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First: Your Project

» Today is the start of your course project

» Goal: Take what we studied and apply it to a project you
design yourself

» This is a team project: Teams must be between 3 and 5
students
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Possible Topics
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Adding major language features to L
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Possible Topics

» Your goal is to add at least one major feature to the L
language

» Some possible examples:
» Adding type inference to L

v

Speeding up the L interpreter

v

Adding major language features to L

v

Type inference with novel error reporting

> Your creativity is the limit
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Deliverables & Time line

» Today: Start of project, form teams

» Nov. 13st 12:30pm: Email me a one page proposal for your
project as pdf clearly describing what you want to do and list
your team members

» Will receive feedback from proposal

» Dec. 11st 12:30pm : Project due. No late days.
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Final Deliverables

» Report written in LateX (at least 15 pages) describing clearly
what problem you are solving, what choices you made,
challenges encountered and your results.
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Final Deliverables

Thomas Dilig,

>

Report written in LateX (at least 15 pages) describing clearly
what problem you are solving, what choices you made,
challenges encountered and your results.

All your source code in a tar.gz file compiling on Ubuntu

You will be graded on size of chosen challenge, your solution
and your written report

Since every project is unique, you will get lots of feedback
throughout

If you are passionate about a PL project not related to L, or
want to tackle something especially large with more people,
etc: Ask!

CS345H: Programming Languages  Lecture 13: Type Inference Il



Final Deliverables

Thomas Dilig,

>

Report written in LateX (at least 15 pages) describing clearly
what problem you are solving, what choices you made,
challenges encountered and your results.

All your source code in a tar.gz file compiling on Ubuntu

You will be graded on size of chosen challenge, your solution
and your written report

Since every project is unique, you will get lots of feedback
throughout

If you are passionate about a PL project not related to L, or
want to tackle something especially large with more people,
etc: Ask!

Any questions?
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Introduction

v

Recall for last time: We are inferring types

v

Big idea: Replace all concrete type assumptions with type
variables

v

Collect constraints on these type variables

v

Find most general solution for these constraints to deduce
types
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Quick Refresher

> Lets quickly look again at one example:
let f = lambda x.(f x) in f
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Quick Refresher

> Lets quickly look again at one example:
let f = lambda x.(f x) in f

» Type derivation:
If <+ ai][xr + ao] F f: g
Of < ][z + a2] F 2 : ap
ap = a2 — as
O[f « a1][x + ag] b (f 2) : a3
Iif < alFAz.(f z):a
Fkletf=Xe.(fz)inf:am

F[f < al]f F: aj

» Final Type: a; under constraint a; = as — ag

» This yielded constraint system

a] = ag — ag
ai
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Solving Constraints

» Last time, we discussed two substitution rules that allow us to
solve such constraints and find the most general solution
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Solving Constraints

v

Last time, we discussed two substitution rules that allow us to
solve such constraints and find the most general solution

v

However, the cost of this is quadratic in the number of
constraints

v

For a large program, this is prohibitive

v

Today: How to efficiently solve type constraint systems

Thomas Dilig, CS345H: Programming Languages  Lecture 13: Type Inference Il



Representing Types

» Our type constraint systems are made up of the following
three primitives:

Thomas Dillig, CS345H: Programming Languages Lecture 13: Type Inference Il 9/34



Representing Types

» Our type constraint systems are made up of the following
three primitives:

1. Type constants:

Thomas Dilig, CS345H: Programming Languages  Lecture 13: Type Inference Il 9/34



Representing Types

» Our type constraint systems are made up of the following
three primitives:

1. Type constants: Int, String

Thomas Dilig, CS345H: Programming Languages  Lecture 13: Type Inference Il 9/34



Representing Types

» Our type constraint systems are made up of the following
three primitives:

1. Type constants: Int, String

2. Type variables:

Thomas Dilig, CS345H: Programming Languages  Lecture 13: Type Inference Il 9/34



Representing Types

» Our type constraint systems are made up of the following
three primitives:

1. Type constants: Int, String

2. Type variables: oy, s

Thomas Dilig, CS345H: Programming Languages  Lecture 13: Type Inference Il 9/34



Representing Types

» Our type constraint systems are made up of the following
three primitives:
1. Type constants: Int, String

2. Type variables: oy, s

3. Function Types:

Thomas Dilig, CS345H: Programming Languages  Lecture 13: Type Inference Il

9/34



Representing Types

» Our type constraint systems are made up of the following
three primitives:
1. Type constants: Int, String
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Representing Types

» Our type constraint systems are made up of the following
three primitives:

1. Type constants: Int, String

2. Type variables: oy, s

3. Function Types: X — Y

» Observe that X — Y is just in-fix notation for
function(X,Y)
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Representing Types

» Our type constraint systems are made up of the following
three primitives:
1. Type constants: Int, String

2. Type variables: aq, g

3. Function Types: X — YV

» Observe that X — Y is just in-fix notation for
function(X,Y)

» To solve type constraints more efficiently, we will write
X — Y also as function(X, Y), but this is just notation
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More Efficient Type Inference

v

Big Idea: Maintain equivalence classes of types directly

v

Equivalence Class: Set of types that must be equal

v

Specifically, if we process constraint of the form X = Y, we
know that X and Y are equal

v

In this case, we want to union the equivalence classes of X
and Y
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More Efficient Type Inference

Thomas Dilig,

v

Big Idea: Maintain equivalence classes of types directly
Equivalence Class: Set of types that must be equal

Specifically, if we process constraint of the form X = Y, we
know that X and Y are equal

In this case, we want to union the equivalence classes of X
and Y

Also, if X and Y are function types of the form X; — X5 and

Y7 — Y5, we also want to union X7 and Y7 as well as X5 and
Ys
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union-find algorithm

» Each set of types is called an equivalence class

» Each set has one element as its representative
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Union-Find

To maintain equivalence classes directly, we will use the
union-find algorithm

Each set of types is called an equivalence class
Each set has one element as its representative
For type inference: If an equivalence contains a type constant

or a function type, we will always use this type as the
representative.

Thomas Dillig,
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Union-Find Cont.
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1. Union(s,t): This unions the equivalence classes of s and ¢
into one equivalence class
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» In Union-Find, we have only two operations on equivalence
classes:
1. Union(s,t): This unions the equivalence classes of s and ¢
into one equivalence class

2. Find(s): This returns the representative of the equivalence
class of which s is part of

» Example: Assume following two equivalence classes
(representatives in red): {int,a}, {5 — 7, int}
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Union-Find Cont.

» In Union-Find, we have only two operations on equivalence
classes:
1. Union(s,t): This unions the equivalence classes of s and ¢
into one equivalence class

2. Find(s): This returns the representative of the equivalence
class of which s is part of

» Example: Assume following two equivalence classes
(representatives in red): {int,a}, {5 — 7, int}

» Example: Union(int, 3 — ~y) results in new equivalence class
{int,a, B — 7}

» Example: Find(«) = int
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» We will represent equivalence classes as DAGs.

» Example: {# — 7, a}
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Union-Find Representation

» We will represent equivalence classes as DAGs.

» Example: {# — 7, a}

l“‘

» Conceptually, union will join the dotted areas of two
equivalence classes

» And find will return the (red) representative in this class
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Union-Find Representation Cont.

» Consider the following EQs:
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Union-Find Representation Cont.
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Union-Find Representation

@

» Question: Is this a possible solution for the type constraints?
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Union-Find Representation

» Question: Is this a possible solution for the type constraints?
» No! If a function type and a constant type ever end up in the

same equivalence class, we know that the constraint system
has no solution
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Union-Find Representation

» Question: Is this a possible solution for the type constraints?
» No! If a function type and a constant type ever end up in the
same equivalence class, we know that the constraint system

has no solution

» We also know constraint system has no solution if Int and
String end up in the same EQ
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Finding a Solution from the Union-Find DAG

» Assuming we end up with an consistent Union-find DAG, we
can read the most general solution right of!
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Finding a Solution from the Union-Find DAG

» Assuming we end up with an consistent Union-find DAG, we
can read the most general solution right of!

» For each type variable v, simply return find(v)

> In other words, the representative of each equivalence class is
the most general solution
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Finding a Solution from the Union-Find DAG

Thomas Dilig,

Assuming we end up with an consistent Union-find DAG, we
can read the most general solution right of!

For each type variable v, simply return find(v)

In other words, the representative of each equivalence class is
the most general solution

Question: Why do we always pick function types or type
constants as representatives?
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Finding a Solution from the Union-Find DAG

Thomas Dilig,

Assuming we end up with an consistent Union-find DAG, we
can read the most general solution right of!

For each type variable v, simply return find(v)

In other words, the representative of each equivalence class is
the most general solution

Question: Why do we always pick function types or type
constants as representatives?

Question: What happens if a function type and a type
constant are in the same equivalence class?
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Finding a Solution from the Union-Find DAG

» Example:
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Finding a Solution from the Union-Find DAG
» Example:
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Finding a Solution from the Union-Find DAG

» Example:
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» How do we find solution for o7

> find(a) = 8 —

» What about 37
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Finding a Solution from the Union-Find DAG

» Example:

» How do we find solution for o7
> find(a) = 8 — 7
» What about 37

» Every item is in its own EQ, therefore find(83) =
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Using Union-Find for solving Type Inference Constraints

» Initially, all type variables, functions and type constants are in
their own equivalence class
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Using Union-Find for solving Type Inference Constraints

» Initially, all type variables, functions and type constants are in
their own equivalence class

» We then apply the following function to each equality in our
type constraint:
bool unify(m, n) {
s = find(m); t = find(n);
if(s == t) return true;
if(s == 81 — s2 & t == t1 — t2) {
union(s, t);
return unify(sl, tl1) && unify(s2, t2);

}

if (is_variable(s) || is_variable(t)) {
union(s, t); return true;

}

return false; //No solution to type constraints
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Example

» Consider the following system of type constraints:

a—Int = pj
vy—Int = S
v = String
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Example

» Consider the following system of type constraints:

a—Int = j
vy—Int = S
v = String
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Example

» Consider the following system of type constraints:
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Example Cont

a—Int = 8
y—=Int =
v = String

» Solution for a:
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Example Cont
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Example 2

» Consider the following system of type constraints:

a = Int— Int
a = String
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» Consider the following system of type constraints:

a = Int— Int
a = String
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» Conflict: Unify returns false when trying to unify Int — Int
and String
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Example 2

» Consider the following system of type constraints:

a = Int— Int
a = String
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» Conflict: Unify returns false when trying to unify Int — Int
and String

» Conclusion: This system of type constraints is unsatisfiable
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Union-Find

» With this new approach, we can now only process each
equality once.
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Union-Find
» With this new approach, we can now only process each
equality once.
» However, for this to be efficient, union/find must be efficient.
> Key result from algorithms: It is possible to build a data

structure for union-find that can find a solution to our sets of
type constraints in approximately linear time.
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Union-Find

Thomas Dilig,

With this new approach, we can now only process each
equality once.

However, for this to be efficient, union/find must be efficient.
Key result from algorithms: It is possible to build a data
structure for union-find that can find a solution to our sets of

type constraints in approximately linear time.

You can learn about this data structure in Advance
Algorithms or Isil’s class on automated logical reasoning
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Union-Find

Thomas Dilig,

With this new approach, we can now only process each
equality once.

However, for this to be efficient, union/find must be efficient.
Key result from algorithms: It is possible to build a data
structure for union-find that can find a solution to our sets of

type constraints in approximately linear time.

You can learn about this data structure in Advance
Algorithms or Isil’s class on automated logical reasoning

But for our purposes, we will just use this data structure
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Type Inference

» If we use Union-Find, we can make type inference practical on
real programs
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Type Inference
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If we use Union-Find, we can make type inference practical on
real programs

This style of polymorphic type inference we studied is known
as Hindley-Milner type inference

Type inference is at the core of languages such as OCAML
and Haskell

Type inference is increasingly moving to main-stream
languages
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If we use Union-Find, we can make type inference practical on
real programs

This style of polymorphic type inference we studied is known
as Hindley-Milner type inference

Type inference is at the core of languages such as OCAML
and Haskell

Type inference is increasingly moving to main-stream
languages
» New C++11 standard
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Type Inference

Thomas Dilig,

v

If we use Union-Find, we can make type inference practical on
real programs

This style of polymorphic type inference we studied is known
as Hindley-Milner type inference

Type inference is at the core of languages such as OCAML
and Haskell

Type inference is increasingly moving to main-stream
languages

» New C++11 standard

» Java 7
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Type Inference and Errors

» We saw that we can detect all errors easily when doing type
inference
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Type Inference and Errors

Thomas Dilig,

We saw that we can detect all errors easily when doing type
inference

Specifically, every error resulted from unifying two equivalence
classes that could not be unified.

Example: Trying to unify String and o« — Int

But how do we report this error to programmers?
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Error Reporting

» Consider again the example: String and a — Int.

Thomas Dilig, CS345H: Programming Languages Lecture 13: Type Inference Il 25/34



Error Reporting

» Consider again the example: String and a — Int.

» Option 1: Output message: String and o — Int cannot be
unified.

Thomas Dilig, CS345H: Programming Languages Lecture 13: Type Inference Il 25/34



Error Reporting

» Consider again the example: String and a — Int.

» Option 1: Output message: String and o — Int cannot be
unified.

> Is this helpful?

Thomas Dilig, CS345H: Programming Languages Lecture 13: Type Inference Il 25/34



Error Reporting

» Consider again the example: String and a — Int.

» Option 1: Output message: String and o — Int cannot be
unified.

> Is this helpful?

» Obvious problems:

Thomas Dilig, CS345H: Programming Languages Lecture 13: Type Inference Il 25/34



Error Reporting

» Consider again the example: String and a — Int.

» Option 1: Output message: String and o — Int cannot be
unified.

> Is this helpful?

» Obvious problems:

» Not associated with any source location
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Error Reporting

» Consider again the example: String and a — Int.

» Option 1: Output message: String and o — Int cannot be
unified.

> Is this helpful?

» Obvious problems:

» Not associated with any source location

» Understanding typing errors requires understanding type
inference
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Error Reporting Cont.

» Improvement used in practice: Associate expression/source
location with type constraint.
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Error Reporting Cont.

» Improvement used in practice: Associate expression/source
location with type constraint.

» Message can now at least contain the program expressions
that evaluate to String and o — Int

» But the actual error in your program may be arbitrarily far
from these locations!

» Typical OCaml error:
“At line 37: Expected expression of type ‘a —>
but found expression of type ‘a -> ‘Db"
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Error Reporting Cont.

Thomas Dilig,

>

Improvement used in practice: Associate expression/source
location with type constraint.

Message can now at least contain the program expressions
that evaluate to String and o — Int

But the actual error in your program may be arbitrarily far
from these locations!

Typical OCaml error:
“At line 37: Expected expression of type ‘a —>
but found expression of type ‘a -> ‘Db"

To fix this, you need to understand all the reasoning steps
that happened during type inference
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Error Reporting Cont.

Thomas Dilig,

>

Improvement used in practice: Associate expression/source
location with type constraint.

Message can now at least contain the program expressions
that evaluate to String and o — Int

But the actual error in your program may be arbitrarily far
from these locations!

Typical OCaml error:
“At line 37: Expected expression of type ‘a —>
but found expression of type ‘a -> ‘Db"

To fix this, you need to understand all the reasoning steps
that happened during type inference

Most likely, the problem did not originate at line 37!
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Type Annotations

» Most common technique for mitigating these difficulties:
Allow type annotations
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» Most common technique for mitigating these difficulties:
Allow type annotations

» Type annotations allow you explicitly declare types even
though the compiler can infer them automatically

» Idea: If you encounter a type error you do not understand, you
give the type you expect to the expressions involved in this
error and re-run the type checker
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Type Annotations

Thomas Dilig,

Most common technique for mitigating these difficulties:
Allow type annotations

Type annotations allow you explicitly declare types even
though the compiler can infer them automatically

Idea: If you encounter a type error you do not understand, you
give the type you expect to the expressions involved in this

error and re-run the type checker

You will now get a new type error in a different location
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Type Annotations

Thomas Dilig,

Most common technique for mitigating these difficulties:
Allow type annotations

Type annotations allow you explicitly declare types even
though the compiler can infer them automatically

Idea: If you encounter a type error you do not understand, you
give the type you expect to the expressions involved in this
error and re-run the type checker

You will now get a new type error in a different location

You repeat this process until you fixed your type error
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Type Annotations Drawbacks

» However, this approach still has substantial drawbacks:
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Type Annotations Drawbacks

» However, this approach still has substantial drawbacks:

» You often need many annotations to find the source of type
errors

» You can only annotate successfully if you understand
polymorphic type inference

» You often end up with a program that is almost completely
type annotated!
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Type Inference in the Real World

> Despite these difficulties, there are many real languages that
support full type inference.
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» Slogan on Type Inference: The ease of dynamic typing with
the speed an guarantees of a static type system
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Type Inference in the Real World

Thomas Dilig,
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Despite these difficulties, there are many real languages that
support full type inference.

Examples: OCaml, Haskell, F#

Slogan on Type Inference: The ease of dynamic typing with
the speed an guarantees of a static type system

This claim is true, but real problems with explaining typing
errors to programmers
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Type Inference in the Real World

Thomas Dilig,
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Despite these difficulties, there are many real languages that
support full type inference.

Examples: OCaml, Haskell, F#

Slogan on Type Inference: The ease of dynamic typing with
the speed an guarantees of a static type system

This claim is true, but real problems with explaining typing
errors to programmers

Explaining typing errors better is also an active research area!
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Type Inference in the Real World Cont.

> Alternative approach taken by more main-stream languages
recently: local type inference
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recently: local type inference

> In local type inference, types are only inferred within one
function, but must be fully annotated at function boundaries.
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Type Inference in the Real World Cont.

> Alternative approach taken by more main-stream languages
recently: local type inference

> In local type inference, types are only inferred within one

function, but must be fully annotated at function boundaries.

» Goal: Make it easier for programmers to diagnose type errors
(and make type inference tractable in the imperative setting)
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Example of local type inference

» C++ supports some forms of local type inference.
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second element
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> You declare a pair as: pair<int, string> p(3, "duck");
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» First Example: templates

» A STL pair is templatized over the type of the first and
second element

> You declare a pair as: pair<int, string> p(3, "duck");

» However, if you call a function that takes a pair, the compiler

will infer the template type for you in some cases:
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Example of local type inference

» C++ supports some forms of local type inference.
» First Example: templates

» A STL pair is templatized over the type of the first and
second element

> You declare a pair as: pair<int, string> p(3, "duck");

» However, if you call a function that takes a pair, the compiler
will infer the template type for you in some cases:

> Example: edit_pair(p) instead of
edit_pair<pair<int, string> >(p)
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» The new C++11 standard supports much more expressive
local type inference

» This is done using the auto keyword
» Example using iterator: vector<int> v;

for(vector<int>::iterator it = v.begin(); it !=
v.end(); it++)
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Example of local type inference

» The new C++11 standard supports much more expressive
local type inference

» This is done using the auto keyword
» Example using iterator: vector<int> v;

for(vector<int>::iterator it = v.begin(); it !=
v.end(); it++)

» Example using iterator with new auto keyword:
vector<int> v;

for(auto it = v.begin(); it != v.end(); it++)
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Type Inference in C++

» The auto keyword really just says “do type inference on this
expression and figure the type out”
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Type Inference in C++

» The auto keyword really just says “do type inference on this
expression and figure the type out”

» Very convenient, local feature that is also creeping into
languages such as C# and Java

» You will see more of this in the future
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Conclusion

» We saw how to use Union-Find to make type inference scalable
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Conclusion

» We saw how to use Union-Find to make type inference scalable
» This formulation is one of the classic and elegant results in
programming languages, known as Hindley-Milner type

inference

» Type inference is most likely coming to your favorite language
in the near future, if it is not already there!
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