CS345H: Programming Languages

Lecture 10: Basic Type Checking

Thomas Dillig

Outline

▶ We will write type systems for multiple languages

Outline

- ▶ We will write type systems for multiple languages
- We will formally see how to define soundness

Outline

- We will write type systems for multiple languages
- ▶ We will formally see how to define soundness
- ▶ We will learn how to prove soundness of a type system

The let language

Recall from last time the following small language (let language):

$$\begin{array}{lll} S & \rightarrow & \text{integer} \mid \text{string} \mid \text{identifier} \\ & \mid S_1 + S_2 \mid S_1 :: S_2 \\ & \mid \text{let } id: \tau = S_1 \text{ in } S_2 \\ \tau & \rightarrow & Int \mid String \end{array}$$

The let language

Recall from last time the following small language (let language):

$$\begin{array}{lll} S & \rightarrow & \text{integer} \mid \text{string} \mid \text{identifier} \\ & \mid S_1 + S_2 \mid S_1 :: S_2 \\ & \mid \text{let } id: \tau = S_1 \text{ in } S_2 \end{array}$$

$$\tau & \rightarrow & Int \mid String \end{array}$$

Here are again its operational semantics:

$$\begin{array}{c|c} \underline{\mathsf{integer}}\ i & \underline{\mathsf{string}}\ s \\ E \vdash i : i & \overline{E} \vdash s : s \end{array} & \underline{\mathsf{identifier}}\ id \\ E \vdash id : E(id) & \underline{E} \vdash S_2 : i_2 \\ \hline E \vdash S_1 : s_1 & E \vdash S_1 : s_1 \\ E \vdash S_2 : s_2 & E \vdash S_1 : e_1 \\ \hline E \vdash S_1 : : S_2 : \mathsf{concat}(s_1, s_2) & \overline{E} \vdash \mathsf{id} : \tau = S_1 \ \mathsf{in}\ S_2 : e_2 \end{array}$$

Type System

We also saw last time how we can write typing rules that compute the type of an expression.

 Observe that there is a strong relationship between the operational semantics (concrete semantics) and the typing rules (abstract semantics)

- ▶ Observe that there is a strong relationship between the operational semantics (concrete semantics) and the typing rules (abstract semantics)
 - The concrete environment E corresponds to the abstract type environment Γ

- ▶ Observe that there is a strong relationship between the operational semantics (concrete semantics) and the typing rules (abstract semantics)
 - \blacktriangleright The concrete environment E corresponds to the abstract type environment Γ
 - ▶ The structure of the abstract and concrete rules are analogous

- Observe that there is a strong relationship between the operational semantics (concrete semantics) and the typing rules (abstract semantics)
 - The concrete environment E corresponds to the abstract type environment Γ
 - ▶ The structure of the abstract and concrete rules are analogous
- Key Difference: Concrete semantics compute a particular value, while abstract semantics compute a type

• We write $\gamma(\tau)$ for the concretization of the abstract value τ . We call γ the concretization function

- ▶ We write $\gamma(\tau)$ for the concretization of the abstract value τ . We call γ the concretization function
- Example: $\gamma(Int) =$

- ▶ We write $\gamma(\tau)$ for the concretization of the abstract value τ . We call γ the concretization function
- ▶ Example: $\gamma(Int) = \{..., -1, 0, 1, 2, 3, ...\}$

- ▶ We write $\gamma(\tau)$ for the concretization of the abstract value τ . We call γ the concretization function
- ► Example: $\gamma(Int) = \{..., -1, 0, 1, 2, 3, ...\}$
- ▶ We write $\alpha(v)$ for the abstraction of the concrete value v. We call α the abstraction function

- ▶ We write $\gamma(\tau)$ for the concretization of the abstract value τ . We call γ the concretization function
- ► Example: $\gamma(Int) = \{..., -1, 0, 1, 2, 3, ...\}$
- ▶ We write $\alpha(v)$ for the abstraction of the concrete value v. We call α the abstraction function
- Example: $\alpha(42) =$

- ▶ We write $\gamma(\tau)$ for the concretization of the abstract value τ . We call γ the concretization function
- ► Example: $\gamma(Int) = \{..., -1, 0, 1, 2, 3, ...\}$
- ▶ We write $\alpha(v)$ for the abstraction of the concrete value v. We call α the abstraction function
- **Example:** $\alpha(42) = Int$

- We write $\gamma(\tau)$ for the concretization of the abstract value τ . We call γ the concretization function
- Example: $\gamma(Int) = \{\ldots, -1, 0, 1, 2, 3, \ldots\}$
- ▶ We write $\alpha(v)$ for the abstraction of the concrete value v. We call α the abstraction function
- **Example:** $\alpha(42) = Int$
- ▶ Definition: An abstraction is a Galois Connection if $\alpha(\gamma(\tau)) = \tau$ for all abstract values τ

- We write $\gamma(\tau)$ for the concretization of the abstract value τ . We call γ the concretization function
- ▶ Example: $\gamma(Int) = \{..., -1, 0, 1, 2, 3, ...\}$
- ▶ We write $\alpha(v)$ for the abstraction of the concrete value v. We call α the abstraction function
- **Example:** $\alpha(42) = Int$
- ▶ Definition: An abstraction is a Galois Connection if $\alpha(\gamma(\tau)) = \tau$ for all abstract values τ
- Question: Is our abstract domain of types a Galois connection?

- We write $\gamma(\tau)$ for the concretization of the abstract value τ . We call γ the concretization function
- Example: $\gamma(Int) = \{\ldots, -1, 0, 1, 2, 3, \ldots\}$
- ▶ We write $\alpha(v)$ for the abstraction of the concrete value v. We call α the abstraction function
- **Example:** $\alpha(42) = Int$
- ▶ Definition: An abstraction is a Galois Connection if $\alpha(\gamma(\tau)) = \tau$ for all abstract values τ
- ▶ Question: Is our abstract domain of types a Galois connection? Yes, $\alpha(\gamma(Int)) = Int$ and $\alpha(\gamma(String)) = String$

▶ Galois connection means that if we want to relate a concrete value v and abstract value τ , the following are equivalent:

▶ Galois connection means that if we want to relate a concrete value v and abstract value τ , the following are equivalent:

$$\quad \alpha(v) = \tau$$

- ▶ Galois connection means that if we want to relate a concrete value v and abstract value τ , the following are equivalent:
- $ightharpoonup \alpha(v) = \tau$
- $v \in \gamma(\tau)$

- ▶ Galois connection means that if we want to relate a concrete value v and abstract value τ , the following are equivalent:
- $ightharpoonup \alpha(v) = \tau$
- $v \in \gamma(\tau)$
- Think of it as a well-formed abstraction

- ▶ Galois connection means that if we want to relate a concrete value v and abstract value τ , the following are equivalent:
- $ightharpoonup \alpha(v) = \tau$
- $v \in \gamma(\tau)$
- Think of it as a well-formed abstraction
- ▶ In this class, we are only interested in Galois connections

For out type system to be sound, we require that for any program, the concrete value v of this program is compatible with the type τ computed.

- For out type system to be sound, we require that for any program, the concrete value v of this program is compatible with the type τ computed.
- Formally, we state this property as follows:

- For out type system to be sound, we require that for any program, the concrete value v of this program is compatible with the type τ computed.
- Formally, we state this property as follows:
- ▶ If $E \vdash e : v$ and $\Gamma \vdash e : \tau$, then $v \in \gamma(\tau)$

- For out type system to be sound, we require that for any program, the concrete value v of this program is compatible with the type τ computed.
- Formally, we state this property as follows:
- ▶ If $E \vdash e : v$ and $\Gamma \vdash e : \tau$, then $v \in \gamma(\tau)$
- ► This means that the type we give to every expression always overapproximates the type of the concrete value

- For out type system to be sound, we require that for any program, the concrete value v of this program is compatible with the type τ computed.
- Formally, we state this property as follows:
- ▶ If $E \vdash e : v$ and $\Gamma \vdash e : \tau$, then $v \in \gamma(\tau)$
- ► This means that the type we give to every expression always overapproximates the type of the concrete value
- ▶ We can safely rely on the static types computed

- For out type system to be sound, we require that for any program, the concrete value v of this program is compatible with the type τ computed.
- Formally, we state this property as follows:
- ▶ If $E \vdash e : v$ and $\Gamma \vdash e : \tau$, then $v \in \gamma(\tau)$
- ► This means that the type we give to every expression always overapproximates the type of the concrete value
- ▶ We can safely rely on the static types computed
- ► Slogan: "Well-typed programs cannot go wrong"

 Clearly, not every type system is sound or useful to prevent run-time errors

- Clearly, not every type system is sound or useful to prevent run-time errors
- ► Therefore, we need a way to prove that a type system we design is actually sound and useful.

- Clearly, not every type system is sound or useful to prevent run-time errors
- Therefore, we need a way to prove that a type system we design is actually sound and useful.
- ► There are many ways of proving correspondence between abstract and concrete semantics, but the most popular strategy for types is to split the problem into two:

- Clearly, not every type system is sound or useful to prevent run-time errors
- Therefore, we need a way to prove that a type system we design is actually sound and useful.
- ► There are many ways of proving correspondence between abstract and concrete semantics, but the most popular strategy for types is to split the problem into two:
 - 1. Preservation: Soundness is preserved under transition rules

- Clearly, not every type system is sound or useful to prevent run-time errors
- Therefore, we need a way to prove that a type system we design is actually sound and useful.
- ► There are many ways of proving correspondence between abstract and concrete semantics, but the most popular strategy for types is to split the problem into two:
 - 1. Preservation: Soundness is preserved under transition rules
 - 2. Progress: A well-typed program never "gets stuck" when executing operational semantics (no run-time errors).

Soundness Cont.

- Clearly, not every type system is sound or useful to prevent run-time errors
- Therefore, we need a way to prove that a type system we design is actually sound and useful.
- ► There are many ways of proving correspondence between abstract and concrete semantics, but the most popular strategy for types is to split the problem into two:
 - 1. Preservation: Soundness is preserved under transition rules
 - 2. Progress: A well-typed program never "gets stuck" when executing operational semantics (no run-time errors).
- Preservation states that your type system is an overapproximation while progress states that your type system is expressive enough to prevent all run-time errors

▶ Preservation: If $E \vdash e : v$ and $\Gamma \vdash e : \tau$, then $v \in \Gamma(\tau)$ (or equivalently $\alpha(v) = \tau$)

- ▶ Preservation: If $E \vdash e : v$ and $\Gamma \vdash e : \tau$, then $v \in \Gamma(\tau)$ (or equivalently $\alpha(v) = \tau$)
- Preservation must be argued inductively, specifically via structural induction on the program expressions

- ▶ Preservation: If $E \vdash e : v$ and $\Gamma \vdash e : \tau$, then $v \in \Gamma(\tau)$ (or equivalently $\alpha(v) = \tau$)
- Preservation must be argued inductively, specifically via structural induction on the program expressions
 - ▶ We first need to argue preservation for all the base cases:

- ▶ Preservation: If $E \vdash e : v$ and $\Gamma \vdash e : \tau$, then $v \in \Gamma(\tau)$ (or equivalently $\alpha(v) = \tau$)
- Preservation must be argued inductively, specifically via structural induction on the program expressions
 - We first need to argue preservation for all the base cases: Base case: rules with no ⊢ in their hypotheses

- ▶ Preservation: If $E \vdash e : v$ and $\Gamma \vdash e : \tau$, then $v \in \Gamma(\tau)$ (or equivalently $\alpha(v) = \tau$)
- Preservation must be argued inductively, specifically via structural induction on the program expressions
 - We first need to argue preservation for all the base cases: Base case: rules with no ⊢ in their hypotheses
 - Then, for the inductive rules, we assume that preservation holds for all subexpressions and prove that it holds for the current expression.

- ▶ Preservation: If $E \vdash e : v$ and $\Gamma \vdash e : \tau$, then $v \in \Gamma(\tau)$ (or equivalently $\alpha(v) = \tau$)
- Preservation must be argued inductively, specifically via structural induction on the program expressions
 - We first need to argue preservation for all the base cases: Base case: rules with no ⊢ in their hypotheses
 - Then, for the inductive rules, we assume that preservation holds for all subexpressions and prove that it holds for the current expression.
- This is a very powerful proof technique!

► Let's prove preservation of our type system, first without identifiers and let bindings:

- ► Let's prove preservation of our type system, first without identifiers and let bindings:
- ▶ Base case 1:

$$\frac{\text{integer } i}{E \vdash i:i} \quad \frac{\text{integer } i}{\Gamma \vdash i:Int}$$

- ► Let's prove preservation of our type system, first without identifiers and let bindings:
- ▶ Base case 1:

$$\frac{\mathsf{integer}\ i}{E \vdash i:i} \quad \frac{\mathsf{integer}\ i}{\Gamma \vdash i:Int}$$

Need to prove that $\alpha(i) = Int$

- ► Let's prove preservation of our type system, first without identifiers and let bindings:
- ▶ Base case 1:

$$\frac{\mathsf{integer}\ i}{E \vdash i:i} \quad \frac{\mathsf{integer}\ i}{\Gamma \vdash i:Int}$$

Need to prove that $\alpha(i) = Int$

 \Rightarrow This follows directly from the hypothesis that i is an integer

▶ Base case 2:

$$\frac{\mathsf{string}\ s}{E \vdash s : s} \quad \frac{\mathsf{string}\ s}{\Gamma \vdash s : \mathit{String}}$$

Also follows immediately that $\alpha(s) = String$

$$\begin{array}{ccc} E \vdash S_1 : i_1 & & \Gamma \vdash S_1 : Int \\ E \vdash S_2 : i_2 & & \Gamma \vdash S_2 : Int \\ \hline E \vdash S_1 + S_2 : i_1 + i_2 & & \overline{\Gamma} \vdash S_1 + S_2 : Int \end{array}$$

Inductive case 1:

$$\begin{array}{ccc} E \vdash S_1 : i_1 & & \Gamma \vdash S_1 : Int \\ E \vdash S_2 : i_2 & & \Gamma \vdash S_2 : Int \\ \hline E \vdash S_1 + S_2 : i_1 + i_2 & & \hline \Gamma \vdash S_1 + S_2 : Int \\ \end{array}$$

▶ By the inductive hypothesis we know that $\alpha(i_1) = Int$ and $\alpha(i_2) = Int$. Since the value $i_1 + i_2$ is also an integer, $\alpha(i_1 + i_2) = Int$

▶ Inductive case 2:

$$\begin{array}{ccc} E \vdash S_1 : s_1 & & \Gamma \vdash S_1 : String \\ E \vdash S_2 : s_2 & & \Gamma \vdash S_2 : String \\ \hline E \vdash S_1 :: S_2 : \mathsf{concat}(s_1, s_2) & & \hline \Gamma \vdash S_1 :: S_2 : String \\ \end{array}$$

▶ Inductive case 2:

$$\begin{array}{ccc} E \vdash S_1 : s_1 & & \Gamma \vdash S_1 : \mathit{String} \\ E \vdash S_2 : s_2 & & \Gamma \vdash S_2 : \mathit{String} \\ \hline E \vdash S_1 :: S_2 : \mathsf{concat}(s_1, s_2) & & \overline{\Gamma} \vdash S_1 :: S_2 : \mathit{String} \end{array}$$

▶ By the inductive hypothesis we know that $\alpha(s_1) = String$ and $\alpha(s_2) = String$. Since the value $concat(s_1, s_2)$ is also a string, $\alpha(concat(s_1, s_2)) = String$

▶ But what about the two rules involving identifiers?

$$\begin{array}{ll} \text{identifier } id \\ \hline E \vdash id : E(id) & \overline{\Gamma \vdash id : \Gamma(id)} \\ \hline E \vdash S_1 : e_1 & \Gamma \vdash S_1 : \tau_1 \\ \hline E[\operatorname{id} \leftarrow e_1] \vdash S_2 : e_2 & \Gamma[\operatorname{id} \leftarrow \tau] \vdash S_2 : \tau_3 \\ \hline E \vdash \operatorname{let} id : \tau = S_1 \text{ in } S_2 : e_2 & \overline{\Gamma} \vdash \operatorname{let} id : \tau = S_1 \text{ in } S_2 : \tau_3 \\ \hline \end{array}$$

▶ But what about the two rules involving identifiers?

$$\begin{array}{ll} \begin{tabular}{ll} \underline{\operatorname{identifier}\ id} \\ E \vdash id : E(id) \end{tabular} & \underline{\operatorname{identifier}\ id} \\ E \vdash S_1 : E_1 & \Gamma \vdash S_1 : \tau_1 \\ E[\operatorname{id} \leftarrow e_1] \vdash S_2 : e_2 & \Gamma[\operatorname{id} \leftarrow \tau] \vdash S_2 : \tau_3 \\ \hline E \vdash \operatorname{let}\ id : \tau = S_1 \ \operatorname{in}\ S_2 : e_2 & \Gamma \vdash \operatorname{let}\ id : \tau = S_1 \ \operatorname{in}\ S_2 : \tau_3 \\ \hline \end{array}$$

▶ To prove the base case, we need to know that the values in Γ and E agree.

▶ But what about the two rules involving identifiers?

$$\begin{array}{ll} \frac{\text{identifier } id}{E \vdash id : E(id)} & \frac{\text{identifier } id}{\Gamma \vdash id : \Gamma(id)} \\ & \Gamma \vdash S_1 : \tau_1 \\ E \vdash S_1 : e_1 & \tau = \tau_1 \\ E[\text{id} \leftarrow e_1] \vdash S_2 : e_2 & \Gamma[\text{id} \leftarrow \tau] \vdash S_2 : \tau_3 \\ \hline E \vdash \text{let } id : \tau = S_1 \text{ in } S_2 : e_2 & \overline{\Gamma} \vdash \text{let } id : \tau = S_1 \text{ in } S_2 : \tau_3 \end{array}$$

- ▶ To prove the base case, we need to know that the values in Γ and E agree.
- ▶ Definition: Concrete environment E and abstract environment Γ agree if for any identifier x $\Gamma(x) = \alpha(E(x))$, written as $\Gamma \sim E$

▶ But what about the two rules involving identifiers?

$$\begin{array}{ll} \operatorname{identifier} \ id \\ \hline E \vdash id : E(id) \end{array} & \begin{array}{ll} \operatorname{identifier} \ id \\ \hline \Gamma \vdash id : \Gamma(id) \end{array} \\ & \begin{array}{ll} \Gamma \vdash S_1 : \tau_1 \\ \hline E \vdash S_1 : e_1 & \tau = \tau_1 \\ \hline E[\operatorname{id} \leftarrow e_1] \vdash S_2 : e_2 & \Gamma[\operatorname{id} \leftarrow \tau] \vdash S_2 : \tau_3 \\ \hline E \vdash \operatorname{let} \ id : \tau = S_1 \ \operatorname{in} \ S_2 : e_2 \end{array} \end{array}$$

- ▶ To prove the base case, we need to know that the values in Γ and E agree.
- ▶ Definition: Concrete environment E and abstract environment Γ agree if for any identifier x $\Gamma(x) = \alpha(E(x))$, written as $\Gamma \sim E$
- ► Therefore, we first need to prove agreement before showing the preservation of the identifier rules

▶ Fortunately, proving agreement of E and Γ is easy, again by induction, on the number of mappings in E and Γ

- ▶ Fortunately, proving agreement of E and Γ is easy, again by induction, on the number of mappings in E and Γ
- ▶ Base case: E and Γ are empty: \Rightarrow they trivially agree

- ▶ Fortunately, proving agreement of E and Γ is easy, again by induction, on the number of mappings in E and Γ
- ▶ Base case: E and Γ are empty: \Rightarrow they trivially agree
- \blacktriangleright Clearly, rules that do not change E or Γ cannot break agreement.

- ightharpoonup Fortunately, proving agreement of E and Γ is easy, again by induction, on the number of mappings in E and Γ
- ▶ Base case: E and Γ are empty: \Rightarrow they trivially agree
- \triangleright Clearly, rules that do not change E or Γ cannot break agreement.
- ▶ Therefore, we only have to prove agreement for the following rule:

$$\begin{array}{ll} E \vdash S_1 : e_1 & \tau = \tau_1 \\ E[\operatorname{id} \leftarrow e_1] \vdash S_2 : e_2 & \Gamma[\operatorname{id} \leftarrow \tau] \vdash S_2 : \tau_3 \\ \hline E \vdash \operatorname{let} \ id : \tau = S_1 \ \operatorname{in} \ S_2 : e_2 & \overline{\Gamma} \vdash \operatorname{let} \ id : \tau = S_1 \ \operatorname{in} \ S_2 : \tau_3 \\ \end{array}$$

$$\Gamma \vdash S_1 : \tau_1$$

$$\tau = \tau_1$$

$$\Gamma[\mathsf{id} \leftarrow \tau] \vdash S_2 : \tau_3$$

$$\vdash \mathsf{let} \ id : \tau = S_1 \ \mathsf{in} \ S_2 : \tau_3$$

$$\frac{E \vdash S_1 : e_1}{E[\mathsf{id} \leftarrow e_1] \vdash S_2 : e_2}$$
$$\overline{E \vdash \mathsf{let} \ id : \tau = S_1 \ \mathsf{in} \ S_2 : e_2}$$

$$\begin{split} \Gamma \vdash S_1 : \tau_1 \\ \tau &= \tau_1 \\ \Gamma[\mathsf{id} \leftarrow \tau] \vdash S_2 : \tau_3 \\ \hline \Gamma \vdash \mathsf{let} \ \mathit{id} : \tau &= S_1 \ \mathsf{in} \ S_2 : \tau_3 \end{split}$$

▶ Here, assuming preservation, we know that $\alpha(e_1) = \tau$. By the inductive hypothesis, we also know that $\Gamma \sim E$.

$$\frac{E \vdash S_1 : e_1}{E[\mathsf{id} \leftarrow e_1] \vdash S_2 : e_2}$$
$$\frac{E \vdash \mathsf{let} \ id : \tau = S_1 \ \mathsf{in} \ S_2 : e_2}{E \vdash \mathsf{let} \ id : \tau = S_1 \ \mathsf{let} \ S_2 : e_2}$$

$$\begin{split} \Gamma \vdash S_1 : \tau_1 \\ \tau &= \tau_1 \\ \Gamma[\mathsf{id} \leftarrow \tau] \vdash S_2 : \tau_3 \\ \hline \Gamma \vdash \mathsf{let} \ \mathit{id} : \tau &= S_1 \ \mathsf{in} \ S_2 : \tau_3 \end{split}$$

- ▶ Here, assuming preservation, we know that $\alpha(e_1) = \tau$. By the inductive hypothesis, we also know that $\Gamma \sim E$.
- ▶ Therefore, we also know that $\Gamma[id \leftarrow \tau] \sim E[id \leftarrow e_1]$

$$\frac{E \vdash S_1 : e_1}{E[\mathsf{id} \leftarrow e_1] \vdash S_2 : e_2}$$
$$\overline{E \vdash \mathsf{let} \ id : \tau = S_1 \ \mathsf{in} \ S_2 : e_2}$$

$$\begin{split} \Gamma \vdash S_1 : \tau_1 \\ \tau &= \tau_1 \\ \Gamma[\mathsf{id} \leftarrow \tau] \vdash S_2 : \tau_3 \\ \hline \Gamma \vdash \mathsf{let} \ \mathit{id} : \tau &= S_1 \ \mathsf{in} \ S_2 : \tau_3 \end{split}$$

- ▶ Here, assuming preservation, we know that $\alpha(e_1) = \tau$. By the inductive hypothesis, we also know that $\Gamma \sim E$.
- ▶ Therefore, we also know that $\Gamma[id \leftarrow \tau] \sim E[id \leftarrow e_1]$
- Important: We proved agreement in the inductive case assuming preservation!

▶ Now, we can assume agreement when proving preservation:

- ▶ Now, we can assume agreement when proving preservation:
- ► Base case:

$$\frac{\text{identifier } id}{E \vdash id : E(id)} \qquad \frac{\text{identifier } id}{\Gamma \vdash id : \Gamma(id)}$$

- ▶ Now, we can assume agreement when proving preservation:
- ► Base case:

$$\frac{\text{identifier } id}{E \vdash id : E(id)} \qquad \frac{\text{identifier } id}{\Gamma \vdash id : \Gamma(id)}$$

lacktriangle This follows immediately since by our assumption $\Gamma \sim E$

$$\begin{aligned} E &\vdash S_1 : e_1 & \tau &= \tau_1 \\ E[\operatorname{id} \leftarrow e_1] &\vdash S_2 : e_2 & \Gamma[\operatorname{id} \leftarrow \tau] \vdash S_2 : \tau_3 \\ \hline E &\vdash \operatorname{let} id : \tau &= S_1 \operatorname{in} S_2 : e_2 & \overline{\Gamma} \vdash \operatorname{let} id : \tau &= S_1 \operatorname{in} S_2 : \tau_3 \end{aligned}$$

$$\Gamma \vdash S_1 : \tau_1$$

$$\tau = \tau_1$$

$$\Gamma[\mathsf{id} \leftarrow \tau] \vdash S_2 : \tau_3$$

$$\vdash \mathsf{let} \ \mathit{id} \cdot \tau = S_1 \ \mathsf{in} \ S_2 : \tau_3$$

Inductive case:

$$\begin{array}{ccc} \Gamma \vdash S_1 : \tau_1 \\ E \vdash S_1 : e_1 & \tau = \tau_1 \\ E [\operatorname{id} \leftarrow e_1] \vdash S_2 : e_2 & \Gamma[\operatorname{id} \leftarrow \tau] \vdash S_2 : \tau_3 \\ \hline E \vdash \operatorname{let} \ id : \tau = S_1 \ \operatorname{in} \ S_2 : e_2 & \overline{\Gamma} \vdash \operatorname{let} \ id : \tau = S_1 \ \operatorname{in} \ S_2 : \tau_3 \end{array}$$

▶ By the inductive hypothesis, we know that $\alpha(e_2) = \tau_3$. This is what we want to prove.

$$\begin{array}{ccc} \Gamma \vdash S_1 : \tau_1 \\ E \vdash S_1 : e_1 & \tau = \tau_1 \\ E [\operatorname{id} \leftarrow e_1] \vdash S_2 : e_2 & \Gamma[\operatorname{id} \leftarrow \tau] \vdash S_2 : \tau_3 \\ \hline E \vdash \operatorname{let} id : \tau = S_1 \text{ in } S_2 : e_2 & \overline{\Gamma} \vdash \operatorname{let} id : \tau = S_1 \text{ in } S_2 : \tau_3 \end{array}$$

- ▶ By the inductive hypothesis, we know that $\alpha(e_2) = \tau_3$. This is what we want to prove.
- Observe: We combined agreement and preservation for this proof to work.

$$\begin{array}{ccc} \Gamma \vdash S_1 : \tau_1 \\ E \vdash S_1 : e_1 & \tau = \tau_1 \\ \hline E[\operatorname{id} \leftarrow e_1] \vdash S_2 : e_2 & \Gamma[\operatorname{id} \leftarrow \tau] \vdash S_2 : \tau_3 \\ \hline E \vdash \operatorname{let} id : \tau = S_1 \text{ in } S_2 : e_2 & \overline{\Gamma} \vdash \operatorname{let} id : \tau = S_1 \text{ in } S_2 : \tau_3 \end{array}$$

- ▶ By the inductive hypothesis, we know that $\alpha(e_2) = \tau_3$. This is what we want to prove.
- Observe: We combined agreement and preservation for this proof to work.
 - ► The preservation proof works assuming that agreement holds

$$\begin{array}{ccc} \Gamma \vdash S_1 : \tau_1 \\ E \vdash S_1 : e_1 & \tau = \tau_1 \\ \underline{E[\operatorname{id} \leftarrow e_1] \vdash S_2 : e_2} & \underline{\Gamma[\operatorname{id} \leftarrow \tau] \vdash S_2 : \tau_3} \\ \overline{E \vdash \operatorname{let} id : \tau = S_1 \text{ in } S_2 : e_2} & \overline{\Gamma \vdash \operatorname{let} id : \tau = S_1 \text{ in } S_2 : \tau_3} \end{array}$$

- ▶ By the inductive hypothesis, we know that $\alpha(e_2) = \tau_3$. This is what we want to prove.
- Observe: We combined agreement and preservation for this proof to work.
 - ► The preservation proof works assuming that agreement holds
 - ► The agreement proof works assuming that preservation holds

$$\begin{array}{ccc} \Gamma \vdash S_1 : \tau_1 \\ E \vdash S_1 : e_1 & \tau = \tau_1 \\ E [\operatorname{id} \leftarrow e_1] \vdash S_2 : e_2 & \Gamma[\operatorname{id} \leftarrow \tau] \vdash S_2 : \tau_3 \\ \hline E \vdash \operatorname{let} id : \tau = S_1 \text{ in } S_2 : e_2 & \overline{\Gamma} \vdash \operatorname{let} id : \tau = S_1 \text{ in } S_2 : \tau_3 \end{array}$$

- ▶ By the inductive hypothesis, we know that $\alpha(e_2) = \tau_3$. This is what we want to prove.
- Observe: We combined agreement and preservation for this proof to work.
 - ► The preservation proof works assuming that agreement holds
 - ▶ The agreement proof works assuming that preservation holds
- ► As long as both properties hold initially, this is fine!

▶ We have now shown preservation of our type system

- We have now shown preservation of our type system
- Intuitively: We now know that that abstract value we compute will always overapproximate the concrete value for any program

- ▶ We have now shown preservation of our type system
- Intuitively: We now know that that abstract value we compute will always overapproximate the concrete value for any program
- Now, we want to prove that our type system is powerful enough to prevent run-time type errors

- We have now shown preservation of our type system
- Intuitively: We now know that that abstract value we compute will always overapproximate the concrete value for any program
- ▶ Now, we want to prove that our type system is powerful enough to prevent run-time type errors
- Or more formally, our operational semantics never "get stuck"

- We have now shown preservation of our type system
- Intuitively: We now know that that abstract value we compute will always overapproximate the concrete value for any program
- ▶ Now, we want to prove that our type system is powerful enough to prevent run-time type errors
- Or more formally, our operational semantics never "get stuck"
- Progress: We need to prove that every program that can be typed under our typing rules will not not "get stuck" in the operational semantics

- We have now shown preservation of our type system
- Intuitively: We now know that that abstract value we compute will always overapproximate the concrete value for any program
- ▶ Now, we want to prove that our type system is powerful enough to prevent run-time type errors
- Or more formally, our operational semantics never "get stuck"
- Progress: We need to prove that every program that can be typed under our typing rules will not not "get stuck" in the operational semantics
- Progress is a very strong property that few real type systems obey!

► We will again prove progress by structural induction:

- ► We will again prove progress by structural induction:
 - ▶ Base case 1: Integer

$$\frac{\mathsf{integer}\ i}{E \vdash i:i} \quad \frac{\mathsf{integer}\ i}{\Gamma \vdash i:Int}$$

- We will again prove progress by structural induction:
 - Base case 1: Integer

$$\frac{\mathsf{integer}\ i}{E \vdash i : i} \quad \frac{\mathsf{integer}\ i}{\Gamma \vdash i : Int}$$

Clearly, if i types as an integer, the corresponding operational semantics rule applies

- We will again prove progress by structural induction:
 - Base case 1: Integer

$$\frac{\mathsf{integer}\ i}{E \vdash i:i} \quad \frac{\mathsf{integer}\ i}{\Gamma \vdash i:Int}$$

Clearly, if i types as an integer, the corresponding operational semantics rule applies

▶ Base case 2: String

$$\frac{\mathsf{string}\ s}{E \vdash s : s} \quad \frac{\mathsf{string}\ s}{\Gamma \vdash s : \mathit{String}}$$

- We will again prove progress by structural induction:
 - Base case 1: Integer

$$\frac{\mathsf{integer}\ i}{E \vdash i:i} \quad \frac{\mathsf{integer}\ i}{\Gamma \vdash i:Int}$$

Clearly, if i types as an integer, the corresponding operational semantics rule applies

▶ Base case 2: String

$$\frac{\text{string } s}{E \vdash s : s} \quad \frac{\text{string } s}{\Gamma \vdash s : String}$$

Clearly, if s types as a string, the corresponding operational semantics rule applies

▶ Base case 3: Identifier

$$\frac{\text{identifier } id}{E \vdash id : E(id)} \qquad \frac{\text{identifier } id}{\Gamma \vdash id : \Gamma(id)}$$

Base case 3: Identifier

$$\frac{\text{identifier } id}{E \vdash id : E(id)} \qquad \frac{\text{identifier } id}{\Gamma \vdash id : \Gamma(id)}$$

Assuming agreement, we know that if the mapping $id \mapsto \tau$ is present in Γ , the mapping $id \mapsto v$ is present in E. Since this is the only hypothesis (precondition) of the operational semantics rule, it must therefore always apply in all well-types programs

▶ Inductive case 1:

$$\begin{array}{ccc} E \vdash S_1 : i_1 & & \Gamma \vdash S_1 : Int \\ E \vdash S_2 : i_2 & & \Gamma \vdash S_2 : Int \\ \hline E \vdash S_1 + S_2 : i_1 + i_2 & & \hline \Gamma \vdash S_1 + S_2 : Int \\ \end{array}$$

Inductive case 1:

$$\begin{array}{ccc} E \vdash S_1 : i_1 & & \Gamma \vdash S_1 : Int \\ E \vdash S_2 : i_2 & & \Gamma \vdash S_2 : Int \\ \hline E \vdash S_1 + S_2 : i_1 + i_2 & & \hline \Gamma \vdash S_1 + S_2 : Int \\ \end{array}$$

We know from the inductive hypothesis that the evaluation of S_1 and S_2 will never get stuck. We also know from preservation that the expressions S_1 and S_2 must evaluate to integers if they are typed Int, therefore the operational semantics rule for plus will always apply since the hypotheses only require that i_1 and i_2 are integers

Inductive case 2:

$$\begin{array}{ccc} E \vdash S_1 : s_1 & & \Gamma \vdash S_1 : String \\ E \vdash S_2 : s_2 & & \Gamma \vdash S_2 : String \\ \hline E \vdash S_1 :: S_2 : \mathsf{concat}(s_1, s_2) & & \hline \Gamma \vdash S_1 :: S_2 : String \\ \end{array}$$

Inductive case 2:

$$\begin{array}{ccc} E \vdash S_1 : s_1 & & \Gamma \vdash S_1 : String \\ E \vdash S_2 : s_2 & & \Gamma \vdash S_2 : String \\ \hline E \vdash S_1 :: S_2 : \mathsf{concat}(s_1, s_2) & & \hline \Gamma \vdash S_1 :: S_2 : String \\ \end{array}$$

We know from the inductive hypothesis that the evaluation of S_1 and S_2 will never get stuck. We also know from preservation that the expressions S_1 and S_2 must evaluate to strings if they are typed String, therefore the operational semantics rule for concatenation will always apply since the hypotheses only require that s_1 and s_2 are strings

Inductive case 3:

$$\begin{split} E \vdash S_1 : e_1 & \tau = \tau_1 \\ E[\operatorname{id} \leftarrow e_1] \vdash S_2 : e_2 & \Gamma[\operatorname{id} \leftarrow \tau] \vdash S_2 : \tau_3 \\ E \vdash \operatorname{let} id : \tau = S_1 \text{ in } S_2 : e_2 & \Gamma \vdash \operatorname{let} id : \tau = S_1 \text{ in } S_2 : \tau_3 \end{split}$$

$$\begin{split} \Gamma \vdash S_1 : \tau_1 \\ \tau &= \tau_1 \\ \Gamma[\mathsf{id} \leftarrow \tau] \vdash S_2 : \tau_3 \\ \vdash \mathsf{let} \ \mathit{id} : \tau &= S_1 \ \mathsf{in} \ S_2 : \tau_3 \end{split}$$

Inductive case 3:

$$\begin{array}{ccc} \Gamma \vdash S_1 : \tau_1 \\ E \vdash S_1 : e_1 & \tau = \tau_1 \\ E[\operatorname{id} \leftarrow e_1] \vdash S_2 : e_2 & \Gamma[\operatorname{id} \leftarrow \tau] \vdash S_2 : \tau_3 \\ \hline E \vdash \operatorname{let} id : \tau = S_1 \text{ in } S_2 : e_2 & \overline{\Gamma} \vdash \operatorname{let} id : \tau = S_1 \text{ in } S_2 : \tau_3 \end{array}$$

Here, we know from the inductive hypothesis that $E \vdash S_1 : e_1$ and $E[\mathsf{id} \leftarrow e_1] \vdash S_2 : e_2$ will not get stuck since they are well-typed. Therefore, this rule will also always apply.

We now proved both preservation and progress of our small type system on the let language.

- ▶ We now proved both preservation and progress of our small type system on the let language.
- ► Important Point: You can only prove progress and preservation of a type system with respect to an operational semantics

- We now proved both preservation and progress of our small type system on the let language.
- ► Important Point: You can only prove progress and preservation of a type system with respect to an operational semantics
- Poofs of preservation and progress are always by structural induction

- ▶ We now proved both preservation and progress of our small type system on the let language.
- ► Important Point: You can only prove progress and preservation of a type system with respect to an operational semantics
- Poofs of preservation and progress are always by structural induction
- If you have an environment, you usually need to show agreement to prove preservation

- We now proved both preservation and progress of our small type system on the let language.
- ► Important Point: You can only prove progress and preservation of a type system with respect to an operational semantics
- Poofs of preservation and progress are always by structural induction
- If you have an environment, you usually need to show agreement to prove preservation
- ► These proofs tend to always follow the same pattern, so follow this strategy on homeworks/exams

Adding the Lambda to our language

► Let us add the lambda construct to the let-language. I will call this the lambda-language:

$$\begin{array}{lll} S & \rightarrow & \text{integer} \mid \text{string} \mid \text{identifier} \\ & \mid S_1 + S_2 \mid S_1 :: S_2 \\ & \mid \text{let } id : \tau &= S_1 \text{ in } S_2 \\ & \mid \lambda x : \tau . S_1 \\ & \mid (S_1 \ S_2) \end{array}$$

$$\tau & \rightarrow & Int \mid String \mid \tau_1 \rightarrow \tau_2 \end{array}$$

Adding the Lambda to our language

► Let us add the lambda construct to the let-language. I will call this the lambda-language:

$$\begin{array}{lll} S & \rightarrow & \mathrm{integer} \mid \mathrm{string} \mid \mathrm{identifier} \\ & \mid S_1 + S_2 \mid S_1 :: S_2 \\ & \mid \mathrm{let} \ id : \tau \ = \ S_1 \ \mathrm{in} \ S_2 \\ & \mid \lambda x : \tau . S_1 \\ & \mid (S_1 \ S_2) \end{array}$$

$$\tau & \rightarrow & \mathit{Int} \mid \mathit{String} \mid \tau_1 \rightarrow \tau_2 \\ \end{array}$$

The operational semantics of the new constructs are as follows:

$$\frac{E \vdash S_1 : \lambda x : \tau.e}{E \vdash S_2 : e_2}$$

$$\frac{E \vdash e[e_2/x] : e_r}{E \vdash (S_1 S_2) : e_r}$$

► Lambda:

$$\frac{\Gamma[x \leftarrow \tau_1] \vdash S_1 : \tau_2}{\Gamma \vdash \lambda x : \tau_1.S_1 : \tau_1 \rightarrow \tau_2}$$

Lambda:

$$\frac{\Gamma[x \leftarrow \tau_1] \vdash S_1 : \tau_2}{\Gamma \vdash \lambda x : \tau_1.S_1 : \tau_1 \rightarrow \tau_2}$$

Application:

$$\Gamma \vdash S_1 : \tau_1 \to \tau_2
\Gamma \vdash S_2 : \tau_1
\overline{\Gamma \vdash (S_1 \ S_2) : \tau_2}$$

Lambda:

$$\frac{\Gamma[x \leftarrow \tau_1] \vdash S_1 : \tau_2}{\Gamma \vdash \lambda x : \tau_1.S_1 : \tau_1 \rightarrow \tau_2}$$

Application:

$$\frac{\Gamma \vdash S_1 : \tau_1 \to \tau_2}{\Gamma \vdash S_2 : \tau_1}$$

$$\frac{\Gamma \vdash (S_1 S_2) : \tau_2}{\Gamma \vdash (S_1 S_2) : \tau_2}$$

Observe that these almost exactly correspond to the operational semantics!

Lambda:

$$\frac{\Gamma[x \leftarrow \tau_1] \vdash S_1 : \tau_2}{\Gamma \vdash \lambda x : \tau_1 . S_1 : \tau_1 \to \tau_2}$$

Application:

$$\Gamma \vdash S_1 : \tau_1 \to \tau_2
\Gamma \vdash S_2 : \tau_1
\overline{\Gamma \vdash (S_1 \ S_2) : \tau_2}$$

- Observe that these almost exactly correspond to the operational semantics!
- But there is one difference: The body of the let is type checked at the definition, but only evaluated at the application

Preservation for lambda

Lambda:

$$\frac{\Gamma[x \leftarrow \tau_1] \vdash S_1 : \tau_2}{E \vdash \lambda x : \tau.S_1 : \lambda x : \tau.S_1} \quad \frac{\Gamma[x \leftarrow \tau_1] \vdash S_1 : \tau_2}{\Gamma \vdash \lambda x : \tau_1.S_1 : \tau_1 \rightarrow \tau_2}$$

Preservation for lambda

Lambda:

$$\frac{\Gamma[x \leftarrow \tau_1] \vdash S_1 : \tau_2}{E \vdash \lambda x : \tau . S_1 : \lambda x : \tau . S_1} \quad \frac{\Gamma[x \leftarrow \tau_1] \vdash S_1 : \tau_2}{\Gamma \vdash \lambda x : \tau_1 . S_1 : \tau_1 \to \tau_2}$$

▶ First, we observe that if $\Gamma[x \leftarrow \tau_1] \vdash S_1 : \tau_2$ holds, we know by our inductive hypothesis that $\alpha(E \vdash S_1[v/x]) = \tau_2$ for any value v of type τ_1 . Therefore, the type of this rule is $\tau_1 \to \tau_2$

Preservation for Application

Application:

$$E \vdash S_1 : \lambda x : \tau.e$$

$$E \vdash S_2 : e_2$$

$$E \vdash e[e_2/x] : e_r$$

$$F \vdash S_1 : \tau_1 \to \tau_2$$

$$\Gamma \vdash S_2 : \tau_1$$

$$\Gamma \vdash (S_1 S_2) : \tau_2$$

Preservation for Application

Application:

$$E \vdash S_1 : \lambda x : \tau.e$$

$$E \vdash S_2 : e_2$$

$$E \vdash e[e_2/x] : e_r$$

$$F \vdash S_1 : \tau_1 \to \tau_2$$

$$\Gamma \vdash S_2 : \tau_1$$

$$\Gamma \vdash (S_1 S_2) : \tau_2$$

▶ First, we observe by our inductive hypothesis that if the type of S_1 is $\tau_1 \to \tau_2$, the first hypothesis in the concrete rule must always apply. Second, by the inductive hypothesis we know that $\alpha(e_2) = \tau_1$. Since the type of S_1 is $\tau_1 \to \tau_2$, we can therefore safely conclude that $\alpha(e_r) = \tau_2$

Preservation Proof

Question: Why could we not formulate the typing rules for lambda and application symmetric to the operational semantics?

Preservation Proof

- Question: Why could we not formulate the typing rules for lambda and application symmetric to the operational semantics?
- Answer: Because if we try to type check the body of a lambda at the application site, we have no way of knowing the name of the variable bound in this lambda statement

Preservation Proof

- Question: Why could we not formulate the typing rules for lambda and application symmetric to the operational semantics?
- Answer: Because if we try to type check the body of a lambda at the application site, we have no way of knowing the name of the variable bound in this lambda statement
- ► This is typical: When typing functions, we usually always examine the function body before it is used

Shocking News: Many type systems obey neither progress or preservation!

Shocking News: Many type systems obey neither progress or preservation!

► Example: C, C++

- Shocking News: Many type systems obey neither progress or preservation!
- ► Example: C, C++
- ► More Shocking News: Very few type systems obey progress!

- Shocking News: Many type systems obey neither progress or preservation!
- ► Example: C, C++
- ► More Shocking News: Very few type systems obey progress!
- Example: Java

- Shocking News: Many type systems obey neither progress or preservation!
- ► Example: C, C++
- ► More Shocking News: Very few type systems obey progress!
- Example: Java
- ▶ But progress is a very useful property, even if it can often only be argued for some classes of run-time errors

Conclusion

We saw how to give typing rules

Conclusion

- We saw how to give typing rules
- We proved progress and preservation of a type system

Conclusion

- We saw how to give typing rules
- We proved progress and preservation of a type system
- Next time: Polymorphism