CS345H: Programming Languages

Lecture 12: Type Inference

Thomas Dillig

Introduction

> So far when we studied typing, we always assumed that the
programmer annotated some types

» Example: We gave types to let bindings and lambda variables
in class

» But annotating types can be cumbersome!

» Anyone who has ever written C++ code can really empathize:
vector<Map<int, string> >::const_iterator it...

Thomas Dillg, CS345H: Programming Languages Lecture 12: Type Inference

Thomas Dillg, CS345H: Programming Languages Lecture 12: Type Inference

Type Inference

» Goal of type inference: Automatically deduce the most general
type for each expression

> Two key points:
1. Automatically inferring types: This means the programmer has
to write no types, but still gets all the benefit from static typing

2. Inferring the most general type: This means we want to infer
polymorphic types whenever possible

Type System
> Here is the type system we used in the lambda language:
identifier id
TFid: D(id)

integer @
I'ki:Int

string s
Tk s: String

=S :Int
I'E Sy Int
T'E S+ 8 Int

T'k Sy : String
T+ Sy : String
T'E Sy Sy String

FI—Slle

T="T

Tlid <« 7]F Sy :73
T'Hletid:7=51in S :73

I‘I—Slzn—m'z
FFSQITl
F}_(Sl S2):7'2

F[Z(—Tl]l_sli’rg
Xz :7.5 11— 7

Thomas Dillg, CS345H: Programming Languages Lecture 12: Type Inference

Thomas Dillg, €S345H: Programming Languages Lecture 12: Type Inference

Type Inference Example 1

v

But, do we actually need these type annotations to infer the
type of programs?

v

Consider the following example:
let f1 = lambda x.x+2 in ..

» Here, we know that function £1 adds two to its argument

v

We also know that plus is only defined on integers

v

Therefore, the type of £1 must be Int — Int

Type Inference Example 2

v

Consider the following example:
let f2 = lambda x.lambda y.x+y in ..

» Here, we know that function £2 has two (curried) arguments,
xand y

v

We also know that plus is only defined on integers

v

Therefore, the type of £2 must be Int — Int — Int

Thomas Dillg, CS345H: Programming Languages Lecture 12: Type Inference

Thomas Dillg, €S345H: Programming Languages Lecture 12: Type Inference

Type Inference Example 3

v

Consider the following example:
let f2 = lambda x.lambda y.x+1 in ..

> Here, we know that function £2 has two (curried) arguments,
xandy

v

We also know that plus is only defined on integers

v

But £2 will work for any type of y

v

Therefore, the type of £2 must be Va.Int — o — Int

CS345H: Pre

Type Inference Example 4

> Now, consider the following example:
let f2 = lambda g.(g 0) in ..

> Here, we know that function £2 takes a function as argument
since it is applied to 0.

> We also know that the function g is applied to in integer
> Therefore, the type of g must be Va.Int — «

» This means that the type of £2 is Va.(Int —) = «

CS345H: Pr

Thomas Dillg, Lecture 12: Type Inference

Type Inference Overview

> Goal of the rest of this lecture: Develop an algorithm that can
compute the most general type for any expression without any
type annotations

> For this, let us look at the type derivation for the following
simple function:
lambda x:Int.x+2

» Here is the type derivation tree for this expression:

identifer
[(z) = Int integer 2
D[z < Int]| bz : Int D[z« Int]| - 2: Int
Tz Int| -2z +2: Int
I'EXziInt.x +2: Int — Int

CS345H: Programming Languages Lecture 12: Type Inference

Type Variables

> Big Idea: Replace the concrete type Int annotated with a type
variable and collect all constraints on this type variable.

» Specifically, pretend that the type of the argument is just
some type variable called a

» And for all rules that have preconditions on a, write these
preconditions as constraints

Thomas Dillg, CS345H: Programming Languages ~Lecture 12: Type Inference

10/33

Type Variables Cont.

> Here is the type derivation tree for this expression using type
variable a:

identifer x
T(z)=a integer 2
TzalFz:a Tz alF2:Int
Dz <+ albz+2:Int
I'EXziax+2:a— Int

a = Int

» Observe that we have one additional precondition on the plus
rule: The type variable a must be equal to Int for this rule to

apply.
» We now obtain the type: a — Int and the constraint a = Int

> Final type: Int — Int

CS345H: Programming Languages Lecture 12: Type Inference

11/33

Type Variables in Typing Rules

> In this example, we dealt with not knowing the type of z in
the following way:
» We introduced a type variable a for the type of z

» Every time a rule uses the type of z, we use z

v

Since the plus rule has the precondition that both operands
must be of type Int, we introduced a constraint a = Int

v

After we typed the expression, we had a the type a — Int and
the constraint a = Int

v

Solving the type with respect to the collected constraint yields:
Int — Int

CS345H: Programming Languages Lecture 12: Type Inference

12/33

Generalizing this Example

> This strategy generalizes!
» We will introduce type variables for every type annotation

» We will collect constraints on type variables during type
checking

> We will end up with a type containing type variables

> We will solve this type with respect to the collected
constraints

Generalizing our typing rules

> The base cases stay unchanged:

integer 4 string s identifier id
Trhi:Int TFs:String TFid:T(id)
» When type checking plus, we now collect constraints on the
operands:
'+ Sl T
T'ESy:m

71 = Int, 9 = Int
'k S+ 8 : Int

» The lines marked in red are constraints.

» Specifically, this rule now succeeds as long as S; and S2
evaluate to any type, we simply collect constraints on the
types 71 and 7o to be processed later

Thomas Dillg, CS345H: Programming Languages Lecture 12: Type Inference

13/33

Thomas Dillg, CS345H: Programming Languages Lecture 12: Type Inference

14/33

Generalizing our typing rules

> Let's move on to the typing rule for concatenation:

'+ Sl IT

TES:m

71 = String, 70 = String
' Sy i Sy String

> The lines marked in red are again constraints.

» Again, this rule now succeeds as long as S; and S, evaluate to
any type, we simply collect constraints on the types 71 and
to be processed later

The Let Case

> Let's move on to the typing rule for let:
Ifid < a]F S1:a (a fresh)
Olid« alFS2: 7
T'Hletid=2S5inSy:7

» Here, all we do is introduce a fresh type variable to capture
the (unknown) type of id.

» Observe that this case only introduces a type variable, but
does not add any constraints

Thomas Dillg, CS345H: Programming Languages Lecture 12: Type Inference

15/33

Thomas Dillg, CS345H: Programming Languages Lecture 12: Type Inference

16/33

The Lambda Case

» Let's move on to the typing rule for lambda:

D[z < a]F S :7 (a fresh)
'FXz.Si:a—T

» Here, again we introduce a fresh type variable to capture the
(unknown) type of x.

» We also use this type variable in the return type

Application

> Now the only rule missing so far is application:

'S :n

T'ES:m

71 =172 — a (a fresh)
F}—(Sl SQ):(Z

> Here, we again introduce a fresh type variable a

> In this rule, this type variable encodes the return type of the
application

Thomas Dillg, CS345H: Programming Languages Lecture 12: Type Inference

17/33

Thomas Dillg, CS345H: Programming Languages Lecture 12: Type Inference

18/33

Example 1

> Let's use these new rules to derive the typing judgment and
constraints on some examples:
lambda x.x+2

> Type derivation:

identifer x
Nz)=a integer 2
Tz alFz:a Tz Int]-2: Int
Dz« a]Fz+2:Int
I'FXXz.x+2:a; — Int

ap = Int, Int = Int

» Final Type: a; — Int under constraints a; = Int, Int = Int

CS345H: Proy

10/33

Example 1 Cont

v

What does this type mean? a; — Int under constraints
ap = Int, Int = Int

> We want to solve this type, i.e., substitute everything known
from the constraints as much as possible.

v

Goal of Solving: Deduce final type with no constraints

v

Solving this type yields Int — Int

Thomas Dillg, CS345H: Pre 20/33

Example 2

» What about the following recursive function? (This function
does not terminate, but this is unimportant for this example)
let f = lambda x.(f x) in f

> Type derivation:

Tf— allz < al-f:a
T[f « a][z < ag) bz : ay
ap = az — a3
Uf « a1][z < ag) - (f z) : a
Tf+—alFXe.(fz):a;m
TEletf=Xe.(fz)inf:am

F[f < (ll]f F:ap

» Final Type: a; under constraint a; = az — a3

CS345H: Programming Languages Lecture 12: Type Inference

21/33

Example 2 Cont
» Recall function: let £ = lambda x.(f x) in f

» Final Type: a; under constraint a; = as — a3, but what does
this final type mean?

» First of all, observe that we can solve this type and these
constraints.

» This yields ap — a3

» Here, since the solution still includes type variables, we found
a polymorphic type!

> Here, the type is Va1.Vag.ap — s

» We will omit the quantifier from type variables and assume
that any type variable is implicitly universally quantified

Thomas Dillg, CS345H: Programming Languages ~Lecture 12: Type Inference 22/33

Example 3

> Let's look at the following expression
"duck" + 7

» Type derivation:

T'F 7 duck” : String
T'F7:1Int
String = Int, Int = Int

I'F"duck” +7: Int

> We derived type Int under constraints String = Int, Int = Int
» These constraints are unsatisfiable!

» This means that the expression cannot be typed

CS345H: Programming Languages Lecture 12: Type Inference

23/33

Type Inference Structure

> Observe that we have split the problem of type inference into
two separate problems:
1. Constraint Inference: In this step, we apply the typing rules to
find the type (potentially in terms of type variables) and type
constraints

2. Constraint Solving: In this step, we solve the constraints.
Either we find a (potentially polymorphic) final type or the
constraints are unsatisfiable, in which case the program cannot
be typed

» Observe that step 1 can never get stuck! We now reject all
programs that cannot be types in step 2.

CS345H: Programming Languages Lecture 12: Type Inference 24/33

Constraint Solving

» So far, we have only informally sketched what we mean by
solving type constraints

» Convention: | will write constraints as a list with the type of
the program at the bottom

» Example: Consider again the expression let f = lambda
x.(f x) in f

> Here, the type of £ written as list of constraints is:

ap = a2 — a3z
ay

Constraint Solving

> Definition: A solution to a system of type constraints is a
substitution o mapping type variables to types such that all
type constraints are satisfied

» We discovered one solution, or; — g for the system

a; = ag — ag
ay

> Substitution: o = {a1 + a1, a2 < a2, a3 + (a1 = a2)}
» But the following is also a solution: Int — Int

» Substitution: o = {a1 < Int, ag « Int, a3 < (Int — Int)}

Thomas Dillg, CS345H: Programming Languages Lecture 12: Type Inference

25/33

Thomas Dillg, CS345H: Programming Languages Lecture 12: Type Inference

26/33

Constraint Solving

v

And o — « is also a solution for

ap = ag — ag
ay

v

Substitution: o = {a1 < @, a2 < o, a3 (@ = a)}

v

But clearly some solutions are more general than others.

» We want to find the most general solution, also know as the
most general unifier.

v

This can be done using unification

Constraint Solving Cont.

> First Idea: We choose a variable on left-hand side and replace
all occurrences of this variable with its right-hand side. In
other words, we add the substitution z < y for the equality
rT=y

» Consider again the constraint system:

ap = az — ag
ay

» Here, we pick ap. It's right-hand side is ay — as. If we replace
all occurrences of a;, we get:

ag — a3 = az — a3
ag — as

and the substitution 0 = {a; < (a2 — ag), az < ag, a3 < ag}

Thomas Dillg, CS345H: Program

anguages Lecture 12: Type Inference

27/33

Thomas Dillg, CS345H: Prog Languages Lecture 12: Type Inference

28/33

Constraint Solving Cont.

> Then, drop all trivial constraints:
ag — ag
with substitution o = {ay + ag, a3 + a3}

» Repeat until we find a contradiction (Int = String) or there
are no equalities left.

» In this case, we have found the most general solution.

Constraint Solving Example
» Another example:
ap = ag — Int
a; = String — a3
> Let's pick a:

ap — Int = ag — Int
ap — Int = String — a3

with 0 = {a1 « ag — Int, ag + ag, a3 + a3}

» Remove redundant constraints:
ag — Int = String — a3
with o = {ag + ag, a3 « a3}

» But now we are stuck, even though the final substitution is
o = {ay « String, a3 < Int, ...}

Thomas Dillg, €S345H: Program

nguages Lecture 12: Type Inference

20/33

Thomas Dillg, CS345H: Programming Languages Lecture 12: Type Inference

30/33

Constraint Solving Example

>

Solution: Add one more rule:

Rule: If X — Y = W — Z, then add substitution X = W
and Y =7

Back to the example:
ag — Int = String — ag

with 0 = {ag < ag, a3 + a3}
Add so < Int and ag < String

New constraint system:
String — Int = String — Int

with o = {ay + String, ag < Int}

Simple Unification Algorithm

» From constraints, pick one equality a, = e and apply
substitution a, < e

» If such an equality does not exist, pick an equality of the form
X — Y =W — Z and apply substitutions X < W, Y « Z

» Repeat until we either derive a contradiction or there are not
equalities left. This is a most general unifier.

Thomas Dillg,

CS345H: Programming Languages Lecture 12: Type Inference 31/33

Thomas Dillg,

g Languages Lecture 12: Type Inference

32/33

Conclusion

>

>

>

We have seen how we can use our typing rules to generate
type constraints.

We looked at a simple algorithm to solve these constraints.
But this algorithm is not very efficient.

Next time: How to perform unification efficiently and type
inference in L

Thomas Dillg,

CS345H: Programming Languages Lecture 12: Type Inference 33/33

