z:Te
EFSQC@Q

Et elea/z] : e
EF(Sl Sg):er

EFXe:7.51: Xz :7.5

Typing rules for lambda and Application

» Lambda:
F[CL‘ <—7'1] I 51 1T

F")\I:Tl.sltﬁ — T2

» Application:
'k Sl 1T — T9
I+ SQ i T1
T (S S2):m

> Observe that these almost exactly correspond to the
operational semantics!

» But there is one difference: The body of the let is type
checked at the definition, but only evaluated at the application

Thomas Dillg, CS345H: Programming Languages Lecture 10: Basic Type Checking.

27/33

Thomas Dillg, CS345H: Programming Languages Lecture 10: Basic Type Checking

28/33

Preservation for lambda

» Lambda:
Dz 7nlkFSi:7
FI—)\z:Tl.SllTlﬁTg

EbXz:7.5 : z:7.5

» First, we observe that if I'[z < 71] F S : 72 holds, we know
by our inductive hypothesis that a(E F Si[v/z]) = 72 for any
value v of type 71. Therefore, the type of this rule is 71 — T

Preservation for Application

> Application:

EFS X z:Te
E"SQZEQ

Etelex/z] : e
E‘}—(Sng):eT

F"SltTlﬁTg
F"Szi’)’l

TH (S S):m

» First, we observe by our inductive hypothesis that if the type
of Sy is 71 — 7o, the first hypothesis in the concrete rule must
always apply. Second, by the inductive hypothesis we know
that «(e2) = 71. Since the type of Si is 71 — T2, we can
therefore safely conclude that a(e,) = 72

Thomas Dillg, CS345H: Programming Languages Lecture 10: Basic Type Checking.

20/33

Thomas Dillg, CS345H: Programming Languages Lecture 10: Basic Type Checking

30/33

Preservation Proof

» Question: Why could we not formulate the typing rules for
lambda and application symmetric to the operational
semantics?

> Answer: Because if we try to type check the body of a lambda
at the application site, we have no way of knowing the name
of the variable bound in this lambda statement

» This is typical: When typing functions, we usually always
examine the function body before it is used

Progress and Preservation in Real Languages

» Shocking News: Many type systems obey neither progress or
preservation!

» Example: C, C++
» More Shocking News: Very few type systems obey progress!
> Example: Java

> But progress is a very useful property, even if it can often only
be argued for some classes of run-time errors

Thomas Dillg, CS345H: Prograr

anguages Lecture 10 Basic Type Checking 31/33

Thomas Dillg, CS345H: Programming Languages Lecture 10: Basic Type Checking 32/33

Conclusion

> We saw how to give typing rules
» We proved progress and preservation of a type system

> Next time: Polymorphism

Thomas Dillg, CS345H: Programming Languages Lecture 10: Basic Type Checking 33/33

