
CS345H: Programming Languages

Lecture 11: Polymorphism

Thomas Dillig

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 1/30

Introduction

I Last time we saw that we can build a static type system that
prevents many run-time errors

I Examples: Adding ints and strings, applying a non-lambda
term, ...

I We also discussed the two key properties of any type system:
Preservation and Progress

I But even in a sound type system we will prohibit some
programs that would never have any run-time problems

I Today: How to extend static type systems to allow
polymorphism

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 2/30

Introduction

I Last time we saw that we can build a static type system that
prevents many run-time errors

I Examples: Adding ints and strings, applying a non-lambda
term, ...

I We also discussed the two key properties of any type system:
Preservation and Progress

I But even in a sound type system we will prohibit some
programs that would never have any run-time problems

I Today: How to extend static type systems to allow
polymorphism

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 2/30

Introduction

I Last time we saw that we can build a static type system that
prevents many run-time errors

I Examples: Adding ints and strings, applying a non-lambda
term, ...

I We also discussed the two key properties of any type system:
Preservation and Progress

I But even in a sound type system we will prohibit some
programs that would never have any run-time problems

I Today: How to extend static type systems to allow
polymorphism

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 2/30

Introduction

I Last time we saw that we can build a static type system that
prevents many run-time errors

I Examples: Adding ints and strings, applying a non-lambda
term, ...

I We also discussed the two key properties of any type system:
Preservation and Progress

I But even in a sound type system we will prohibit some
programs that would never have any run-time problems

I Today: How to extend static type systems to allow
polymorphism

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 2/30

Introduction

I Last time we saw that we can build a static type system that
prevents many run-time errors

I Examples: Adding ints and strings, applying a non-lambda
term, ...

I We also discussed the two key properties of any type system:
Preservation and Progress

I But even in a sound type system we will prohibit some
programs that would never have any run-time problems

I Today: How to extend static type systems to allow
polymorphism

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 2/30

Motivation

I Consider the following function in the untyped lambda
language: lambda x.x

I Here, the following program is well-defined: (lambda x.x 3)

I But so is the following program: (lambda x.x "duck")

I And the following program: (lambda x.x (lambda y.y*2))

I This function can work on many (in this case, all) types!

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 3/30

Motivation

I Consider the following function in the untyped lambda
language: lambda x.x

I Here, the following program is well-defined: (lambda x.x 3)

I But so is the following program: (lambda x.x "duck")

I And the following program: (lambda x.x (lambda y.y*2))

I This function can work on many (in this case, all) types!

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 3/30

Motivation

I Consider the following function in the untyped lambda
language: lambda x.x

I Here, the following program is well-defined: (lambda x.x 3)

I But so is the following program: (lambda x.x "duck")

I And the following program: (lambda x.x (lambda y.y*2))

I This function can work on many (in this case, all) types!

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 3/30

Motivation

I Consider the following function in the untyped lambda
language: lambda x.x

I Here, the following program is well-defined: (lambda x.x 3)

I But so is the following program: (lambda x.x "duck")

I And the following program: (lambda x.x (lambda y.y*2))

I This function can work on many (in this case, all) types!

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 3/30

Motivation

I Consider the following function in the untyped lambda
language: lambda x.x

I Here, the following program is well-defined: (lambda x.x 3)

I But so is the following program: (lambda x.x "duck")

I And the following program: (lambda x.x (lambda y.y*2))

I This function can work on many (in this case, all) types!

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 3/30

Recall the Typed Lambda Language

S → integer | string | identifier
| S1 + S2 | S1 :: S2
| let id : τ = S1 in S2
| λx : τ.S1
|(S1 S2)

τ → Int | String | τ1 → τ2

I How would you write lambda x.x in the typed lambda
language?

I Here, types forces us to over-specialize the contexts in which
this function works

I Type systems that force us to fully specify all types are known
as monomorphic type systems

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 4/30

Recall the Typed Lambda Language

S → integer | string | identifier
| S1 + S2 | S1 :: S2
| let id : τ = S1 in S2
| λx : τ.S1
|(S1 S2)

τ → Int | String | τ1 → τ2

I How would you write lambda x.x in the typed lambda
language?

I Here, types forces us to over-specialize the contexts in which
this function works

I Type systems that force us to fully specify all types are known
as monomorphic type systems

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 4/30

Recall the Typed Lambda Language

S → integer | string | identifier
| S1 + S2 | S1 :: S2
| let id : τ = S1 in S2
| λx : τ.S1
|(S1 S2)

τ → Int | String | τ1 → τ2

I How would you write lambda x.x in the typed lambda
language?

I Here, types forces us to over-specialize the contexts in which
this function works

I Type systems that force us to fully specify all types are known
as monomorphic type systems

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 4/30

Recall the Typed Lambda Language

S → integer | string | identifier
| S1 + S2 | S1 :: S2
| let id : τ = S1 in S2
| λx : τ.S1
|(S1 S2)

τ → Int | String | τ1 → τ2

I How would you write lambda x.x in the typed lambda
language?

I Here, types forces us to over-specialize the contexts in which
this function works

I Type systems that force us to fully specify all types are known
as monomorphic type systems

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 4/30

Monomorphic Type Systems

I This problem usually becomes especially painful when
implementing data structures

I You end up with a vector of Ints, Strings, Foo, ...

I Also quite common with numeric code to multiple matrices
etc.

I However, most programmers experience the problem as users
of library code, not so often as writers

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 5/30

Monomorphic Type Systems

I This problem usually becomes especially painful when
implementing data structures

I You end up with a vector of Ints, Strings, Foo, ...

I Also quite common with numeric code to multiple matrices
etc.

I However, most programmers experience the problem as users
of library code, not so often as writers

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 5/30

Monomorphic Type Systems

I This problem usually becomes especially painful when
implementing data structures

I You end up with a vector of Ints, Strings, Foo, ...

I Also quite common with numeric code to multiple matrices
etc.

I However, most programmers experience the problem as users
of library code, not so often as writers

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 5/30

Monomorphic Type Systems

I This problem usually becomes especially painful when
implementing data structures

I You end up with a vector of Ints, Strings, Foo, ...

I Also quite common with numeric code to multiple matrices
etc.

I However, most programmers experience the problem as users
of library code, not so often as writers

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 5/30

Solutions

I This problem has been observed for a long time!

I In fact, John Backus of FORTRAN fame pointed this problem
out in the first FORTRAN manual

I But he did not attempt to solve it

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 6/30

Solutions

I This problem has been observed for a long time!

I In fact, John Backus of FORTRAN fame pointed this problem
out in the first FORTRAN manual

I But he did not attempt to solve it

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 6/30

Solutions

I This problem has been observed for a long time!

I In fact, John Backus of FORTRAN fame pointed this problem
out in the first FORTRAN manual

I But he did not attempt to solve it

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 6/30

Solutions

I First Solution: Duplicate function for each type used

I Makes code large and hard to maintain

I Bugs need to be fixed in many places

I Every time there is one more type, you have to copy and paste
again

I Terrible Strategy, still surprisingly common

I Slogan: Who needs polymorphism if we have copy and paste?

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 7/30

Solutions

I First Solution: Duplicate function for each type used
I Makes code large and hard to maintain

I Bugs need to be fixed in many places

I Every time there is one more type, you have to copy and paste
again

I Terrible Strategy, still surprisingly common

I Slogan: Who needs polymorphism if we have copy and paste?

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 7/30

Solutions

I First Solution: Duplicate function for each type used
I Makes code large and hard to maintain

I Bugs need to be fixed in many places

I Every time there is one more type, you have to copy and paste
again

I Terrible Strategy, still surprisingly common

I Slogan: Who needs polymorphism if we have copy and paste?

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 7/30

Solutions

I First Solution: Duplicate function for each type used
I Makes code large and hard to maintain

I Bugs need to be fixed in many places

I Every time there is one more type, you have to copy and paste
again

I Terrible Strategy, still surprisingly common

I Slogan: Who needs polymorphism if we have copy and paste?

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 7/30

Solutions

I First Solution: Duplicate function for each type used
I Makes code large and hard to maintain

I Bugs need to be fixed in many places

I Every time there is one more type, you have to copy and paste
again

I Terrible Strategy, still surprisingly common

I Slogan: Who needs polymorphism if we have copy and paste?

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 7/30

Solutions

I First Solution: Duplicate function for each type used
I Makes code large and hard to maintain

I Bugs need to be fixed in many places

I Every time there is one more type, you have to copy and paste
again

I Terrible Strategy, still surprisingly common

I Slogan: Who needs polymorphism if we have copy and paste?

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 7/30

Solutions Cont.

I Second Solution: Escape the type system

I In C, this means using a void*

I In Java, this casts everything to Object

I But now we are back to run-time errors!

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 8/30

Solutions Cont.

I Second Solution: Escape the type system

I In C, this means using a void*

I In Java, this casts everything to Object

I But now we are back to run-time errors!

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 8/30

Solutions Cont.

I Second Solution: Escape the type system

I In C, this means using a void*

I In Java, this casts everything to Object

I But now we are back to run-time errors!

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 8/30

Solutions Cont.

I Second Solution: Escape the type system

I In C, this means using a void*

I In Java, this casts everything to Object

I But now we are back to run-time errors!

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 8/30

Polymorphic Types

I Fortunately, it is possible to allow polymorphism in types

I This will mean that we can write a function, such as lambda
x.x that will type correctly and still have all the benefits from
a sound type system

I We can have the cake and eat it!

I This used to be mostly of academic interest, but has recently
become mainstream in most languages (Java generics)

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 9/30

Polymorphic Types

I Fortunately, it is possible to allow polymorphism in types

I This will mean that we can write a function, such as lambda
x.x that will type correctly and still have all the benefits from
a sound type system

I We can have the cake and eat it!

I This used to be mostly of academic interest, but has recently
become mainstream in most languages (Java generics)

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 9/30

Polymorphic Types

I Fortunately, it is possible to allow polymorphism in types

I This will mean that we can write a function, such as lambda
x.x that will type correctly and still have all the benefits from
a sound type system

I We can have the cake and eat it!

I This used to be mostly of academic interest, but has recently
become mainstream in most languages (Java generics)

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 9/30

Polymorphic Types

I Fortunately, it is possible to allow polymorphism in types

I This will mean that we can write a function, such as lambda
x.x that will type correctly and still have all the benefits from
a sound type system

I We can have the cake and eat it!

I This used to be mostly of academic interest, but has recently
become mainstream in most languages (Java generics)

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 9/30

Polymorphic Types

I So far, in our type system we only have type constants

I Examples: Int, String, Int → Int ,...

I Big Idea: Introduce type variables that can range over any
type

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 10/30

Polymorphic Types

I So far, in our type system we only have type constants

I Examples: Int, String, Int → Int ,...

I Big Idea: Introduce type variables that can range over any
type

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 10/30

Polymorphic Types

I So far, in our type system we only have type constants

I Examples: Int, String, Int → Int ,...

I Big Idea: Introduce type variables that can range over any
type

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 10/30

Polymorphic Types

I Specifically, add the following type abstraction to our
language: Λα.e

I Think of this term as function that takes a type and
substitute all occurrences of type α in expression e

I Example: Consider ((Λα.λ x :α.x)Int)

I This evaluates to λ x :Int .x

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 11/30

Polymorphic Types

I Specifically, add the following type abstraction to our
language: Λα.e

I Think of this term as function that takes a type and
substitute all occurrences of type α in expression e

I Example: Consider ((Λα.λ x :α.x)Int)

I This evaluates to λ x :Int .x

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 11/30

Polymorphic Types

I Specifically, add the following type abstraction to our
language: Λα.e

I Think of this term as function that takes a type and
substitute all occurrences of type α in expression e

I Example: Consider ((Λα.λ x :α.x)Int)

I This evaluates to λ x :Int .x

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 11/30

Polymorphic Types

I Specifically, add the following type abstraction to our
language: Λα.e

I Think of this term as function that takes a type and
substitute all occurrences of type α in expression e

I Example: Consider ((Λα.λ x :α.x)Int)

I This evaluates to λ x :Int .x

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 11/30

Polymorphic Types Cont.

I But what is the type of an expression such as (Λα.λ x :α.x)?

I We will write the type of Λα.e where e evaluates to type τ as
∀α.τ

I Intuition: This type holds for all instantiations of the type
variable α

I Side Note: It is no accident that this type starts to look like a
logic formula

I Curry-Howard Isomorphism shows fundamental equivalence
between types and logic formulas

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 12/30

Polymorphic Types Cont.

I But what is the type of an expression such as (Λα.λ x :α.x)?

I We will write the type of Λα.e where e evaluates to type τ as
∀α.τ

I Intuition: This type holds for all instantiations of the type
variable α

I Side Note: It is no accident that this type starts to look like a
logic formula

I Curry-Howard Isomorphism shows fundamental equivalence
between types and logic formulas

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 12/30

Polymorphic Types Cont.

I But what is the type of an expression such as (Λα.λ x :α.x)?

I We will write the type of Λα.e where e evaluates to type τ as
∀α.τ

I Intuition: This type holds for all instantiations of the type
variable α

I Side Note: It is no accident that this type starts to look like a
logic formula

I Curry-Howard Isomorphism shows fundamental equivalence
between types and logic formulas

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 12/30

Polymorphic Types Cont.

I But what is the type of an expression such as (Λα.λ x :α.x)?

I We will write the type of Λα.e where e evaluates to type τ as
∀α.τ

I Intuition: This type holds for all instantiations of the type
variable α

I Side Note: It is no accident that this type starts to look like a
logic formula

I Curry-Howard Isomorphism shows fundamental equivalence
between types and logic formulas

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 12/30

Polymorphic Types Cont.

I But what is the type of an expression such as (Λα.λ x :α.x)?

I We will write the type of Λα.e where e evaluates to type τ as
∀α.τ

I Intuition: This type holds for all instantiations of the type
variable α

I Side Note: It is no accident that this type starts to look like a
logic formula

I Curry-Howard Isomorphism shows fundamental equivalence
between types and logic formulas

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 12/30

Polymorphic Lambda Language

S → integer | string | identifier
| S1 + S2 | S1 :: S2
| let id : τ = S1 in S2
| λx : τ.S1
| Λα.S1
|(S1 S2) | (S1 τ)

τ → Int | String | τ1 → τ2 | α

I Operational Semantics for Λα.S1

E ` Λα.S1 : Λα.S1

I Operational Semantics for type application:

E ` S1 : Λα.e1
E ` e1[τ/α] : e2

E ` (S1 τ) : e2

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 13/30

Polymorphic Lambda Language

S → integer | string | identifier
| S1 + S2 | S1 :: S2
| let id : τ = S1 in S2
| λx : τ.S1
| Λα.S1
|(S1 S2) | (S1 τ)

τ → Int | String | τ1 → τ2 | α

I Operational Semantics for Λα.S1

E ` Λα.S1 : Λα.S1

I Operational Semantics for type application:

E ` S1 : Λα.e1
E ` e1[τ/α] : e2

E ` (S1 τ) : e2

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 13/30

Polymorphic Lambda Language

S → integer | string | identifier
| S1 + S2 | S1 :: S2
| let id : τ = S1 in S2
| λx : τ.S1
| Λα.S1
|(S1 S2) | (S1 τ)

τ → Int | String | τ1 → τ2 | α

I Operational Semantics for Λα.S1

E ` Λα.S1 : Λα.S1

I Operational Semantics for type application:

E ` S1 : Λα.e1
E ` e1[τ/α] : e2

E ` (S1 τ) : e2

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 13/30

Typing Rules Preliminaries

I Before we can design typing rules for our polymorphic lambda
language, we have one problem

I Consider the expression let x:α = ...

I Here, we don’t want type checking to succeed if α is not
bound by a type abstraction Λα

I Just like we use environment Γ to check that identifiers are
used before they are defined, we need an additional
environment ∆ to track that all type variables α are bound

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 14/30

Typing Rules Preliminaries

I Before we can design typing rules for our polymorphic lambda
language, we have one problem

I Consider the expression let x:α = ...

I Here, we don’t want type checking to succeed if α is not
bound by a type abstraction Λα

I Just like we use environment Γ to check that identifiers are
used before they are defined, we need an additional
environment ∆ to track that all type variables α are bound

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 14/30

Typing Rules Preliminaries

I Before we can design typing rules for our polymorphic lambda
language, we have one problem

I Consider the expression let x:α = ...

I Here, we don’t want type checking to succeed if α is not
bound by a type abstraction Λα

I Just like we use environment Γ to check that identifiers are
used before they are defined, we need an additional
environment ∆ to track that all type variables α are bound

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 14/30

Typing Rules Preliminaries

I Before we can design typing rules for our polymorphic lambda
language, we have one problem

I Consider the expression let x:α = ...

I Here, we don’t want type checking to succeed if α is not
bound by a type abstraction Λα

I Just like we use environment Γ to check that identifiers are
used before they are defined, we need an additional
environment ∆ to track that all type variables α are bound

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 14/30

Typing Rules Preliminaries

I But type variables don’t map to one type. We will use ? to
donate any well-formed type

I Signature of ∆: α 7→ ?

I We will need a judgment ∆ ` τ : ? asserting that type τ is
well-formed.

I Intuitively, type τ is well-formed if all free variables in τ are in
∆

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 15/30

Typing Rules Preliminaries

I But type variables don’t map to one type. We will use ? to
donate any well-formed type

I Signature of ∆: α 7→ ?

I We will need a judgment ∆ ` τ : ? asserting that type τ is
well-formed.

I Intuitively, type τ is well-formed if all free variables in τ are in
∆

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 15/30

Typing Rules Preliminaries

I But type variables don’t map to one type. We will use ? to
donate any well-formed type

I Signature of ∆: α 7→ ?

I We will need a judgment ∆ ` τ : ? asserting that type τ is
well-formed.

I Intuitively, type τ is well-formed if all free variables in τ are in
∆

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 15/30

Typing Rules Preliminaries

I But type variables don’t map to one type. We will use ? to
donate any well-formed type

I Signature of ∆: α 7→ ?

I We will need a judgment ∆ ` τ : ? asserting that type τ is
well-formed.

I Intuitively, type τ is well-formed if all free variables in τ are in
∆

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 15/30

Well-formedness Rules

I Let’s give rules for this judgment:

I Base case 1:

∆ ` Int : ? ∆ ` String : ?

I Base case 2:

∆ ` α : ∆(α)

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 16/30

Well-formedness Rules

I Let’s give rules for this judgment:
I Base case 1:

∆ ` Int : ? ∆ ` String : ?

I Base case 2:

∆ ` α : ∆(α)

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 16/30

Well-formedness Rules

I Let’s give rules for this judgment:
I Base case 1:

∆ ` Int : ? ∆ ` String : ?

I Base case 2:

∆ ` α : ∆(α)

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 16/30

Well-formedness Rules Cont.

I On to the inductive rules:

I Inductive Case 1:

∆ ` τ1 : ? ∆ ` τ2 : ?

∆ ` τ1 → τ2 : ?

I Inductive Case 2:
∆[α← ?] ` τ : ?

∆ ` ∀α.τ : ?

I All this says is that if ∆ ` τ : ? holds, type τ has no free
variables

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 17/30

Well-formedness Rules Cont.

I On to the inductive rules:
I Inductive Case 1:

∆ ` τ1 : ? ∆ ` τ2 : ?

∆ ` τ1 → τ2 : ?

I Inductive Case 2:
∆[α← ?] ` τ : ?

∆ ` ∀α.τ : ?

I All this says is that if ∆ ` τ : ? holds, type τ has no free
variables

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 17/30

Well-formedness Rules Cont.

I On to the inductive rules:
I Inductive Case 1:

∆ ` τ1 : ? ∆ ` τ2 : ?

∆ ` τ1 → τ2 : ?

I Inductive Case 2:
∆[α← ?] ` τ : ?

∆ ` ∀α.τ : ?

I All this says is that if ∆ ` τ : ? holds, type τ has no free
variables

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 17/30

Well-formedness Rules Cont.

I On to the inductive rules:
I Inductive Case 1:

∆ ` τ1 : ? ∆ ` τ2 : ?

∆ ` τ1 → τ2 : ?

I Inductive Case 2:
∆[α← ?] ` τ : ?

∆ ` ∀α.τ : ?

I All this says is that if ∆ ` τ : ? holds, type τ has no free
variables

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 17/30

Typing Rules

I Let’s look at the typing rules affected by type variables:

I Function definition:

∆ ` τ1 : ?
∆,Γ[x ← τ1] ` e : τ2

∆,Γ ` λx :τ1.e : τ1 → τ2

I Observe that there are two different kinds of judgments here!

I Type Abstraction Definition

∆[α← ?],Γ ` e : τ

∆,Γ ` Λα.e : ∀α.τ

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 18/30

Typing Rules

I Let’s look at the typing rules affected by type variables:
I Function definition:

∆ ` τ1 : ?
∆,Γ[x ← τ1] ` e : τ2

∆,Γ ` λx :τ1.e : τ1 → τ2

I Observe that there are two different kinds of judgments here!

I Type Abstraction Definition

∆[α← ?],Γ ` e : τ

∆,Γ ` Λα.e : ∀α.τ

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 18/30

Typing Rules

I Let’s look at the typing rules affected by type variables:
I Function definition:

∆ ` τ1 : ?
∆,Γ[x ← τ1] ` e : τ2

∆,Γ ` λx :τ1.e : τ1 → τ2

I Observe that there are two different kinds of judgments here!

I Type Abstraction Definition

∆[α← ?],Γ ` e : τ

∆,Γ ` Λα.e : ∀α.τ

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 18/30

Typing Rules

I Let’s look at the typing rules affected by type variables:
I Function definition:

∆ ` τ1 : ?
∆,Γ[x ← τ1] ` e : τ2

∆,Γ ` λx :τ1.e : τ1 → τ2

I Observe that there are two different kinds of judgments here!

I Type Abstraction Definition

∆[α← ?],Γ ` e : τ

∆,Γ ` Λα.e : ∀α.τ

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 18/30

Typing Rules

I Let’s look at the typing rules affected by type variables:
I Function definition:

∆ ` τ1 : ?
∆,Γ[x ← τ1] ` e : τ2

∆,Γ ` λx :τ1.e : τ1 → τ2

I Observe that there are two different kinds of judgments here!

I Type Abstraction Definition

∆[α← ?],Γ ` e : τ

∆,Γ ` Λα.e : ∀α.τ

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 18/30

Typing Rules

I And now the typing rules for applications:

I Value Application:

∆,Γ ` e1 : τ1 → τ2
∆,Γ ` e2 : τ1

∆,Γ ` (e1 e2) : τ2

I Type Application:

∆,Γ ` e1 : ∀α.τ1
∆,Γ ` (e1τ) : τ [τ1/α]

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 19/30

Typing Rules

I And now the typing rules for applications:
I Value Application:

∆,Γ ` e1 : τ1 → τ2
∆,Γ ` e2 : τ1

∆,Γ ` (e1 e2) : τ2

I Type Application:

∆,Γ ` e1 : ∀α.τ1
∆,Γ ` (e1τ) : τ [τ1/α]

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 19/30

Typing Rules

I And now the typing rules for applications:
I Value Application:

∆,Γ ` e1 : τ1 → τ2
∆,Γ ` e2 : τ1

∆,Γ ` (e1 e2) : τ2

I Type Application:

∆,Γ ` e1 : ∀α.τ1
∆,Γ ` (e1τ) : τ [τ1/α]

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 19/30

Typing Rules

I But what about the typing rules for plus and concatenation?

I Unchanged. These are only defined for Strings and Ints, not
type variables

I In the lambda language this makes sense since there is no
point in being polymorphic with respect to monomorphic
operators

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 20/30

Typing Rules

I But what about the typing rules for plus and concatenation?

I Unchanged. These are only defined for Strings and Ints, not
type variables

I In the lambda language this makes sense since there is no
point in being polymorphic with respect to monomorphic
operators

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 20/30

Typing Rules

I But what about the typing rules for plus and concatenation?

I Unchanged. These are only defined for Strings and Ints, not
type variables

I In the lambda language this makes sense since there is no
point in being polymorphic with respect to monomorphic
operators

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 20/30

Polymorphic Lambda Language

I It is possible (and pretty straightforward) to prove that adding
polymorphism preserves progress and preservation

I But we won’t do this in class today

I Enriching lambda calculus with types and polymorphism (but
no let bindings) is also known as System F.

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 21/30

Polymorphic Lambda Language

I It is possible (and pretty straightforward) to prove that adding
polymorphism preserves progress and preservation

I But we won’t do this in class today

I Enriching lambda calculus with types and polymorphism (but
no let bindings) is also known as System F.

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 21/30

Polymorphic Lambda Language

I It is possible (and pretty straightforward) to prove that adding
polymorphism preserves progress and preservation

I But we won’t do this in class today

I Enriching lambda calculus with types and polymorphism (but
no let bindings) is also known as System F.

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 21/30

Polymorphic Lambda Language

I Our new polymorphic types worked great for giving types in
the lambda language.

I But pretty much the only polymorphic functions we could
write are variations of λx .x !

I Fortunately, if we also allow lists (like L), this kind of
polymorphism still works and is very useful

I Typical use: Data structures

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 22/30

Polymorphic Lambda Language

I Our new polymorphic types worked great for giving types in
the lambda language.

I But pretty much the only polymorphic functions we could
write are variations of λx .x !

I Fortunately, if we also allow lists (like L), this kind of
polymorphism still works and is very useful

I Typical use: Data structures

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 22/30

Polymorphic Lambda Language

I Our new polymorphic types worked great for giving types in
the lambda language.

I But pretty much the only polymorphic functions we could
write are variations of λx .x !

I Fortunately, if we also allow lists (like L), this kind of
polymorphism still works and is very useful

I Typical use: Data structures

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 22/30

Polymorphic Lambda Language

I Our new polymorphic types worked great for giving types in
the lambda language.

I But pretty much the only polymorphic functions we could
write are variations of λx .x !

I Fortunately, if we also allow lists (like L), this kind of
polymorphism still works and is very useful

I Typical use: Data structures

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 22/30

Polymorphic Lambda Language Limitations

I However, sometimes we have operations that only make sense
on some types, but not all types

I Example: Operator + may be defined on Integers and Floats,
but not vectors

I The typing rules we currently gave do not allow that. A
function definition will only type check if the body type checks
for any possible type.

I Type checking universal types for all possible instantiations is
known as first-order semantics.

I For this reason, real-world implementations of polymorphism
do not stop here.

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 23/30

Polymorphic Lambda Language Limitations

I However, sometimes we have operations that only make sense
on some types, but not all types

I Example: Operator + may be defined on Integers and Floats,
but not vectors

I The typing rules we currently gave do not allow that. A
function definition will only type check if the body type checks
for any possible type.

I Type checking universal types for all possible instantiations is
known as first-order semantics.

I For this reason, real-world implementations of polymorphism
do not stop here.

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 23/30

Polymorphic Lambda Language Limitations

I However, sometimes we have operations that only make sense
on some types, but not all types

I Example: Operator + may be defined on Integers and Floats,
but not vectors

I The typing rules we currently gave do not allow that. A
function definition will only type check if the body type checks
for any possible type.

I Type checking universal types for all possible instantiations is
known as first-order semantics.

I For this reason, real-world implementations of polymorphism
do not stop here.

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 23/30

Polymorphic Lambda Language Limitations

I However, sometimes we have operations that only make sense
on some types, but not all types

I Example: Operator + may be defined on Integers and Floats,
but not vectors

I The typing rules we currently gave do not allow that. A
function definition will only type check if the body type checks
for any possible type.

I Type checking universal types for all possible instantiations is
known as first-order semantics.

I For this reason, real-world implementations of polymorphism
do not stop here.

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 23/30

Polymorphic Lambda Language Limitations

I However, sometimes we have operations that only make sense
on some types, but not all types

I Example: Operator + may be defined on Integers and Floats,
but not vectors

I The typing rules we currently gave do not allow that. A
function definition will only type check if the body type checks
for any possible type.

I Type checking universal types for all possible instantiations is
known as first-order semantics.

I For this reason, real-world implementations of polymorphism
do not stop here.

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 23/30

Polymorphism for Some Types

I First Solution: Only type check function definitions for the
types that they are instantiated with!

I Example: let x = ∆α.λy : α.y + 1 in (x Int 3) will not type
check under our typing rules, but will type check now.

I For this, we need another environment in our typing rules that
“carries” the body of all functions to the application sites to be
type checked at every application with the current type

I This is known as Herbrand semantics

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 24/30

Polymorphism for Some Types

I First Solution: Only type check function definitions for the
types that they are instantiated with!

I Example: let x = ∆α.λy : α.y + 1 in (x Int 3) will not type
check under our typing rules, but will type check now.

I For this, we need another environment in our typing rules that
“carries” the body of all functions to the application sites to be
type checked at every application with the current type

I This is known as Herbrand semantics

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 24/30

Polymorphism for Some Types

I First Solution: Only type check function definitions for the
types that they are instantiated with!

I Example: let x = ∆α.λy : α.y + 1 in (x Int 3) will not type
check under our typing rules, but will type check now.

I For this, we need another environment in our typing rules that
“carries” the body of all functions to the application sites to be
type checked at every application with the current type

I This is known as Herbrand semantics

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 24/30

Polymorphism for Some Types

I First Solution: Only type check function definitions for the
types that they are instantiated with!

I Example: let x = ∆α.λy : α.y + 1 in (x Int 3) will not type
check under our typing rules, but will type check now.

I For this, we need another environment in our typing rules that
“carries” the body of all functions to the application sites to be
type checked at every application with the current type

I This is known as Herbrand semantics

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 24/30

First Solution Trade Offs

I Advantages:

I We allow more correct programs

I We don’t report errors that can never happen

I We allow polymorphism to be used in many more cases

I Easy to implement as just cloning the code for each type

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 25/30

First Solution Trade Offs

I Advantages:
I We allow more correct programs

I We don’t report errors that can never happen

I We allow polymorphism to be used in many more cases

I Easy to implement as just cloning the code for each type

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 25/30

First Solution Trade Offs

I Advantages:
I We allow more correct programs

I We don’t report errors that can never happen

I We allow polymorphism to be used in many more cases

I Easy to implement as just cloning the code for each type

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 25/30

First Solution Trade Offs

I Advantages:
I We allow more correct programs

I We don’t report errors that can never happen

I We allow polymorphism to be used in many more cases

I Easy to implement as just cloning the code for each type

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 25/30

First Solution Trade Offs

I Advantages:
I We allow more correct programs

I We don’t report errors that can never happen

I We allow polymorphism to be used in many more cases

I Easy to implement as just cloning the code for each type

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 25/30

First Solution Trade Offs

I Disadvantages:

I Adding a new application (call) may mean your program no
longer type checks!

I Need to reanalyze function for every new call site, losing
locality

I If generating code, this may mean recompilation of library for
each new client!

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 26/30

First Solution Trade Offs

I Disadvantages:
I Adding a new application (call) may mean your program no

longer type checks!

I Need to reanalyze function for every new call site, losing
locality

I If generating code, this may mean recompilation of library for
each new client!

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 26/30

First Solution Trade Offs

I Disadvantages:
I Adding a new application (call) may mean your program no

longer type checks!

I Need to reanalyze function for every new call site, losing
locality

I If generating code, this may mean recompilation of library for
each new client!

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 26/30

First Solution Trade Offs

I Disadvantages:
I Adding a new application (call) may mean your program no

longer type checks!

I Need to reanalyze function for every new call site, losing
locality

I If generating code, this may mean recompilation of library for
each new client!

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 26/30

Polymorphism by Code Cloning

I Anyone knows a language that implements polymorphism with
these properties?

I C++ (who else)

I Still quite effective and potentially extremely efficient.

I But the price is terrible compile times.

I And new errors when instantiating a template with a new type

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 27/30

Polymorphism by Code Cloning

I Anyone knows a language that implements polymorphism with
these properties?

I C++ (who else)

I Still quite effective and potentially extremely efficient.

I But the price is terrible compile times.

I And new errors when instantiating a template with a new type

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 27/30

Polymorphism by Code Cloning

I Anyone knows a language that implements polymorphism with
these properties?

I C++ (who else)

I Still quite effective and potentially extremely efficient.

I But the price is terrible compile times.

I And new errors when instantiating a template with a new type

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 27/30

Polymorphism by Code Cloning

I Anyone knows a language that implements polymorphism with
these properties?

I C++ (who else)

I Still quite effective and potentially extremely efficient.

I But the price is terrible compile times.

I And new errors when instantiating a template with a new type

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 27/30

Polymorphism by Code Cloning

I Anyone knows a language that implements polymorphism with
these properties?

I C++ (who else)

I Still quite effective and potentially extremely efficient.

I But the price is terrible compile times.

I And new errors when instantiating a template with a new type

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 27/30

Polymorphism for Some Types

I Java picked a different strategy when adding support for
generics called type classes

I Idea: Qualify the type α as supporting some operations (being
part of a type class)

I In Java, this is done by requiring that a polymorphic type
implements some interface

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 28/30

Polymorphism for Some Types

I Java picked a different strategy when adding support for
generics called type classes

I Idea: Qualify the type α as supporting some operations (being
part of a type class)

I In Java, this is done by requiring that a polymorphic type
implements some interface

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 28/30

Polymorphism for Some Types

I Java picked a different strategy when adding support for
generics called type classes

I Idea: Qualify the type α as supporting some operations (being
part of a type class)

I In Java, this is done by requiring that a polymorphic type
implements some interface

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 28/30

Java Polymorphism

I Java syntax: public void drawAll(List<?> shapes)

defines a function that takes lists with any type of element

I Observe how this is exactly like polymorphic lambda language,
just different syntax

I Now, to require that ? implements a interface, you write
public void drawAll(List<? implements Shape>

shapes)

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 29/30

Java Polymorphism

I Java syntax: public void drawAll(List<?> shapes)

defines a function that takes lists with any type of element

I Observe how this is exactly like polymorphic lambda language,
just different syntax

I Now, to require that ? implements a interface, you write
public void drawAll(List<? implements Shape>

shapes)

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 29/30

Java Polymorphism

I Java syntax: public void drawAll(List<?> shapes)

defines a function that takes lists with any type of element

I Observe how this is exactly like polymorphic lambda language,
just different syntax

I Now, to require that ? implements a interface, you write
public void drawAll(List<? implements Shape>

shapes)

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 29/30

Conclusion

I Over the last few years, polymorphism has gone main stream

I Many languages either substantially extend their treatment of
polymorphism (C++) or added polymorphism (Java, C#)

I However, polymorphism always tends to be a difficult addition
to any language.

I You either are already using it or will use it soon

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 30/30

Conclusion

I Over the last few years, polymorphism has gone main stream

I Many languages either substantially extend their treatment of
polymorphism (C++) or added polymorphism (Java, C#)

I However, polymorphism always tends to be a difficult addition
to any language.

I You either are already using it or will use it soon

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 30/30

Conclusion

I Over the last few years, polymorphism has gone main stream

I Many languages either substantially extend their treatment of
polymorphism (C++) or added polymorphism (Java, C#)

I However, polymorphism always tends to be a difficult addition
to any language.

I You either are already using it or will use it soon

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 30/30

Conclusion

I Over the last few years, polymorphism has gone main stream

I Many languages either substantially extend their treatment of
polymorphism (C++) or added polymorphism (Java, C#)

I However, polymorphism always tends to be a difficult addition
to any language.

I You either are already using it or will use it soon

Thomas Dillig, CS345H: Programming Languages Lecture 11: Polymorphism 30/30

