
CS345H: Programming Languages

Lecture 10: Basic Type Checking

Thomas Dillig

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 1/33

Outline

I We will write type systems for multiple languages

I We will formally see how to define soundness

I We will learn how to prove soundness of a type system

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 2/33

Outline

I We will write type systems for multiple languages

I We will formally see how to define soundness

I We will learn how to prove soundness of a type system

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 2/33

Outline

I We will write type systems for multiple languages

I We will formally see how to define soundness

I We will learn how to prove soundness of a type system

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 2/33

The let language

I Recall from last time the following small language (let
language):

S → integer | string | identifier
| S1 + S2 | S1 :: S2
| let id : τ = S1 in S2

τ → Int | String

I Here are again its operational semantics:

integer i

E ` i : i

string s

E ` s : s

identifier id

E ` id : E (id)

E ` S1 : i1
E ` S2 : i2

E ` S1 + S2 : i1 + i2

E ` S1 : s1
E ` S2 : s2

E ` S1 :: S2 : concat(s1, s2)

E ` S1 : e1
E [id← e1] ` S2 : e2

E ` let id : τ = S1 in S2 : e2

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 3/33

The let language

I Recall from last time the following small language (let
language):

S → integer | string | identifier
| S1 + S2 | S1 :: S2
| let id : τ = S1 in S2

τ → Int | String

I Here are again its operational semantics:

integer i

E ` i : i

string s

E ` s : s

identifier id

E ` id : E (id)

E ` S1 : i1
E ` S2 : i2

E ` S1 + S2 : i1 + i2

E ` S1 : s1
E ` S2 : s2

E ` S1 :: S2 : concat(s1, s2)

E ` S1 : e1
E [id← e1] ` S2 : e2

E ` let id : τ = S1 in S2 : e2

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 3/33

Type System

I We also saw last time how we can write typing rules that
compute the type of an expression.

integer i

Γ ` i : Int

string s

Γ ` s : String

identifier id

Γ ` id : Γ(id)

Γ ` S1 : Int
Γ ` S2 : Int

Γ ` S1 + S2 : Int

Γ ` S1 : String
Γ ` S2 : String

Γ ` S1 :: S2 : String

Γ ` S1 : τ1
τ = τ1
Γ[id← τ] ` S2 : τ3

Γ ` let id : τ = S1 in S2 : τ3

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 4/33

Correspondence between Concrete and Abstract Semantics

I Observe that there is a strong relationship between the
operational semantics (concrete semantics) and the typing
rules (abstract semantics)

I The concrete environment E corresponds to the abstract type
environment Γ

I The structure of the abstract and concrete rules are analogous

I Key Difference: Concrete semantics compute a particular
value, while abstract semantics compute a type

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 5/33

Correspondence between Concrete and Abstract Semantics

I Observe that there is a strong relationship between the
operational semantics (concrete semantics) and the typing
rules (abstract semantics)

I The concrete environment E corresponds to the abstract type
environment Γ

I The structure of the abstract and concrete rules are analogous

I Key Difference: Concrete semantics compute a particular
value, while abstract semantics compute a type

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 5/33

Correspondence between Concrete and Abstract Semantics

I Observe that there is a strong relationship between the
operational semantics (concrete semantics) and the typing
rules (abstract semantics)

I The concrete environment E corresponds to the abstract type
environment Γ

I The structure of the abstract and concrete rules are analogous

I Key Difference: Concrete semantics compute a particular
value, while abstract semantics compute a type

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 5/33

Correspondence between Concrete and Abstract Semantics

I Observe that there is a strong relationship between the
operational semantics (concrete semantics) and the typing
rules (abstract semantics)

I The concrete environment E corresponds to the abstract type
environment Γ

I The structure of the abstract and concrete rules are analogous

I Key Difference: Concrete semantics compute a particular
value, while abstract semantics compute a type

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 5/33

Some Notation

I We write γ(τ) for the concretization of the abstract value τ .
We call γ the concretization function

I Example: γ(Int) =

{. . . ,−1, 0, 1, 2, 3, . . .}

I We write α(v) for the abstraction of the concrete value v . We
call α the abstraction function

I Example: α(42) =

Int

I Definition: An abstraction is a Galois Connection if
α(γ(τ)) = τ for all abstract values τ

I Question: Is our abstract domain of types a Galois
connection?

Yes, α(γ(Int)) = Int and α(γ(String)) = String

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 6/33

Some Notation

I We write γ(τ) for the concretization of the abstract value τ .
We call γ the concretization function

I Example: γ(Int) =

{. . . ,−1, 0, 1, 2, 3, . . .}

I We write α(v) for the abstraction of the concrete value v . We
call α the abstraction function

I Example: α(42) =

Int

I Definition: An abstraction is a Galois Connection if
α(γ(τ)) = τ for all abstract values τ

I Question: Is our abstract domain of types a Galois
connection?

Yes, α(γ(Int)) = Int and α(γ(String)) = String

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 6/33

Some Notation

I We write γ(τ) for the concretization of the abstract value τ .
We call γ the concretization function

I Example: γ(Int) = {. . . ,−1, 0, 1, 2, 3, . . .}

I We write α(v) for the abstraction of the concrete value v . We
call α the abstraction function

I Example: α(42) =

Int

I Definition: An abstraction is a Galois Connection if
α(γ(τ)) = τ for all abstract values τ

I Question: Is our abstract domain of types a Galois
connection?

Yes, α(γ(Int)) = Int and α(γ(String)) = String

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 6/33

Some Notation

I We write γ(τ) for the concretization of the abstract value τ .
We call γ the concretization function

I Example: γ(Int) = {. . . ,−1, 0, 1, 2, 3, . . .}

I We write α(v) for the abstraction of the concrete value v . We
call α the abstraction function

I Example: α(42) =

Int

I Definition: An abstraction is a Galois Connection if
α(γ(τ)) = τ for all abstract values τ

I Question: Is our abstract domain of types a Galois
connection?

Yes, α(γ(Int)) = Int and α(γ(String)) = String

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 6/33

Some Notation

I We write γ(τ) for the concretization of the abstract value τ .
We call γ the concretization function

I Example: γ(Int) = {. . . ,−1, 0, 1, 2, 3, . . .}

I We write α(v) for the abstraction of the concrete value v . We
call α the abstraction function

I Example: α(42) =

Int

I Definition: An abstraction is a Galois Connection if
α(γ(τ)) = τ for all abstract values τ

I Question: Is our abstract domain of types a Galois
connection?

Yes, α(γ(Int)) = Int and α(γ(String)) = String

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 6/33

Some Notation

I We write γ(τ) for the concretization of the abstract value τ .
We call γ the concretization function

I Example: γ(Int) = {. . . ,−1, 0, 1, 2, 3, . . .}

I We write α(v) for the abstraction of the concrete value v . We
call α the abstraction function

I Example: α(42) = Int

I Definition: An abstraction is a Galois Connection if
α(γ(τ)) = τ for all abstract values τ

I Question: Is our abstract domain of types a Galois
connection?

Yes, α(γ(Int)) = Int and α(γ(String)) = String

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 6/33

Some Notation

I We write γ(τ) for the concretization of the abstract value τ .
We call γ the concretization function

I Example: γ(Int) = {. . . ,−1, 0, 1, 2, 3, . . .}

I We write α(v) for the abstraction of the concrete value v . We
call α the abstraction function

I Example: α(42) = Int

I Definition: An abstraction is a Galois Connection if
α(γ(τ)) = τ for all abstract values τ

I Question: Is our abstract domain of types a Galois
connection?

Yes, α(γ(Int)) = Int and α(γ(String)) = String

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 6/33

Some Notation

I We write γ(τ) for the concretization of the abstract value τ .
We call γ the concretization function

I Example: γ(Int) = {. . . ,−1, 0, 1, 2, 3, . . .}

I We write α(v) for the abstraction of the concrete value v . We
call α the abstraction function

I Example: α(42) = Int

I Definition: An abstraction is a Galois Connection if
α(γ(τ)) = τ for all abstract values τ

I Question: Is our abstract domain of types a Galois
connection?

Yes, α(γ(Int)) = Int and α(γ(String)) = String

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 6/33

Some Notation

I We write γ(τ) for the concretization of the abstract value τ .
We call γ the concretization function

I Example: γ(Int) = {. . . ,−1, 0, 1, 2, 3, . . .}

I We write α(v) for the abstraction of the concrete value v . We
call α the abstraction function

I Example: α(42) = Int

I Definition: An abstraction is a Galois Connection if
α(γ(τ)) = τ for all abstract values τ

I Question: Is our abstract domain of types a Galois
connection? Yes, α(γ(Int)) = Int and α(γ(String)) = String

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 6/33

Galois Connection

I Galois connection means that if we want to relate a concrete
value v and abstract value τ , the following are equivalent:

I α(v) = τ

I v ∈ γ(τ)

I Think of it as a well-formed abstraction

I In this class, we are only interested in Galois connections

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 7/33

Galois Connection

I Galois connection means that if we want to relate a concrete
value v and abstract value τ , the following are equivalent:

I α(v) = τ

I v ∈ γ(τ)

I Think of it as a well-formed abstraction

I In this class, we are only interested in Galois connections

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 7/33

Galois Connection

I Galois connection means that if we want to relate a concrete
value v and abstract value τ , the following are equivalent:

I α(v) = τ

I v ∈ γ(τ)

I Think of it as a well-formed abstraction

I In this class, we are only interested in Galois connections

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 7/33

Galois Connection

I Galois connection means that if we want to relate a concrete
value v and abstract value τ , the following are equivalent:

I α(v) = τ

I v ∈ γ(τ)

I Think of it as a well-formed abstraction

I In this class, we are only interested in Galois connections

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 7/33

Galois Connection

I Galois connection means that if we want to relate a concrete
value v and abstract value τ , the following are equivalent:

I α(v) = τ

I v ∈ γ(τ)

I Think of it as a well-formed abstraction

I In this class, we are only interested in Galois connections

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 7/33

Soundness

I For out type system to be sound, we require that for any
program, the concrete value v of this program is compatible
with the type τ computed.

I Formally, we state this property as follows:

I If E ` e : v and Γ ` e : τ , then v ∈ γ(τ)

I This means that the type we give to every expression always
overapproximates the type of the concrete value

I We can safely rely on the static types computed

I Slogan: “Well-typed programs cannot go wrong”

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 8/33

Soundness

I For out type system to be sound, we require that for any
program, the concrete value v of this program is compatible
with the type τ computed.

I Formally, we state this property as follows:

I If E ` e : v and Γ ` e : τ , then v ∈ γ(τ)

I This means that the type we give to every expression always
overapproximates the type of the concrete value

I We can safely rely on the static types computed

I Slogan: “Well-typed programs cannot go wrong”

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 8/33

Soundness

I For out type system to be sound, we require that for any
program, the concrete value v of this program is compatible
with the type τ computed.

I Formally, we state this property as follows:

I If E ` e : v and Γ ` e : τ , then v ∈ γ(τ)

I This means that the type we give to every expression always
overapproximates the type of the concrete value

I We can safely rely on the static types computed

I Slogan: “Well-typed programs cannot go wrong”

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 8/33

Soundness

I For out type system to be sound, we require that for any
program, the concrete value v of this program is compatible
with the type τ computed.

I Formally, we state this property as follows:

I If E ` e : v and Γ ` e : τ , then v ∈ γ(τ)

I This means that the type we give to every expression always
overapproximates the type of the concrete value

I We can safely rely on the static types computed

I Slogan: “Well-typed programs cannot go wrong”

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 8/33

Soundness

I For out type system to be sound, we require that for any
program, the concrete value v of this program is compatible
with the type τ computed.

I Formally, we state this property as follows:

I If E ` e : v and Γ ` e : τ , then v ∈ γ(τ)

I This means that the type we give to every expression always
overapproximates the type of the concrete value

I We can safely rely on the static types computed

I Slogan: “Well-typed programs cannot go wrong”

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 8/33

Soundness

I For out type system to be sound, we require that for any
program, the concrete value v of this program is compatible
with the type τ computed.

I Formally, we state this property as follows:

I If E ` e : v and Γ ` e : τ , then v ∈ γ(τ)

I This means that the type we give to every expression always
overapproximates the type of the concrete value

I We can safely rely on the static types computed

I Slogan: “Well-typed programs cannot go wrong”

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 8/33

Soundness Cont.

I Clearly, not every type system is sound or useful to prevent
run-time errors

I Therefore, we need a way to prove that a type system we
design is actually sound and useful.

I There are many ways of proving correspondence between
abstract and concrete semantics, but the most popular
strategy for types is to split the problem into two:

1. Preservation: Soundness is preserved under transition rules

2. Progress: A well-typed program never “gets stuck” when
executing operational semantics (no run-time errors).

I Preservation states that your type system is an
overapproximation while progress states that your type system
is expressive enough to prevent all run-time errors

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 9/33

Soundness Cont.

I Clearly, not every type system is sound or useful to prevent
run-time errors

I Therefore, we need a way to prove that a type system we
design is actually sound and useful.

I There are many ways of proving correspondence between
abstract and concrete semantics, but the most popular
strategy for types is to split the problem into two:

1. Preservation: Soundness is preserved under transition rules

2. Progress: A well-typed program never “gets stuck” when
executing operational semantics (no run-time errors).

I Preservation states that your type system is an
overapproximation while progress states that your type system
is expressive enough to prevent all run-time errors

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 9/33

Soundness Cont.

I Clearly, not every type system is sound or useful to prevent
run-time errors

I Therefore, we need a way to prove that a type system we
design is actually sound and useful.

I There are many ways of proving correspondence between
abstract and concrete semantics, but the most popular
strategy for types is to split the problem into two:

1. Preservation: Soundness is preserved under transition rules

2. Progress: A well-typed program never “gets stuck” when
executing operational semantics (no run-time errors).

I Preservation states that your type system is an
overapproximation while progress states that your type system
is expressive enough to prevent all run-time errors

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 9/33

Soundness Cont.

I Clearly, not every type system is sound or useful to prevent
run-time errors

I Therefore, we need a way to prove that a type system we
design is actually sound and useful.

I There are many ways of proving correspondence between
abstract and concrete semantics, but the most popular
strategy for types is to split the problem into two:

1. Preservation: Soundness is preserved under transition rules

2. Progress: A well-typed program never “gets stuck” when
executing operational semantics (no run-time errors).

I Preservation states that your type system is an
overapproximation while progress states that your type system
is expressive enough to prevent all run-time errors

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 9/33

Soundness Cont.

I Clearly, not every type system is sound or useful to prevent
run-time errors

I Therefore, we need a way to prove that a type system we
design is actually sound and useful.

I There are many ways of proving correspondence between
abstract and concrete semantics, but the most popular
strategy for types is to split the problem into two:

1. Preservation: Soundness is preserved under transition rules

2. Progress: A well-typed program never “gets stuck” when
executing operational semantics (no run-time errors).

I Preservation states that your type system is an
overapproximation while progress states that your type system
is expressive enough to prevent all run-time errors

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 9/33

Soundness Cont.

I Clearly, not every type system is sound or useful to prevent
run-time errors

I Therefore, we need a way to prove that a type system we
design is actually sound and useful.

I There are many ways of proving correspondence between
abstract and concrete semantics, but the most popular
strategy for types is to split the problem into two:

1. Preservation: Soundness is preserved under transition rules

2. Progress: A well-typed program never “gets stuck” when
executing operational semantics (no run-time errors).

I Preservation states that your type system is an
overapproximation while progress states that your type system
is expressive enough to prevent all run-time errors

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 9/33

How to Prove Preservation

I Preservation: If E ` e : v and Γ ` e : τ , then v ∈ Γ(τ) (or
equivalently α(v) = τ)

I Preservation must be argued inductively, specifically via
structural induction on the program expressions

I We first need to argue preservation for all the base cases:

Base case: rules with no ` in their hypotheses

I Then, for the inductive rules, we assume that preservation
holds for all subexpressions and prove that it holds for the
current expression.

I This is a very powerful proof technique!

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 10/33

How to Prove Preservation

I Preservation: If E ` e : v and Γ ` e : τ , then v ∈ Γ(τ) (or
equivalently α(v) = τ)

I Preservation must be argued inductively, specifically via
structural induction on the program expressions

I We first need to argue preservation for all the base cases:

Base case: rules with no ` in their hypotheses

I Then, for the inductive rules, we assume that preservation
holds for all subexpressions and prove that it holds for the
current expression.

I This is a very powerful proof technique!

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 10/33

How to Prove Preservation

I Preservation: If E ` e : v and Γ ` e : τ , then v ∈ Γ(τ) (or
equivalently α(v) = τ)

I Preservation must be argued inductively, specifically via
structural induction on the program expressions

I We first need to argue preservation for all the base cases:

Base case: rules with no ` in their hypotheses

I Then, for the inductive rules, we assume that preservation
holds for all subexpressions and prove that it holds for the
current expression.

I This is a very powerful proof technique!

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 10/33

How to Prove Preservation

I Preservation: If E ` e : v and Γ ` e : τ , then v ∈ Γ(τ) (or
equivalently α(v) = τ)

I Preservation must be argued inductively, specifically via
structural induction on the program expressions

I We first need to argue preservation for all the base cases:
Base case: rules with no ` in their hypotheses

I Then, for the inductive rules, we assume that preservation
holds for all subexpressions and prove that it holds for the
current expression.

I This is a very powerful proof technique!

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 10/33

How to Prove Preservation

I Preservation: If E ` e : v and Γ ` e : τ , then v ∈ Γ(τ) (or
equivalently α(v) = τ)

I Preservation must be argued inductively, specifically via
structural induction on the program expressions

I We first need to argue preservation for all the base cases:
Base case: rules with no ` in their hypotheses

I Then, for the inductive rules, we assume that preservation
holds for all subexpressions and prove that it holds for the
current expression.

I This is a very powerful proof technique!

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 10/33

How to Prove Preservation

I Preservation: If E ` e : v and Γ ` e : τ , then v ∈ Γ(τ) (or
equivalently α(v) = τ)

I Preservation must be argued inductively, specifically via
structural induction on the program expressions

I We first need to argue preservation for all the base cases:
Base case: rules with no ` in their hypotheses

I Then, for the inductive rules, we assume that preservation
holds for all subexpressions and prove that it holds for the
current expression.

I This is a very powerful proof technique!

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 10/33

Proving Preservation

I Let’s prove preservation of our type system, first without
identifiers and let bindings:

I Base case 1:
integer i

E ` i : i

integer i

Γ ` i : Int

Need to prove that α(i) = Int
⇒ This follows directly from the hypothesis that i is an
integer

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 11/33

Proving Preservation

I Let’s prove preservation of our type system, first without
identifiers and let bindings:

I Base case 1:
integer i

E ` i : i

integer i

Γ ` i : Int

Need to prove that α(i) = Int
⇒ This follows directly from the hypothesis that i is an
integer

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 11/33

Proving Preservation

I Let’s prove preservation of our type system, first without
identifiers and let bindings:

I Base case 1:
integer i

E ` i : i

integer i

Γ ` i : Int

Need to prove that α(i) = Int

⇒ This follows directly from the hypothesis that i is an
integer

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 11/33

Proving Preservation

I Let’s prove preservation of our type system, first without
identifiers and let bindings:

I Base case 1:
integer i

E ` i : i

integer i

Γ ` i : Int

Need to prove that α(i) = Int
⇒ This follows directly from the hypothesis that i is an
integer

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 11/33

Proving Preservation

I Base case 2:
string s

E ` s : s

string s

Γ ` s : String

Also follows immediately that α(s) = String

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 12/33

Proving Preservation

I Inductive case 1:

E ` S1 : i1
E ` S2 : i2

E ` S1 + S2 : i1 + i2

Γ ` S1 : Int
Γ ` S2 : Int

Γ ` S1 + S2 : Int

I By the inductive hypothesis we know that α(i1) = Int and
α(i2) = Int . Since the value i1 + i2 is also an integer,
α(i1 + i2) = Int

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 13/33

Proving Preservation

I Inductive case 1:

E ` S1 : i1
E ` S2 : i2

E ` S1 + S2 : i1 + i2

Γ ` S1 : Int
Γ ` S2 : Int

Γ ` S1 + S2 : Int

I By the inductive hypothesis we know that α(i1) = Int and
α(i2) = Int . Since the value i1 + i2 is also an integer,
α(i1 + i2) = Int

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 13/33

Proving Preservation

I Inductive case 2:

E ` S1 : s1
E ` S2 : s2

E ` S1 :: S2 : concat(s1, s2)

Γ ` S1 : String
Γ ` S2 : String

Γ ` S1 :: S2 : String

I By the inductive hypothesis we know that α(s1) = String and
α(s2) = String . Since the value concat(s1, s2) is also a string,
α(concat(s1, s2)) = String

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 14/33

Proving Preservation

I Inductive case 2:

E ` S1 : s1
E ` S2 : s2

E ` S1 :: S2 : concat(s1, s2)

Γ ` S1 : String
Γ ` S2 : String

Γ ` S1 :: S2 : String

I By the inductive hypothesis we know that α(s1) = String and
α(s2) = String . Since the value concat(s1, s2) is also a string,
α(concat(s1, s2)) = String

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 14/33

Proving Preservation with Identifiers
I But what about the two rules involving identifiers?

identifier id

E ` id : E (id)

identifier id

Γ ` id : Γ(id)

E ` S1 : e1
E [id← e1] ` S2 : e2

E ` let id : τ = S1 in S2 : e2

Γ ` S1 : τ1
τ = τ1
Γ[id← τ] ` S2 : τ3

Γ ` let id : τ = S1 in S2 : τ3

I To prove the base case, we need to know that the values in Γ
and E agree.

I Definition: Concrete environment E and abstract environment
Γ agree if for any identifier x Γ(x) = α(E (x)), written as
Γ ∼ E

I Therefore, we first need to prove agreement before showing
the preservation of the identifier rules

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 15/33

Proving Preservation with Identifiers
I But what about the two rules involving identifiers?

identifier id

E ` id : E (id)

identifier id

Γ ` id : Γ(id)

E ` S1 : e1
E [id← e1] ` S2 : e2

E ` let id : τ = S1 in S2 : e2

Γ ` S1 : τ1
τ = τ1
Γ[id← τ] ` S2 : τ3

Γ ` let id : τ = S1 in S2 : τ3

I To prove the base case, we need to know that the values in Γ
and E agree.

I Definition: Concrete environment E and abstract environment
Γ agree if for any identifier x Γ(x) = α(E (x)), written as
Γ ∼ E

I Therefore, we first need to prove agreement before showing
the preservation of the identifier rules

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 15/33

Proving Preservation with Identifiers
I But what about the two rules involving identifiers?

identifier id

E ` id : E (id)

identifier id

Γ ` id : Γ(id)

E ` S1 : e1
E [id← e1] ` S2 : e2

E ` let id : τ = S1 in S2 : e2

Γ ` S1 : τ1
τ = τ1
Γ[id← τ] ` S2 : τ3

Γ ` let id : τ = S1 in S2 : τ3

I To prove the base case, we need to know that the values in Γ
and E agree.

I Definition: Concrete environment E and abstract environment
Γ agree if for any identifier x Γ(x) = α(E (x)), written as
Γ ∼ E

I Therefore, we first need to prove agreement before showing
the preservation of the identifier rules

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 15/33

Proving Preservation with Identifiers
I But what about the two rules involving identifiers?

identifier id

E ` id : E (id)

identifier id

Γ ` id : Γ(id)

E ` S1 : e1
E [id← e1] ` S2 : e2

E ` let id : τ = S1 in S2 : e2

Γ ` S1 : τ1
τ = τ1
Γ[id← τ] ` S2 : τ3

Γ ` let id : τ = S1 in S2 : τ3

I To prove the base case, we need to know that the values in Γ
and E agree.

I Definition: Concrete environment E and abstract environment
Γ agree if for any identifier x Γ(x) = α(E (x)), written as
Γ ∼ E

I Therefore, we first need to prove agreement before showing
the preservation of the identifier rules

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 15/33

Proving Agreement

I Fortunately, proving agreement of E and Γ is easy, again by
induction, on the number of mappings in E and Γ

I Base case: E and Γ are empty: ⇒ they trivially agree

I Clearly, rules that do not change E or Γ cannot break
agreement.

I Therefore, we only have to prove agreement for the following
rule:

E ` S1 : e1
E [id← e1] ` S2 : e2

E ` let id : τ = S1 in S2 : e2

Γ ` S1 : τ1
τ = τ1
Γ[id← τ] ` S2 : τ3

Γ ` let id : τ = S1 in S2 : τ3

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 16/33

Proving Agreement

I Fortunately, proving agreement of E and Γ is easy, again by
induction, on the number of mappings in E and Γ

I Base case: E and Γ are empty: ⇒ they trivially agree

I Clearly, rules that do not change E or Γ cannot break
agreement.

I Therefore, we only have to prove agreement for the following
rule:

E ` S1 : e1
E [id← e1] ` S2 : e2

E ` let id : τ = S1 in S2 : e2

Γ ` S1 : τ1
τ = τ1
Γ[id← τ] ` S2 : τ3

Γ ` let id : τ = S1 in S2 : τ3

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 16/33

Proving Agreement

I Fortunately, proving agreement of E and Γ is easy, again by
induction, on the number of mappings in E and Γ

I Base case: E and Γ are empty: ⇒ they trivially agree

I Clearly, rules that do not change E or Γ cannot break
agreement.

I Therefore, we only have to prove agreement for the following
rule:

E ` S1 : e1
E [id← e1] ` S2 : e2

E ` let id : τ = S1 in S2 : e2

Γ ` S1 : τ1
τ = τ1
Γ[id← τ] ` S2 : τ3

Γ ` let id : τ = S1 in S2 : τ3

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 16/33

Proving Agreement

I Fortunately, proving agreement of E and Γ is easy, again by
induction, on the number of mappings in E and Γ

I Base case: E and Γ are empty: ⇒ they trivially agree

I Clearly, rules that do not change E or Γ cannot break
agreement.

I Therefore, we only have to prove agreement for the following
rule:

E ` S1 : e1
E [id← e1] ` S2 : e2

E ` let id : τ = S1 in S2 : e2

Γ ` S1 : τ1
τ = τ1
Γ[id← τ] ` S2 : τ3

Γ ` let id : τ = S1 in S2 : τ3

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 16/33

Proving Agreement

E ` S1 : e1
E [id← e1] ` S2 : e2

E ` let id : τ = S1 in S2 : e2

Γ ` S1 : τ1
τ = τ1
Γ[id← τ] ` S2 : τ3

Γ ` let id : τ = S1 in S2 : τ3

I Here, assuming preservation, we know that α(e1) = τ . By the
inductive hypothesis, we also know that Γ ∼ E .

I Therefore, we also know that Γ[id ← τ] ∼ E [id ← e1]

I Important: We proved agreement in the inductive case
assuming preservation!

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 17/33

Proving Agreement

E ` S1 : e1
E [id← e1] ` S2 : e2

E ` let id : τ = S1 in S2 : e2

Γ ` S1 : τ1
τ = τ1
Γ[id← τ] ` S2 : τ3

Γ ` let id : τ = S1 in S2 : τ3

I Here, assuming preservation, we know that α(e1) = τ . By the
inductive hypothesis, we also know that Γ ∼ E .

I Therefore, we also know that Γ[id ← τ] ∼ E [id ← e1]

I Important: We proved agreement in the inductive case
assuming preservation!

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 17/33

Proving Agreement

E ` S1 : e1
E [id← e1] ` S2 : e2

E ` let id : τ = S1 in S2 : e2

Γ ` S1 : τ1
τ = τ1
Γ[id← τ] ` S2 : τ3

Γ ` let id : τ = S1 in S2 : τ3

I Here, assuming preservation, we know that α(e1) = τ . By the
inductive hypothesis, we also know that Γ ∼ E .

I Therefore, we also know that Γ[id ← τ] ∼ E [id ← e1]

I Important: We proved agreement in the inductive case
assuming preservation!

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 17/33

Proving Preservation with Identifiers

I Now, we can assume agreement when proving preservation:

I Base case:

identifier id

E ` id : E (id)

identifier id

Γ ` id : Γ(id)

I This follows immediately since by our assumption Γ ∼ E

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 18/33

Proving Preservation with Identifiers

I Now, we can assume agreement when proving preservation:

I Base case:

identifier id

E ` id : E (id)

identifier id

Γ ` id : Γ(id)

I This follows immediately since by our assumption Γ ∼ E

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 18/33

Proving Preservation with Identifiers

I Now, we can assume agreement when proving preservation:

I Base case:

identifier id

E ` id : E (id)

identifier id

Γ ` id : Γ(id)

I This follows immediately since by our assumption Γ ∼ E

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 18/33

Proving Preservation with Identifiers cont.

I Inductive case:

E ` S1 : e1
E [id← e1] ` S2 : e2

E ` let id : τ = S1 in S2 : e2

Γ ` S1 : τ1
τ = τ1
Γ[id← τ] ` S2 : τ3

Γ ` let id : τ = S1 in S2 : τ3

I By the inductive hypothesis, we know that α(e2) = τ3. This is
what we want to prove.

I Observe: We combined agreement and preservation for this
proof to work.

I The preservation proof works assuming that agreement holds

I The agreement proof works assuming that preservation holds

I As long as both properties hold initially, this is fine!

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 19/33

Proving Preservation with Identifiers cont.

I Inductive case:

E ` S1 : e1
E [id← e1] ` S2 : e2

E ` let id : τ = S1 in S2 : e2

Γ ` S1 : τ1
τ = τ1
Γ[id← τ] ` S2 : τ3

Γ ` let id : τ = S1 in S2 : τ3

I By the inductive hypothesis, we know that α(e2) = τ3. This is
what we want to prove.

I Observe: We combined agreement and preservation for this
proof to work.

I The preservation proof works assuming that agreement holds

I The agreement proof works assuming that preservation holds

I As long as both properties hold initially, this is fine!

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 19/33

Proving Preservation with Identifiers cont.

I Inductive case:

E ` S1 : e1
E [id← e1] ` S2 : e2

E ` let id : τ = S1 in S2 : e2

Γ ` S1 : τ1
τ = τ1
Γ[id← τ] ` S2 : τ3

Γ ` let id : τ = S1 in S2 : τ3

I By the inductive hypothesis, we know that α(e2) = τ3. This is
what we want to prove.

I Observe: We combined agreement and preservation for this
proof to work.

I The preservation proof works assuming that agreement holds

I The agreement proof works assuming that preservation holds

I As long as both properties hold initially, this is fine!

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 19/33

Proving Preservation with Identifiers cont.

I Inductive case:

E ` S1 : e1
E [id← e1] ` S2 : e2

E ` let id : τ = S1 in S2 : e2

Γ ` S1 : τ1
τ = τ1
Γ[id← τ] ` S2 : τ3

Γ ` let id : τ = S1 in S2 : τ3

I By the inductive hypothesis, we know that α(e2) = τ3. This is
what we want to prove.

I Observe: We combined agreement and preservation for this
proof to work.

I The preservation proof works assuming that agreement holds

I The agreement proof works assuming that preservation holds

I As long as both properties hold initially, this is fine!

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 19/33

Proving Preservation with Identifiers cont.

I Inductive case:

E ` S1 : e1
E [id← e1] ` S2 : e2

E ` let id : τ = S1 in S2 : e2

Γ ` S1 : τ1
τ = τ1
Γ[id← τ] ` S2 : τ3

Γ ` let id : τ = S1 in S2 : τ3

I By the inductive hypothesis, we know that α(e2) = τ3. This is
what we want to prove.

I Observe: We combined agreement and preservation for this
proof to work.

I The preservation proof works assuming that agreement holds

I The agreement proof works assuming that preservation holds

I As long as both properties hold initially, this is fine!

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 19/33

Proving Preservation with Identifiers cont.

I Inductive case:

E ` S1 : e1
E [id← e1] ` S2 : e2

E ` let id : τ = S1 in S2 : e2

Γ ` S1 : τ1
τ = τ1
Γ[id← τ] ` S2 : τ3

Γ ` let id : τ = S1 in S2 : τ3

I By the inductive hypothesis, we know that α(e2) = τ3. This is
what we want to prove.

I Observe: We combined agreement and preservation for this
proof to work.

I The preservation proof works assuming that agreement holds

I The agreement proof works assuming that preservation holds

I As long as both properties hold initially, this is fine!

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 19/33

On to Progress
I We have now shown preservation of our type system

I Intuitively: We now know that that abstract value we
compute will always overapproximate the concrete value for
any program

I Now, we want to prove that our type system is powerful
enough to prevent run-time type errors

I Or more formally, our operational semantics never “get stuck”

I Progress: We need to prove that every program that can be
typed under our typing rules will not not “get stuck” in the
operational semantics

I Progress is a very strong property that few real type systems
obey!

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 20/33

On to Progress
I We have now shown preservation of our type system

I Intuitively: We now know that that abstract value we
compute will always overapproximate the concrete value for
any program

I Now, we want to prove that our type system is powerful
enough to prevent run-time type errors

I Or more formally, our operational semantics never “get stuck”

I Progress: We need to prove that every program that can be
typed under our typing rules will not not “get stuck” in the
operational semantics

I Progress is a very strong property that few real type systems
obey!

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 20/33

On to Progress
I We have now shown preservation of our type system

I Intuitively: We now know that that abstract value we
compute will always overapproximate the concrete value for
any program

I Now, we want to prove that our type system is powerful
enough to prevent run-time type errors

I Or more formally, our operational semantics never “get stuck”

I Progress: We need to prove that every program that can be
typed under our typing rules will not not “get stuck” in the
operational semantics

I Progress is a very strong property that few real type systems
obey!

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 20/33

On to Progress
I We have now shown preservation of our type system

I Intuitively: We now know that that abstract value we
compute will always overapproximate the concrete value for
any program

I Now, we want to prove that our type system is powerful
enough to prevent run-time type errors

I Or more formally, our operational semantics never “get stuck”

I Progress: We need to prove that every program that can be
typed under our typing rules will not not “get stuck” in the
operational semantics

I Progress is a very strong property that few real type systems
obey!

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 20/33

On to Progress
I We have now shown preservation of our type system

I Intuitively: We now know that that abstract value we
compute will always overapproximate the concrete value for
any program

I Now, we want to prove that our type system is powerful
enough to prevent run-time type errors

I Or more formally, our operational semantics never “get stuck”

I Progress: We need to prove that every program that can be
typed under our typing rules will not not “get stuck” in the
operational semantics

I Progress is a very strong property that few real type systems
obey!

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 20/33

On to Progress
I We have now shown preservation of our type system

I Intuitively: We now know that that abstract value we
compute will always overapproximate the concrete value for
any program

I Now, we want to prove that our type system is powerful
enough to prevent run-time type errors

I Or more formally, our operational semantics never “get stuck”

I Progress: We need to prove that every program that can be
typed under our typing rules will not not “get stuck” in the
operational semantics

I Progress is a very strong property that few real type systems
obey!

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 20/33

Proving Progress

I We will again prove progress by structural induction:

I Base case 1: Integer

integer i

E ` i : i

integer i

Γ ` i : Int

Clearly, if i types as an integer, the corresponding operational
semantics rule applies

I Base case 2: String

string s

E ` s : s

string s

Γ ` s : String

Clearly, if s types as a string, the corresponding operational
semantics rule applies

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 21/33

Proving Progress

I We will again prove progress by structural induction:
I Base case 1: Integer

integer i

E ` i : i

integer i

Γ ` i : Int

Clearly, if i types as an integer, the corresponding operational
semantics rule applies

I Base case 2: String

string s

E ` s : s

string s

Γ ` s : String

Clearly, if s types as a string, the corresponding operational
semantics rule applies

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 21/33

Proving Progress

I We will again prove progress by structural induction:
I Base case 1: Integer

integer i

E ` i : i

integer i

Γ ` i : Int

Clearly, if i types as an integer, the corresponding operational
semantics rule applies

I Base case 2: String

string s

E ` s : s

string s

Γ ` s : String

Clearly, if s types as a string, the corresponding operational
semantics rule applies

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 21/33

Proving Progress

I We will again prove progress by structural induction:
I Base case 1: Integer

integer i

E ` i : i

integer i

Γ ` i : Int

Clearly, if i types as an integer, the corresponding operational
semantics rule applies

I Base case 2: String

string s

E ` s : s

string s

Γ ` s : String

Clearly, if s types as a string, the corresponding operational
semantics rule applies

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 21/33

Proving Progress

I We will again prove progress by structural induction:
I Base case 1: Integer

integer i

E ` i : i

integer i

Γ ` i : Int

Clearly, if i types as an integer, the corresponding operational
semantics rule applies

I Base case 2: String

string s

E ` s : s

string s

Γ ` s : String

Clearly, if s types as a string, the corresponding operational
semantics rule applies

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 21/33

Proving Progress

I Base case 3: Identifier

identifier id

E ` id : E (id)

identifier id

Γ ` id : Γ(id)

Assuming agreement, we know that if the mapping id 7→ τ is
present in Γ, the mapping id 7→ v is present in E . Since this
is the only hypothesis (precondition) of the operational
semantics rule, it must therefore always apply in all well-types
programs

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 22/33

Proving Progress

I Base case 3: Identifier

identifier id

E ` id : E (id)

identifier id

Γ ` id : Γ(id)

Assuming agreement, we know that if the mapping id 7→ τ is
present in Γ, the mapping id 7→ v is present in E . Since this
is the only hypothesis (precondition) of the operational
semantics rule, it must therefore always apply in all well-types
programs

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 22/33

Proving Progress

I Inductive case 1:

E ` S1 : i1
E ` S2 : i2

E ` S1 + S2 : i1 + i2

Γ ` S1 : Int
Γ ` S2 : Int

Γ ` S1 + S2 : Int

We know from the inductive hypothesis that the evaluation of
S1 and S2 will never get stuck. We also know from
preservation that the expressions S1 and S2 must evaluate to
integers if they are typed Int, therefore the operational
semantics rule for plus will always apply since the hypotheses
only require that i1 and i2 are integers

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 23/33

Proving Progress

I Inductive case 1:

E ` S1 : i1
E ` S2 : i2

E ` S1 + S2 : i1 + i2

Γ ` S1 : Int
Γ ` S2 : Int

Γ ` S1 + S2 : Int

We know from the inductive hypothesis that the evaluation of
S1 and S2 will never get stuck. We also know from
preservation that the expressions S1 and S2 must evaluate to
integers if they are typed Int, therefore the operational
semantics rule for plus will always apply since the hypotheses
only require that i1 and i2 are integers

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 23/33

Proving Progress

I Inductive case 2:

E ` S1 : s1
E ` S2 : s2

E ` S1 :: S2 : concat(s1, s2)

Γ ` S1 : String
Γ ` S2 : String

Γ ` S1 :: S2 : String

We know from the inductive hypothesis that the evaluation of
S1 and S2 will never get stuck. We also know from
preservation that the expressions S1 and S2 must evaluate to
strings if they are typed String, therefore the operational
semantics rule for concatenation will always apply since the
hypotheses only require that s1 and s2 are strings

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 24/33

Proving Progress

I Inductive case 2:

E ` S1 : s1
E ` S2 : s2

E ` S1 :: S2 : concat(s1, s2)

Γ ` S1 : String
Γ ` S2 : String

Γ ` S1 :: S2 : String

We know from the inductive hypothesis that the evaluation of
S1 and S2 will never get stuck. We also know from
preservation that the expressions S1 and S2 must evaluate to
strings if they are typed String, therefore the operational
semantics rule for concatenation will always apply since the
hypotheses only require that s1 and s2 are strings

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 24/33

Proving Progress

I Inductive case 3:

E ` S1 : e1
E [id← e1] ` S2 : e2

E ` let id : τ = S1 in S2 : e2

Γ ` S1 : τ1
τ = τ1
Γ[id← τ] ` S2 : τ3

Γ ` let id : τ = S1 in S2 : τ3

Here, we know from the inductive hypothesis that E ` S1 : e1
and E [id← e1] ` S2 : e2 will not get stuck since they are
well-typed. Therefore, this rule will also always apply.

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 25/33

Proving Progress

I Inductive case 3:

E ` S1 : e1
E [id← e1] ` S2 : e2

E ` let id : τ = S1 in S2 : e2

Γ ` S1 : τ1
τ = τ1
Γ[id← τ] ` S2 : τ3

Γ ` let id : τ = S1 in S2 : τ3

Here, we know from the inductive hypothesis that E ` S1 : e1
and E [id← e1] ` S2 : e2 will not get stuck since they are
well-typed. Therefore, this rule will also always apply.

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 25/33

Preservation + Progress

I We now proved both preservation and progress of our small
type system on the let language.

I Important Point: You can only prove progress and preservation
of a type system with respect to an operational semantics

I Poofs of preservation and progress are always by structural
induction

I If you have an environment, you usually need to show
agreement to prove preservation

I These proofs tend to always follow the same pattern, so follow
this strategy on homeworks/exams

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 26/33

Preservation + Progress

I We now proved both preservation and progress of our small
type system on the let language.

I Important Point: You can only prove progress and preservation
of a type system with respect to an operational semantics

I Poofs of preservation and progress are always by structural
induction

I If you have an environment, you usually need to show
agreement to prove preservation

I These proofs tend to always follow the same pattern, so follow
this strategy on homeworks/exams

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 26/33

Preservation + Progress

I We now proved both preservation and progress of our small
type system on the let language.

I Important Point: You can only prove progress and preservation
of a type system with respect to an operational semantics

I Poofs of preservation and progress are always by structural
induction

I If you have an environment, you usually need to show
agreement to prove preservation

I These proofs tend to always follow the same pattern, so follow
this strategy on homeworks/exams

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 26/33

Preservation + Progress

I We now proved both preservation and progress of our small
type system on the let language.

I Important Point: You can only prove progress and preservation
of a type system with respect to an operational semantics

I Poofs of preservation and progress are always by structural
induction

I If you have an environment, you usually need to show
agreement to prove preservation

I These proofs tend to always follow the same pattern, so follow
this strategy on homeworks/exams

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 26/33

Preservation + Progress

I We now proved both preservation and progress of our small
type system on the let language.

I Important Point: You can only prove progress and preservation
of a type system with respect to an operational semantics

I Poofs of preservation and progress are always by structural
induction

I If you have an environment, you usually need to show
agreement to prove preservation

I These proofs tend to always follow the same pattern, so follow
this strategy on homeworks/exams

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 26/33

Adding the Lambda to our language

I Let us add the lambda construct to the let-language. I will
call this the lambda-language:

S → integer | string | identifier
| S1 + S2 | S1 :: S2
| let id : τ = S1 in S2
| λx : τ.S1
|(S1 S2)

τ → Int | String | τ1 → τ2

I The operational semantics of the new constructs are as
follows:

E ` λx : τ.S1 : λx : τ .S1

E ` S1 : λx : τ.e
E ` S2 : e2
E ` e[e2/x] : er

E ` (S1 S2) : er

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 27/33

Adding the Lambda to our language

I Let us add the lambda construct to the let-language. I will
call this the lambda-language:

S → integer | string | identifier
| S1 + S2 | S1 :: S2
| let id : τ = S1 in S2
| λx : τ.S1
|(S1 S2)

τ → Int | String | τ1 → τ2

I The operational semantics of the new constructs are as
follows:

E ` λx : τ.S1 : λx : τ .S1

E ` S1 : λx : τ.e
E ` S2 : e2
E ` e[e2/x] : er

E ` (S1 S2) : er

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 27/33

Typing rules for lambda and Application

I Lambda:
Γ[x ← τ1] ` S1 : τ2

Γ ` λx : τ1.S1 : τ1 → τ2

I Application:
Γ ` S1 : τ1 → τ2
Γ ` S2 : τ1

Γ ` (S1 S2) : τ2

I Observe that these almost exactly correspond to the
operational semantics!

I But there is one difference: The body of the let is type
checked at the definition, but only evaluated at the application

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 28/33

Typing rules for lambda and Application

I Lambda:
Γ[x ← τ1] ` S1 : τ2

Γ ` λx : τ1.S1 : τ1 → τ2

I Application:
Γ ` S1 : τ1 → τ2
Γ ` S2 : τ1

Γ ` (S1 S2) : τ2

I Observe that these almost exactly correspond to the
operational semantics!

I But there is one difference: The body of the let is type
checked at the definition, but only evaluated at the application

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 28/33

Typing rules for lambda and Application

I Lambda:
Γ[x ← τ1] ` S1 : τ2

Γ ` λx : τ1.S1 : τ1 → τ2

I Application:
Γ ` S1 : τ1 → τ2
Γ ` S2 : τ1

Γ ` (S1 S2) : τ2

I Observe that these almost exactly correspond to the
operational semantics!

I But there is one difference: The body of the let is type
checked at the definition, but only evaluated at the application

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 28/33

Typing rules for lambda and Application

I Lambda:
Γ[x ← τ1] ` S1 : τ2

Γ ` λx : τ1.S1 : τ1 → τ2

I Application:
Γ ` S1 : τ1 → τ2
Γ ` S2 : τ1

Γ ` (S1 S2) : τ2

I Observe that these almost exactly correspond to the
operational semantics!

I But there is one difference: The body of the let is type
checked at the definition, but only evaluated at the application

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 28/33

Preservation for lambda

I Lambda:

E ` λx : τ.S1 : λx : τ .S1

Γ[x ← τ1] ` S1 : τ2
Γ ` λx : τ1.S1 : τ1 → τ2

I First, we observe that if Γ[x ← τ1] ` S1 : τ2 holds, we know
by our inductive hypothesis that α(E ` S1[v/x]) = τ2 for any
value v of type τ1. Therefore, the type of this rule is τ1 → τ2

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 29/33

Preservation for lambda

I Lambda:

E ` λx : τ.S1 : λx : τ .S1

Γ[x ← τ1] ` S1 : τ2
Γ ` λx : τ1.S1 : τ1 → τ2

I First, we observe that if Γ[x ← τ1] ` S1 : τ2 holds, we know
by our inductive hypothesis that α(E ` S1[v/x]) = τ2 for any
value v of type τ1. Therefore, the type of this rule is τ1 → τ2

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 29/33

Preservation for Application

I Application:

E ` S1 : λx : τ.e
E ` S2 : e2
E ` e[e2/x] : er

E ` (S1 S2) : er

Γ ` S1 : τ1 → τ2
Γ ` S2 : τ1

Γ ` (S1 S2) : τ2

I First, we observe by our inductive hypothesis that if the type
of S1 is τ1 → τ2, the first hypothesis in the concrete rule must
always apply. Second, by the inductive hypothesis we know
that α(e2) = τ1. Since the type of S1 is τ1 → τ2, we can
therefore safely conclude that α(er) = τ2

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 30/33

Preservation for Application

I Application:

E ` S1 : λx : τ.e
E ` S2 : e2
E ` e[e2/x] : er

E ` (S1 S2) : er

Γ ` S1 : τ1 → τ2
Γ ` S2 : τ1

Γ ` (S1 S2) : τ2

I First, we observe by our inductive hypothesis that if the type
of S1 is τ1 → τ2, the first hypothesis in the concrete rule must
always apply. Second, by the inductive hypothesis we know
that α(e2) = τ1. Since the type of S1 is τ1 → τ2, we can
therefore safely conclude that α(er) = τ2

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 30/33

Preservation Proof

I Question: Why could we not formulate the typing rules for
lambda and application symmetric to the operational
semantics?

I Answer: Because if we try to type check the body of a lambda
at the application site, we have no way of knowing the name
of the variable bound in this lambda statement

I This is typical: When typing functions, we usually always
examine the function body before it is used

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 31/33

Preservation Proof

I Question: Why could we not formulate the typing rules for
lambda and application symmetric to the operational
semantics?

I Answer: Because if we try to type check the body of a lambda
at the application site, we have no way of knowing the name
of the variable bound in this lambda statement

I This is typical: When typing functions, we usually always
examine the function body before it is used

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 31/33

Preservation Proof

I Question: Why could we not formulate the typing rules for
lambda and application symmetric to the operational
semantics?

I Answer: Because if we try to type check the body of a lambda
at the application site, we have no way of knowing the name
of the variable bound in this lambda statement

I This is typical: When typing functions, we usually always
examine the function body before it is used

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 31/33

Progress and Preservation in Real Languages

I Shocking News: Many type systems obey neither progress or
preservation!

I Example: C, C++

I More Shocking News: Very few type systems obey progress!

I Example: Java

I But progress is a very useful property, even if it can often only
be argued for some classes of run-time errors

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 32/33

Progress and Preservation in Real Languages

I Shocking News: Many type systems obey neither progress or
preservation!

I Example: C, C++

I More Shocking News: Very few type systems obey progress!

I Example: Java

I But progress is a very useful property, even if it can often only
be argued for some classes of run-time errors

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 32/33

Progress and Preservation in Real Languages

I Shocking News: Many type systems obey neither progress or
preservation!

I Example: C, C++

I More Shocking News: Very few type systems obey progress!

I Example: Java

I But progress is a very useful property, even if it can often only
be argued for some classes of run-time errors

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 32/33

Progress and Preservation in Real Languages

I Shocking News: Many type systems obey neither progress or
preservation!

I Example: C, C++

I More Shocking News: Very few type systems obey progress!

I Example: Java

I But progress is a very useful property, even if it can often only
be argued for some classes of run-time errors

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 32/33

Progress and Preservation in Real Languages

I Shocking News: Many type systems obey neither progress or
preservation!

I Example: C, C++

I More Shocking News: Very few type systems obey progress!

I Example: Java

I But progress is a very useful property, even if it can often only
be argued for some classes of run-time errors

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 32/33

Conclusion

I We saw how to give typing rules

I We proved progress and preservation of a type system

I Next time: Polymorphism

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 33/33

Conclusion

I We saw how to give typing rules

I We proved progress and preservation of a type system

I Next time: Polymorphism

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 33/33

Conclusion

I We saw how to give typing rules

I We proved progress and preservation of a type system

I Next time: Polymorphism

Thomas Dillig, CS345H: Programming Languages Lecture 10: Basic Type Checking 33/33

