
CS345H: Programming Languages

Lecture 14: Introduction to Imperative Languages

Thomas Dillig

Thomas Dillig, CS345H: Programming Languages Lecture 14: Introduction to Imperative Languages 1/31

Functional Languages

I All languages we have studies so far were variants of lambda
calculus

I Such languages are known as functional languages

I We have also seen that these languages allow us to design
powerful type systems

I And even perform type inference

Thomas Dillig, CS345H: Programming Languages Lecture 14: Introduction to Imperative Languages 2/31

Salient Features of Functional Languages

I The functional languages we studied have a set of defining
features:

I Most noticeable feature: No side effects!

I This means that evaluating an expression never changes the
value of any other expression

I Example:
let x = 3+4 in let y = x+5 in x+y

I Here, evaluating the expression x+5 cannot change the value
of any other expression

Thomas Dillig, CS345H: Programming Languages Lecture 14: Introduction to Imperative Languages 3/31

No Side Effects

I No side effects means no assignments and no variables!

I Recall: Let-bindings are only names for values

I The value they stand for can never change

I Example:
let x = 3 in let x = 4 in x

Thomas Dillig, CS345H: Programming Languages Lecture 14: Introduction to Imperative Languages 4/31

Impact of No Side Effects

I Question: How can we exploit the fact that evaluating
expressions never changes the value of any other expression?

I Answers:
I We can evaluate expressions in parallel

I We can delay evaluation until a value is actually used

I Question: What kind of side effect can evaluating expressions
still have?

I Answer: They may still trigger a run-time error

Thomas Dillig, CS345H: Programming Languages Lecture 14: Introduction to Imperative Languages 5/31

Impact of No Side Effects Cont.

I Unfortunately, run-time errors negate all the benefits we listed!

I Question: What can we do about this?

I Solution: Type systems

I Any sound type system will guarantee no run-time errors

I Conclusion: We can only fully take advantage of functional
features if we use a sound type system

Thomas Dillig, CS345H: Programming Languages Lecture 14: Introduction to Imperative Languages 6/31

1

The Alternative to Functional Programming

I However, there is also an alternative (and much more
common) way of programming called imperative programming

I Features of imperative programming:
I Side effects

I Assignments that change the values of variables

I Programs are sequences of statements instead of one
expression

I Imperative programming is the dominant model

I This style is much closer to the way hardware executes

Thomas Dillig, CS345H: Programming Languages Lecture 14: Introduction to Imperative Languages 7/31

Imperative Programming Languages

I You have all used imperative programming languages

I Imperative Languages:
I FORTRAN

I ALGOL

I C, C++

I Java

I Python

I ...

Thomas Dillig, CS345H: Programming Languages Lecture 14: Introduction to Imperative Languages 8/31

Features of Imperative Languages

I At a minimum, a language must have the following features to
be considered imperative:

I Variables and assignments

I Loops and Conditionals and/or goto

I Observe that features such as pointers, recursion and arrays
are optional

I For example, FORTRAN originally only had integers and
floats, loops, conditionals and goto statements

Thomas Dillig, CS345H: Programming Languages Lecture 14: Introduction to Imperative Languages 9/31

Example Compare and Contrast

I Let’s look at some example imperative programs

I I will use C style since most of you should be familiar with this

I Adding all numbers from 1 to 10 in L:
fun add with n =

if n == 0 then 0 else n + (add (n-1)) in (n 10)

I Here is the same program in C:
int res = 0, i;

for(i=0; i < 10; i++) res += i;

return res;

I Question: Which style do you prefer?

Thomas Dillig, CS345H: Programming Languages Lecture 14: Introduction to Imperative Languages 10/31

Very basic imperative programming

I Now, let’s get even more basic and only use conditionals and
goto statements to write the same program:
int res = 0, i;

again:

res +=i;

i++;

if(i<10) goto again;

return res;

I Which style do you prefer?

Thomas Dillig, CS345H: Programming Languages Lecture 14: Introduction to Imperative Languages 11/31

GOTOs in Programming
I All early imperative languages include goto statements

I Rational: 1) Hardware supports only compare and jump
instructions 2) GOTOs allow for more expressive control flow

I Example of GOTO use:
int i = 0;

int sum;

again:

i++;

int z = get_input();

if(z < 0) goto error:

n+=z;

if(i < 5) goto again:

return n;

error:

return -1;
Thomas Dillig, CS345H: Programming Languages Lecture 14: Introduction to Imperative Languages 12/31

2

GOTOs in Programming Cont.

I Not so long ago, it was universally accepted that GOTO
statements are necessary for expressive programs

I However, as software became larger, GOTO statements
started becoming problematic

I Central Problem of GOTO: “Spagetti Code”

I This means that thread of execution is very hard to follow in
program text

I Jumps to a label could come from almost anyplace (in
extreme cases even from other functions!)

Thomas Dillig, CS345H: Programming Languages Lecture 14: Introduction to Imperative Languages 13/31

GOTOs in Programming Cont.

I In much early (and also more recent) code, GOTO not only
implemented loops but was also used for code reuse

I Real Comment from numerical analyst: “Why bother writing a
function if I can just jump to the label?”

I In 1968, Dijkstra wrote a very influential essay called “GOTO
Statement Considered Harmful” in which he argued that
GOTO statements facilitate unreadable code and should be
removed from programming languages

Thomas Dillig, CS345H: Programming Languages Lecture 14: Introduction to Imperative Languages 14/31

The End of GOTO

I At first, this article was very controversial

I But over time, most programmers started to agree that
GOTO constructs should be avoided

I Imperative programming without GOTOs is known as
structural programming

I But not everyone was on board...

Thomas Dillig, CS345H: Programming Languages Lecture 14: Introduction to Imperative Languages 15/31

Side Trip: GOTO and COBOL

I COBOL stands for COmmon Business Oriented Language

I In addition to GOTO, COBOL also includes the ALTER
keyword

I After executing ALTER X TO PROCEED TO Y, any future GOTO

X means GOTO Y instead

I Can change control flow structures at runtime!

I This was marketed as allowing polymorphism

Thomas Dillig, CS345H: Programming Languages Lecture 14: Introduction to Imperative Languages 16/31

Side Trip: GOTO and COBOL

I Dijkstra’s comment: “The use of
COBOL cripples the mind; its
teaching should, therefore, be
regarded as a criminal offense.”

Thomas Dillig, CS345H: Programming Languages Lecture 14: Introduction to Imperative Languages 17/31

Structured Programming

I Today there is a consensus that GOTOs are not a good idea

I Instead, imperative languages include many kinds of loops and
branching constructs

I Examples in C++: while, do-while, for, if, switch

I One legitimate use of GOTO: Error-handling code

I This popularized exceptions in most modern languages

Thomas Dillig, CS345H: Programming Languages Lecture 14: Introduction to Imperative Languages 18/31

3

A Simple Imperative Language

I Let’s start by looking at at a very basic imperative language
we will call IMP1:

P → ε | S1;S2
S → if(C) then S1 else S2 fi | id = e

| while(C) do S od
e → id | e1 + e2 | e1 − e2 | int
C → e1 ≤ e2 | e1 = e2 | not C | C1 and C2

I This language has variables, declarations, conditionals and
loops

I But no pointers, functions, ...

I What are some example programs in IMP1?

Thomas Dillig, CS345H: Programming Languages Lecture 14: Introduction to Imperative Languages 19/31

Semantics of IMP1

I Let’s try to give operational semantics for this language

I First, we will again use an environment E to map variables to
their values

I Start with the semantics of expressions

I Question: What do expressions evaluate to?

I Answer: Integers

I Therefore, the result (value after colon) in operational
semantics rules for expression is an integer

Thomas Dillig, CS345H: Programming Languages Lecture 14: Introduction to Imperative Languages 20/31

Semantics of IMP1

I Here are operational semantics for expressions in IMP1 (first
cut)

I Variable:

E ` v : E (id)

I Plus
E ` e1 : v1
E ` e2 : v2

E ` e1 + e2 : v1 + v2

I Minus
E ` e1 : v1
E ` e2 : v2

E ` e1 − e2 : v1 − v2

Thomas Dillig, CS345H: Programming Languages Lecture 14: Introduction to Imperative Languages 21/31

Semantics of IMP1 Cont.

I On to the semantics of Predicates:

I Question: What do predicates evaluate to?

I Answer: True and False

I Therefore, the result (value after colon) in operation
semantics rules for predicates is a boolean

Thomas Dillig, CS345H: Programming Languages Lecture 14: Introduction to Imperative Languages 22/31

Semantics of IMP1 Cont.
I Here are operational semantics for predicates in IMP1

I Less than or equal to:

E ` e1 : v1
E ` e2 : v2
v1 ≤ v2

E ` e1 ≤ e2 : True

E ` e1 : v1
E ` e2 : v2
v1 6≤ v2

E ` e1 ≤ e2 : False
I Or (slightly imprecise) shorthand

E ` e1 : v1
E ` e2 : v2

E ` e1 ≤ e2 : v1 ≤ v2

I What about the other predicates?

Thomas Dillig, CS345H: Programming Languages Lecture 14: Introduction to Imperative Languages 23/31

Semantics of Statements

I Now, all we have left are the statements

I However, there is one big problem: Statements do not
evaluate to anything!

I Instead, statements update the values of variables

I In other words, they change E !

I Therefore, the rules for statements will produce a new
environment

I Specifically, they are of the form E ` S : E ′

I Changing the environment is the technical way of having side
effects in the language

Thomas Dillig, CS345H: Programming Languages Lecture 14: Introduction to Imperative Languages 24/31

4

Semantics of Statements Cont.

I Let’s start with the sequencing statement S1;S2:

E ` S1 : E1

E1 ` S2 : E2

E ` S1;S2 : E2

I Observe here that S1 produces a new environment E1

I We then use this new environment to evaluate S2 and return
E2

Thomas Dillig, CS345H: Programming Languages Lecture 14: Introduction to Imperative Languages 25/31

Basic Statements

I Here is the assignment statement

E ` e : v
E ′ = E [id ← v]

E ` id = e : E ′

I Observe that it is possible that id already had a value in E

I In this case, this rule overrides the value of id with the current
value

Thomas Dillig, CS345H: Programming Languages Lecture 14: Introduction to Imperative Languages 26/31

Semantics of the Conditional

I Here are operational semantics of the conditional

E ` C : true
E ` S1 : E

′

E ` if(C) then S1 else S2 fi : E ′

E ` C : false
E ` S2 : E

′

E ` if(C) then S1 else S2 fi : E ′

I Observe that there are two different proof rules used.

I Expressions and conditionals return values, while statements
return environments

Thomas Dillig, CS345H: Programming Languages Lecture 14: Introduction to Imperative Languages 27/31

Semantics of the While loop

I Let’s finish with semantics for the last statement: While loop

I This is tricky because the loop may execute any number of
times

I Let’s start with the base case where the predicate is false:

E ` C : false

E ` while(C) do S od : E

Thomas Dillig, CS345H: Programming Languages Lecture 14: Introduction to Imperative Languages 28/31

Semantics of the While loop Cont.

I Now, what about the case where the condition is true?

I In this case, we want to:
I Execute one iteration of the loop, producing a new

environment E ′

I Repeat the evaluation of the loop with E ’

I Here is the rule to do just that:

E ` C : true
E ` S : E ′

E ′ ` while(C) do S od : E ′′

E ` while(C) do S od : E ′′

Thomas Dillig, CS345H: Programming Languages Lecture 14: Introduction to Imperative Languages 29/31

Semantics of the While loop Cont.

E ` C : true
E ` S : E ′

E ′ ` while(C) do S od : E ′′

E ` while(C) do S od : E ′′

I Question: How does this rule make progress?

I Answer: It uses the new environment E ′ when reevaluating
the loop body

I Is it possible that this rule does not terminate? Yes, if the
loop is non-terminating

Thomas Dillig, CS345H: Programming Languages Lecture 14: Introduction to Imperative Languages 30/31

5

Putting it all together

I We saw how to give operational semantics for a simple
imperative language

I Key difference: Side effects

I Side effects are encoded in operational semantics by producing
a new environment

I Also observe that for imperative languages, all expressions
always evaluate to concrete values

Thomas Dillig, CS345H: Programming Languages Lecture 14: Introduction to Imperative Languages 31/31

6

