
CS345H: Programming Languages

Lecture 16: Imperative Languages II

Thomas Dillig

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 1/30

Overview

I Last time, we have seen how we can give meaning to a simple
imperative language

I Specifically, we wrote operational semantics for the IMP1
language

I Today: How to give semantics to more feature-rich imperative
languages

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 2/30

Overview

I Last time, we have seen how we can give meaning to a simple
imperative language

I Specifically, we wrote operational semantics for the IMP1
language

I Today: How to give semantics to more feature-rich imperative
languages

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 2/30

Overview

I Last time, we have seen how we can give meaning to a simple
imperative language

I Specifically, we wrote operational semantics for the IMP1
language

I Today: How to give semantics to more feature-rich imperative
languages

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 2/30

Pointers

I In the language IMP1, perhaps the biggest missing feature is
pointers

I A pointer is a reference to a memory location

I Pointers are naturally supported by hardware through load and
store instructions

I In fact, pretty much all code turns into pointer manipulation
at the assembly level

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 3/30

Pointers

I In the language IMP1, perhaps the biggest missing feature is
pointers

I A pointer is a reference to a memory location

I Pointers are naturally supported by hardware through load and
store instructions

I In fact, pretty much all code turns into pointer manipulation
at the assembly level

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 3/30

Pointers

I In the language IMP1, perhaps the biggest missing feature is
pointers

I A pointer is a reference to a memory location

I Pointers are naturally supported by hardware through load and
store instructions

I In fact, pretty much all code turns into pointer manipulation
at the assembly level

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 3/30

Pointers

I In the language IMP1, perhaps the biggest missing feature is
pointers

I A pointer is a reference to a memory location

I Pointers are naturally supported by hardware through load and
store instructions

I In fact, pretty much all code turns into pointer manipulation
at the assembly level

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 3/30

Why Pointers?

I What are pointers good for?

I Call-by-reference in a call-by-value language

I Clever and efficient data structures

I Avoid copying of data if it can be shared

I It is not uncommon for pointers to to be 100x faster than
copying data!

I For this reason, pointers are essential for most
performance-critical task.

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 4/30

Why Pointers?

I What are pointers good for?
I Call-by-reference in a call-by-value language

I Clever and efficient data structures

I Avoid copying of data if it can be shared

I It is not uncommon for pointers to to be 100x faster than
copying data!

I For this reason, pointers are essential for most
performance-critical task.

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 4/30

Why Pointers?

I What are pointers good for?
I Call-by-reference in a call-by-value language

I Clever and efficient data structures

I Avoid copying of data if it can be shared

I It is not uncommon for pointers to to be 100x faster than
copying data!

I For this reason, pointers are essential for most
performance-critical task.

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 4/30

Why Pointers?

I What are pointers good for?
I Call-by-reference in a call-by-value language

I Clever and efficient data structures

I Avoid copying of data if it can be shared

I It is not uncommon for pointers to to be 100x faster than
copying data!

I For this reason, pointers are essential for most
performance-critical task.

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 4/30

Why Pointers?

I What are pointers good for?
I Call-by-reference in a call-by-value language

I Clever and efficient data structures

I Avoid copying of data if it can be shared

I It is not uncommon for pointers to to be 100x faster than
copying data!

I For this reason, pointers are essential for most
performance-critical task.

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 4/30

Why Pointers?

I What are pointers good for?
I Call-by-reference in a call-by-value language

I Clever and efficient data structures

I Avoid copying of data if it can be shared

I It is not uncommon for pointers to to be 100x faster than
copying data!

I For this reason, pointers are essential for most
performance-critical task.

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 4/30

A Simple Pointer Language

I Let us consider the following simple language with pointers we
will call IMP2:

P → ε | P1;P1 | S
S → if(C) then S1 else s2 fi | id = e | ∗ id = e

| while(C) do S od | id = alloc
e → id | e1 + e2 | e1 − e2 | int | ∗ id
C → e1 ≤ e2 | e1 = e2 | notC | C1 and C2

I This is the same as IMP1, just with a load and store operation

I Here, I am using C syntax for loading and storing

I Addition: Alloc allocates fresh memory

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 5/30

A Simple Pointer Language

I Let us consider the following simple language with pointers we
will call IMP2:

P → ε | P1;P1 | S
S → if(C) then S1 else s2 fi | id = e | ∗ id = e

| while(C) do S od | id = alloc
e → id | e1 + e2 | e1 − e2 | int | ∗ id
C → e1 ≤ e2 | e1 = e2 | notC | C1 and C2

I This is the same as IMP1, just with a load and store operation

I Here, I am using C syntax for loading and storing

I Addition: Alloc allocates fresh memory

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 5/30

A Simple Pointer Language

I Let us consider the following simple language with pointers we
will call IMP2:

P → ε | P1;P1 | S
S → if(C) then S1 else s2 fi | id = e | ∗ id = e

| while(C) do S od | id = alloc
e → id | e1 + e2 | e1 − e2 | int | ∗ id
C → e1 ≤ e2 | e1 = e2 | notC | C1 and C2

I This is the same as IMP1, just with a load and store operation

I Here, I am using C syntax for loading and storing

I Addition: Alloc allocates fresh memory

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 5/30

A Simple Pointer Language

I Let us consider the following simple language with pointers we
will call IMP2:

P → ε | P1;P1 | S
S → if(C) then S1 else s2 fi | id = e | ∗ id = e

| while(C) do S od | id = alloc
e → id | e1 + e2 | e1 − e2 | int | ∗ id
C → e1 ≤ e2 | e1 = e2 | notC | C1 and C2

I This is the same as IMP1, just with a load and store operation

I Here, I am using C syntax for loading and storing

I Addition: Alloc allocates fresh memory

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 5/30

Operational Semantics with Pointers

I We want to give operational semantics to this language

I But how can we handle pointers?

I Recall: So far, we only had a environment.

I The environment mapped variables to values

I But how can we look up the value of a pointer?

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 6/30

Operational Semantics with Pointers

I We want to give operational semantics to this language

I But how can we handle pointers?

I Recall: So far, we only had a environment.

I The environment mapped variables to values

I But how can we look up the value of a pointer?

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 6/30

Operational Semantics with Pointers

I We want to give operational semantics to this language

I But how can we handle pointers?

I Recall: So far, we only had a environment.

I The environment mapped variables to values

I But how can we look up the value of a pointer?

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 6/30

Operational Semantics with Pointers

I We want to give operational semantics to this language

I But how can we handle pointers?

I Recall: So far, we only had a environment.

I The environment mapped variables to values

I But how can we look up the value of a pointer?

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 6/30

Operational Semantics with Pointers

I We want to give operational semantics to this language

I But how can we handle pointers?

I Recall: So far, we only had a environment.

I The environment mapped variables to values

I But how can we look up the value of a pointer?

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 6/30

Operational Semantics with Pointers Cont.

I Idea: Add one level of indirection in the environment.

I We used to have one environment that maps variables to
values

I Now, we will have:

I An environment E mapping variables to addresses

I A store S mapping addresses to values stored at this address

I The store is emulating memory when executing a program!

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 7/30

Operational Semantics with Pointers Cont.

I Idea: Add one level of indirection in the environment.

I We used to have one environment that maps variables to
values

I Now, we will have:

I An environment E mapping variables to addresses

I A store S mapping addresses to values stored at this address

I The store is emulating memory when executing a program!

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 7/30

Operational Semantics with Pointers Cont.

I Idea: Add one level of indirection in the environment.

I We used to have one environment that maps variables to
values

I Now, we will have:

I An environment E mapping variables to addresses

I A store S mapping addresses to values stored at this address

I The store is emulating memory when executing a program!

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 7/30

Operational Semantics with Pointers Cont.

I Idea: Add one level of indirection in the environment.

I We used to have one environment that maps variables to
values

I Now, we will have:
I An environment E mapping variables to addresses

I A store S mapping addresses to values stored at this address

I The store is emulating memory when executing a program!

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 7/30

Operational Semantics with Pointers Cont.

I Idea: Add one level of indirection in the environment.

I We used to have one environment that maps variables to
values

I Now, we will have:
I An environment E mapping variables to addresses

I A store S mapping addresses to values stored at this address

I The store is emulating memory when executing a program!

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 7/30

Operational Semantics with Pointers Cont.

I Idea: Add one level of indirection in the environment.

I We used to have one environment that maps variables to
values

I Now, we will have:
I An environment E mapping variables to addresses

I A store S mapping addresses to values stored at this address

I The store is emulating memory when executing a program!

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 7/30

The Store
I This means that our operational semantics will now be of the

form
. . .

E ,S ` . . .

I Specifically, expression rules will be of the form:
. . .

E ,S ` e : v

I Conditional rules are of the form:
. . .

E ,S ` e : bool

I And statement rules are of the form:
. . .

E ,S ` e : E ′,S ′

I Statements now both change the environment and the store!

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 8/30

The Store
I This means that our operational semantics will now be of the

form
. . .

E ,S ` . . .

I Specifically, expression rules will be of the form:
. . .

E ,S ` e : v

I Conditional rules are of the form:
. . .

E ,S ` e : bool

I And statement rules are of the form:
. . .

E ,S ` e : E ′,S ′

I Statements now both change the environment and the store!

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 8/30

The Store
I This means that our operational semantics will now be of the

form
. . .

E ,S ` . . .

I Specifically, expression rules will be of the form:
. . .

E ,S ` e : v

I Conditional rules are of the form:
. . .

E ,S ` e : bool

I And statement rules are of the form:
. . .

E ,S ` e : E ′,S ′

I Statements now both change the environment and the store!

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 8/30

The Store
I This means that our operational semantics will now be of the

form
. . .

E ,S ` . . .

I Specifically, expression rules will be of the form:
. . .

E ,S ` e : v

I Conditional rules are of the form:
. . .

E ,S ` e : bool

I And statement rules are of the form:
. . .

E ,S ` e : E ′,S ′

I Statements now both change the environment and the store!

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 8/30

The Store
I This means that our operational semantics will now be of the

form
. . .

E ,S ` . . .

I Specifically, expression rules will be of the form:
. . .

E ,S ` e : v

I Conditional rules are of the form:
. . .

E ,S ` e : bool

I And statement rules are of the form:
. . .

E ,S ` e : E ′,S ′

I Statements now both change the environment and the store!

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 8/30

The Store in Action

I Let start with expressions and take a look at the rule for id

I Recall, in IMP1 the operational semantics for id just returned
E (id)

I Now, let’s write the same rule for IMP2:

l1 = E (id)
v = S (l1)

E ,S ` id : v

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 9/30

The Store in Action

I Let start with expressions and take a look at the rule for id

I Recall, in IMP1 the operational semantics for id just returned
E (id)

I Now, let’s write the same rule for IMP2:

l1 = E (id)
v = S (l1)

E ,S ` id : v

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 9/30

The Store in Action

I Let start with expressions and take a look at the rule for id

I Recall, in IMP1 the operational semantics for id just returned
E (id)

I Now, let’s write the same rule for IMP2:

l1 = E (id)
v = S (l1)

E ,S ` id : v

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 9/30

The Store in Action

I Let start with expressions and take a look at the rule for id

I Recall, in IMP1 the operational semantics for id just returned
E (id)

I Now, let’s write the same rule for IMP2:

l1 = E (id)
v = S (l1)

E ,S ` id : v

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 9/30

The alloc Statement

I Intended semantics of alloc: Return a fresh address in S that
is not used by anyone else

I Here are the operational semantics of alloc:

lf fresh
S ′ = S [lf ← 0]
S ′′ = S ′[E (v)← lf]

E ,S ` id = alloc : E ,S ′′

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 10/30

The alloc Statement

I Intended semantics of alloc: Return a fresh address in S that
is not used by anyone else

I Here are the operational semantics of alloc:

lf fresh
S ′ = S [lf ← 0]
S ′′ = S ′[E (v)← lf]

E ,S ` id = alloc : E ,S ′′

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 10/30

The alloc Statement

I Intended semantics of alloc: Return a fresh address in S that
is not used by anyone else

I Here are the operational semantics of alloc:

lf fresh
S ′ = S [lf ← 0]
S ′′ = S ′[E (v)← lf]

E ,S ` id = alloc : E ,S ′′

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 10/30

Load in IMP2

I Next: The load expression

I What do we have to do to load a value?

I Look up the address l1 of the variable in E

I Look up the value of l1 in S as v1

I Look up the value of v1 in S

I Here is the rule for load:

l1 = E (id)
v1 = S (l1)
v2 = S (v1)

E ,S ` ∗id : v2

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 11/30

Load in IMP2

I Next: The load expression

I What do we have to do to load a value?

I Look up the address l1 of the variable in E

I Look up the value of l1 in S as v1

I Look up the value of v1 in S

I Here is the rule for load:

l1 = E (id)
v1 = S (l1)
v2 = S (v1)

E ,S ` ∗id : v2

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 11/30

Load in IMP2

I Next: The load expression

I What do we have to do to load a value?
I Look up the address l1 of the variable in E

I Look up the value of l1 in S as v1

I Look up the value of v1 in S

I Here is the rule for load:

l1 = E (id)
v1 = S (l1)
v2 = S (v1)

E ,S ` ∗id : v2

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 11/30

Load in IMP2

I Next: The load expression

I What do we have to do to load a value?
I Look up the address l1 of the variable in E

I Look up the value of l1 in S as v1

I Look up the value of v1 in S

I Here is the rule for load:

l1 = E (id)
v1 = S (l1)
v2 = S (v1)

E ,S ` ∗id : v2

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 11/30

Load in IMP2

I Next: The load expression

I What do we have to do to load a value?
I Look up the address l1 of the variable in E

I Look up the value of l1 in S as v1

I Look up the value of v1 in S

I Here is the rule for load:

l1 = E (id)
v1 = S (l1)
v2 = S (v1)

E ,S ` ∗id : v2

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 11/30

Load in IMP2

I Next: The load expression

I What do we have to do to load a value?
I Look up the address l1 of the variable in E

I Look up the value of l1 in S as v1

I Look up the value of v1 in S

I Here is the rule for load:

l1 = E (id)
v1 = S (l1)
v2 = S (v1)

E ,S ` ∗id : v2

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 11/30

Load in IMP2

I Next: The load expression

I What do we have to do to load a value?
I Look up the address l1 of the variable in E

I Look up the value of l1 in S as v1

I Look up the value of v1 in S

I Here is the rule for load:

l1 = E (id)
v1 = S (l1)
v2 = S (v1)

E ,S ` ∗id : v2

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 11/30

Store in IMP2

I Next: The store statement ∗id = e

I What do we have to do to store a value?

I Look up the address l1 of the variable v in E

I Look up the value of l1 in S as l2

I Change the value of l2 in S to e’s value

I Here is the rule for store:

E ,S ` e : v
l1 = E (id)
l2 = S (l1)
S ′ = S [l2 ← v]

E ,S ` ∗id = e : E ,S ′

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 12/30

Store in IMP2

I Next: The store statement ∗id = e

I What do we have to do to store a value?

I Look up the address l1 of the variable v in E

I Look up the value of l1 in S as l2

I Change the value of l2 in S to e’s value

I Here is the rule for store:

E ,S ` e : v
l1 = E (id)
l2 = S (l1)
S ′ = S [l2 ← v]

E ,S ` ∗id = e : E ,S ′

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 12/30

Store in IMP2

I Next: The store statement ∗id = e

I What do we have to do to store a value?
I Look up the address l1 of the variable v in E

I Look up the value of l1 in S as l2

I Change the value of l2 in S to e’s value

I Here is the rule for store:

E ,S ` e : v
l1 = E (id)
l2 = S (l1)
S ′ = S [l2 ← v]

E ,S ` ∗id = e : E ,S ′

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 12/30

Store in IMP2

I Next: The store statement ∗id = e

I What do we have to do to store a value?
I Look up the address l1 of the variable v in E

I Look up the value of l1 in S as l2

I Change the value of l2 in S to e’s value

I Here is the rule for store:

E ,S ` e : v
l1 = E (id)
l2 = S (l1)
S ′ = S [l2 ← v]

E ,S ` ∗id = e : E ,S ′

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 12/30

Store in IMP2

I Next: The store statement ∗id = e

I What do we have to do to store a value?
I Look up the address l1 of the variable v in E

I Look up the value of l1 in S as l2

I Change the value of l2 in S to e’s value

I Here is the rule for store:

E ,S ` e : v
l1 = E (id)
l2 = S (l1)
S ′ = S [l2 ← v]

E ,S ` ∗id = e : E ,S ′

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 12/30

Store in IMP2

I Next: The store statement ∗id = e

I What do we have to do to store a value?
I Look up the address l1 of the variable v in E

I Look up the value of l1 in S as l2

I Change the value of l2 in S to e’s value

I Here is the rule for store:

E ,S ` e : v
l1 = E (id)
l2 = S (l1)
S ′ = S [l2 ← v]

E ,S ` ∗id = e : E ,S ′

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 12/30

Store in IMP2

I Next: The store statement ∗id = e

I What do we have to do to store a value?
I Look up the address l1 of the variable v in E

I Look up the value of l1 in S as l2

I Change the value of l2 in S to e’s value

I Here is the rule for store:

E ,S ` e : v
l1 = E (id)
l2 = S (l1)
S ′ = S [l2 ← v]

E ,S ` ∗id = e : E ,S ′

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 12/30

Storage for Variables

I So far, we have been sloppy about the storage associated with
variables

I Specifically, we have assumed that every variable can be
looked up in E

I But this is clearly not the case unless some rule adds them to
E !

I Question: How can we solve this problem?

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 13/30

Storage for Variables

I So far, we have been sloppy about the storage associated with
variables

I Specifically, we have assumed that every variable can be
looked up in E

I But this is clearly not the case unless some rule adds them to
E !

I Question: How can we solve this problem?

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 13/30

Storage for Variables

I So far, we have been sloppy about the storage associated with
variables

I Specifically, we have assumed that every variable can be
looked up in E

I But this is clearly not the case unless some rule adds them to
E !

I Question: How can we solve this problem?

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 13/30

Storage for Variables

I So far, we have been sloppy about the storage associated with
variables

I Specifically, we have assumed that every variable can be
looked up in E

I But this is clearly not the case unless some rule adds them to
E !

I Question: How can we solve this problem?

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 13/30

Storage for Variables Cont

I Solution 1: Two cases for each rule where we use a variables

I One case if the variable is already in E

I One case if variable is not yet in E

I Solution 2: Add variable declarations to our language

I Specifically, add a declare id statement

I Semantics of declare id:

lf fresh
E ′ = E [id ← lf]

E ,S ` declare id : S ,E ′

I This is the solution preferred by most imperative languages

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 14/30

Storage for Variables Cont

I Solution 1: Two cases for each rule where we use a variables
I One case if the variable is already in E

I One case if variable is not yet in E

I Solution 2: Add variable declarations to our language

I Specifically, add a declare id statement

I Semantics of declare id:

lf fresh
E ′ = E [id ← lf]

E ,S ` declare id : S ,E ′

I This is the solution preferred by most imperative languages

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 14/30

Storage for Variables Cont

I Solution 1: Two cases for each rule where we use a variables
I One case if the variable is already in E

I One case if variable is not yet in E

I Solution 2: Add variable declarations to our language

I Specifically, add a declare id statement

I Semantics of declare id:

lf fresh
E ′ = E [id ← lf]

E ,S ` declare id : S ,E ′

I This is the solution preferred by most imperative languages

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 14/30

Storage for Variables Cont

I Solution 1: Two cases for each rule where we use a variables
I One case if the variable is already in E

I One case if variable is not yet in E

I Solution 2: Add variable declarations to our language

I Specifically, add a declare id statement

I Semantics of declare id:

lf fresh
E ′ = E [id ← lf]

E ,S ` declare id : S ,E ′

I This is the solution preferred by most imperative languages

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 14/30

Storage for Variables Cont

I Solution 1: Two cases for each rule where we use a variables
I One case if the variable is already in E

I One case if variable is not yet in E

I Solution 2: Add variable declarations to our language

I Specifically, add a declare id statement

I Semantics of declare id:

lf fresh
E ′ = E [id ← lf]

E ,S ` declare id : S ,E ′

I This is the solution preferred by most imperative languages

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 14/30

Storage for Variables Cont

I Solution 1: Two cases for each rule where we use a variables
I One case if the variable is already in E

I One case if variable is not yet in E

I Solution 2: Add variable declarations to our language

I Specifically, add a declare id statement

I Semantics of declare id:

lf fresh
E ′ = E [id ← lf]

E ,S ` declare id : S ,E ′

I This is the solution preferred by most imperative languages

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 14/30

Storage for Variables Cont

I Solution 1: Two cases for each rule where we use a variables
I One case if the variable is already in E

I One case if variable is not yet in E

I Solution 2: Add variable declarations to our language

I Specifically, add a declare id statement

I Semantics of declare id:

lf fresh
E ′ = E [id ← lf]

E ,S ` declare id : S ,E ′

I This is the solution preferred by most imperative languages

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 14/30

Aliasing

I As soon as we allow pointers, we also allow aliasing

I Two pointers alias if they point to the same memory location

I Here is a simple example program:
declare x, y;

x = alloc;

y = x;

*x = 3;

*y = 4;

I What is the value of *x?

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 15/30

Aliasing

I As soon as we allow pointers, we also allow aliasing

I Two pointers alias if they point to the same memory location

I Here is a simple example program:
declare x, y;

x = alloc;

y = x;

*x = 3;

*y = 4;

I What is the value of *x?

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 15/30

Aliasing

I As soon as we allow pointers, we also allow aliasing

I Two pointers alias if they point to the same memory location

I Here is a simple example program:
declare x, y;

x = alloc;

y = x;

*x = 3;

*y = 4;

I What is the value of *x?

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 15/30

Aliasing

I As soon as we allow pointers, we also allow aliasing

I Two pointers alias if they point to the same memory location

I Here is a simple example program:
declare x, y;

x = alloc;

y = x;

*x = 3;

*y = 4;

I What is the value of *x?

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 15/30

Aliasing Cont.

I In one sense, aliasing is great.

I In fact, many the cases where pointers are really useful involve
some kind of aliasing

I However, in another sense, aliasing is awful

I Because of aliasing, storing a value into any location can
potentially change every other location’s value!

I This is very bad news for any kind of expressive type system

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 16/30

Aliasing Cont.

I In one sense, aliasing is great.

I In fact, many the cases where pointers are really useful involve
some kind of aliasing

I However, in another sense, aliasing is awful

I Because of aliasing, storing a value into any location can
potentially change every other location’s value!

I This is very bad news for any kind of expressive type system

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 16/30

Aliasing Cont.

I In one sense, aliasing is great.

I In fact, many the cases where pointers are really useful involve
some kind of aliasing

I However, in another sense, aliasing is awful

I Because of aliasing, storing a value into any location can
potentially change every other location’s value!

I This is very bad news for any kind of expressive type system

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 16/30

Aliasing Cont.

I In one sense, aliasing is great.

I In fact, many the cases where pointers are really useful involve
some kind of aliasing

I However, in another sense, aliasing is awful

I Because of aliasing, storing a value into any location can
potentially change every other location’s value!

I This is very bad news for any kind of expressive type system

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 16/30

Aliasing Cont.

I In one sense, aliasing is great.

I In fact, many the cases where pointers are really useful involve
some kind of aliasing

I However, in another sense, aliasing is awful

I Because of aliasing, storing a value into any location can
potentially change every other location’s value!

I This is very bad news for any kind of expressive type system

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 16/30

Run-time errors

I Question: What kind of new run-time errors can happen in
IMP2?

I Run-time errors everywhere!

I This is another typical “side effect” of adding pointers to a
language

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 17/30

Run-time errors

I Question: What kind of new run-time errors can happen in
IMP2?

I Run-time errors everywhere!

I This is another typical “side effect” of adding pointers to a
language

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 17/30

Run-time errors

I Question: What kind of new run-time errors can happen in
IMP2?

I Run-time errors everywhere!

I This is another typical “side effect” of adding pointers to a
language

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 17/30

Even More Features

I Another popular feature of imperative languages: arrays

I Array is nothing but a list of values

I Indexed by position

I Corresponds to a contiguous region of memory

I Popular because fast

I Accessing an element only requires adding to the base pointer

I Can perform in-place updates of values

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 18/30

Even More Features

I Another popular feature of imperative languages: arrays

I Array is nothing but a list of values

I Indexed by position

I Corresponds to a contiguous region of memory

I Popular because fast

I Accessing an element only requires adding to the base pointer

I Can perform in-place updates of values

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 18/30

Even More Features

I Another popular feature of imperative languages: arrays

I Array is nothing but a list of values
I Indexed by position

I Corresponds to a contiguous region of memory

I Popular because fast

I Accessing an element only requires adding to the base pointer

I Can perform in-place updates of values

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 18/30

Even More Features

I Another popular feature of imperative languages: arrays

I Array is nothing but a list of values
I Indexed by position

I Corresponds to a contiguous region of memory

I Popular because fast

I Accessing an element only requires adding to the base pointer

I Can perform in-place updates of values

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 18/30

Even More Features

I Another popular feature of imperative languages: arrays

I Array is nothing but a list of values
I Indexed by position

I Corresponds to a contiguous region of memory

I Popular because fast

I Accessing an element only requires adding to the base pointer

I Can perform in-place updates of values

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 18/30

Even More Features

I Another popular feature of imperative languages: arrays

I Array is nothing but a list of values
I Indexed by position

I Corresponds to a contiguous region of memory

I Popular because fast
I Accessing an element only requires adding to the base pointer

I Can perform in-place updates of values

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 18/30

Even More Features

I Another popular feature of imperative languages: arrays

I Array is nothing but a list of values
I Indexed by position

I Corresponds to a contiguous region of memory

I Popular because fast
I Accessing an element only requires adding to the base pointer

I Can perform in-place updates of values

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 18/30

Arrays

I Important: What is called an array in Python is not what we
are talking about here!

I Python arrays are lists of values

I These lists can even contain elements of different type

I We are talking about the C/Java style array here

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 19/30

Arrays

I Important: What is called an array in Python is not what we
are talking about here!

I Python arrays are lists of values

I These lists can even contain elements of different type

I We are talking about the C/Java style array here

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 19/30

Arrays

I Important: What is called an array in Python is not what we
are talking about here!

I Python arrays are lists of values

I These lists can even contain elements of different type

I We are talking about the C/Java style array here

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 19/30

Arrays

I Important: What is called an array in Python is not what we
are talking about here!

I Python arrays are lists of values

I These lists can even contain elements of different type

I We are talking about the C/Java style array here

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 19/30

Arrays

I Important: What is called an array in Python is not what we
are talking about here!

I Python arrays are lists of values

I These lists can even contain elements of different type

I We are talking about the C/Java style array here

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 20/30

Arrays

I Important: What is called an array in Python is not what we
are talking about here!

I Python arrays are lists of values

I These lists can even contain elements of different type

I We are talking about the C/Java style array here

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 20/30

Arrays

I Important: What is called an array in Python is not what we
are talking about here!

I Python arrays are lists of values

I These lists can even contain elements of different type

I We are talking about the C/Java style array here

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 20/30

Arrays

I Important: What is called an array in Python is not what we
are talking about here!

I Python arrays are lists of values

I These lists can even contain elements of different type

I We are talking about the C/Java style array here

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 20/30

Array Language

I Consider the following modified language we will call IMP3:

P → ε | P1;P1 | S
S → if(C) then S1 else s2 fi | id = e | id [e1] = e2

| while(C) do S od | id = alloc | declare id
e → id | e1 + e2 | e1 − e2 | int | id [e]
C → e1 ≤ e2 | e1 = e2 | not C | C1 and C2

I Observe that load and store are replaces with array load and
store ⇒ pointer arrays are a generalization of pointers

I Also, assume that alloc allocates arrays of infinite size

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 21/30

Array Language

I Consider the following modified language we will call IMP3:

P → ε | P1;P1 | S
S → if(C) then S1 else s2 fi | id = e | id [e1] = e2

| while(C) do S od | id = alloc | declare id
e → id | e1 + e2 | e1 − e2 | int | id [e]
C → e1 ≤ e2 | e1 = e2 | not C | C1 and C2

I Observe that load and store are replaces with array load and
store ⇒ pointer arrays are a generalization of pointers

I Also, assume that alloc allocates arrays of infinite size

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 21/30

Array Language

I Consider the following modified language we will call IMP3:

P → ε | P1;P1 | S
S → if(C) then S1 else s2 fi | id = e | id [e1] = e2

| while(C) do S od | id = alloc | declare id
e → id | e1 + e2 | e1 − e2 | int | id [e]
C → e1 ≤ e2 | e1 = e2 | not C | C1 and C2

I Observe that load and store are replaces with array load and
store ⇒ pointer arrays are a generalization of pointers

I Also, assume that alloc allocates arrays of infinite size

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 21/30

Array Language

I Consider the following modified language we will call IMP3:

P → ε | P1;P1 | S
S → if(C) then S1 else s2 fi | id = e | id [e1] = e2

| while(C) do S od | id = alloc | declare id
e → id | e1 + e2 | e1 − e2 | int | id [e]
C → e1 ≤ e2 | e1 = e2 | not C | C1 and C2

I Observe that load and store are replaces with array load and
store ⇒ pointer arrays are a generalization of pointers

I Also, assume that alloc allocates arrays of infinite size

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 21/30

Semantics of IMP3

I The only new statements are array load and array store

I They replace load and store from IMP2

I Question: How can we emulate pointer load and store in
IMP3?

I Answer: Pointer load id = *e is the same as id = e[0]

I Pointer store *id = e is the same as id[0] = e

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 22/30

Semantics of IMP3

I The only new statements are array load and array store

I They replace load and store from IMP2

I Question: How can we emulate pointer load and store in
IMP3?

I Answer: Pointer load id = *e is the same as id = e[0]

I Pointer store *id = e is the same as id[0] = e

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 22/30

Semantics of IMP3

I The only new statements are array load and array store

I They replace load and store from IMP2

I Question: How can we emulate pointer load and store in
IMP3?

I Answer: Pointer load id = *e is the same as id = e[0]

I Pointer store *id = e is the same as id[0] = e

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 22/30

Semantics of IMP3

I The only new statements are array load and array store

I They replace load and store from IMP2

I Question: How can we emulate pointer load and store in
IMP3?

I Answer: Pointer load id = *e is the same as id = e[0]

I Pointer store *id = e is the same as id[0] = e

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 22/30

Semantics of IMP3

I The only new statements are array load and array store

I They replace load and store from IMP2

I Question: How can we emulate pointer load and store in
IMP3?

I Answer: Pointer load id = *e is the same as id = e[0]

I Pointer store *id = e is the same as id[0] = e

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 22/30

On to the Operational Semantics

I Fortunately, the only change from IMP2 are the array load
and store

I Therefore, we only need to write two new rules

I First order of business: Array load

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 23/30

On to the Operational Semantics

I Fortunately, the only change from IMP2 are the array load
and store

I Therefore, we only need to write two new rules

I First order of business: Array load

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 23/30

On to the Operational Semantics

I Fortunately, the only change from IMP2 are the array load
and store

I Therefore, we only need to write two new rules

I First order of business: Array load

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 23/30

Load in IMP3

I What do we have to do to load a value in an array?

I Specifically, how do we process id [e]?

I Evaluate e to vi

I Look up the address l1 of the variable id in E

I Look up the value of l1 in S as v1

I Add the index vi to v1 as v2

I Look up the value of l2 in S

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 24/30

Load in IMP3

I What do we have to do to load a value in an array?

I Specifically, how do we process id [e]?

I Evaluate e to vi

I Look up the address l1 of the variable id in E

I Look up the value of l1 in S as v1

I Add the index vi to v1 as v2

I Look up the value of l2 in S

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 24/30

Load in IMP3

I What do we have to do to load a value in an array?

I Specifically, how do we process id [e]?
I Evaluate e to vi

I Look up the address l1 of the variable id in E

I Look up the value of l1 in S as v1

I Add the index vi to v1 as v2

I Look up the value of l2 in S

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 24/30

Load in IMP3

I What do we have to do to load a value in an array?

I Specifically, how do we process id [e]?
I Evaluate e to vi

I Look up the address l1 of the variable id in E

I Look up the value of l1 in S as v1

I Add the index vi to v1 as v2

I Look up the value of l2 in S

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 24/30

Load in IMP3

I What do we have to do to load a value in an array?

I Specifically, how do we process id [e]?
I Evaluate e to vi

I Look up the address l1 of the variable id in E

I Look up the value of l1 in S as v1

I Add the index vi to v1 as v2

I Look up the value of l2 in S

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 24/30

Load in IMP3

I What do we have to do to load a value in an array?

I Specifically, how do we process id [e]?
I Evaluate e to vi

I Look up the address l1 of the variable id in E

I Look up the value of l1 in S as v1

I Add the index vi to v1 as v2

I Look up the value of l2 in S

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 24/30

Load in IMP3

I What do we have to do to load a value in an array?

I Specifically, how do we process id [e]?
I Evaluate e to vi

I Look up the address l1 of the variable id in E

I Look up the value of l1 in S as v1

I Add the index vi to v1 as v2

I Look up the value of l2 in S

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 24/30

Load in IMP3

I Here is the rule for load:

E ,S ` e : vi
l1 = E (id)
v1 = S (l1)
v2 = v1 + vi
v3 = S (v2)

E ,S ` id [e] : v3

I Observe how this is a generalization of the earlier rule for
pointer load

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 25/30

Load in IMP3

I Here is the rule for load:

E ,S ` e : vi
l1 = E (id)
v1 = S (l1)
v2 = v1 + vi
v3 = S (v2)

E ,S ` id [e] : v3

I Observe how this is a generalization of the earlier rule for
pointer load

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 25/30

Load in IMP3

I Here is the rule for load:

E ,S ` e : vi
l1 = E (id)
v1 = S (l1)
v2 = v1 + vi
v3 = S (v2)

E ,S ` id [e] : v3

I Observe how this is a generalization of the earlier rule for
pointer load

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 25/30

Store in IMP3

I Next: The store statement id [e1] = e2

I What do we have to do to store a value?

I Evaluate e2 to vi

I Look up the address l1 of the variable v in E

I Look up the value of l1 in S as l2

I Change the value of l2 + vi in S to e1’s value

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 26/30

Store in IMP3

I Next: The store statement id [e1] = e2

I What do we have to do to store a value?

I Evaluate e2 to vi

I Look up the address l1 of the variable v in E

I Look up the value of l1 in S as l2

I Change the value of l2 + vi in S to e1’s value

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 26/30

Store in IMP3

I Next: The store statement id [e1] = e2

I What do we have to do to store a value?
I Evaluate e2 to vi

I Look up the address l1 of the variable v in E

I Look up the value of l1 in S as l2

I Change the value of l2 + vi in S to e1’s value

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 26/30

Store in IMP3

I Next: The store statement id [e1] = e2

I What do we have to do to store a value?
I Evaluate e2 to vi

I Look up the address l1 of the variable v in E

I Look up the value of l1 in S as l2

I Change the value of l2 + vi in S to e1’s value

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 26/30

Store in IMP3

I Next: The store statement id [e1] = e2

I What do we have to do to store a value?
I Evaluate e2 to vi

I Look up the address l1 of the variable v in E

I Look up the value of l1 in S as l2

I Change the value of l2 + vi in S to e1’s value

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 26/30

Store in IMP3

I Next: The store statement id [e1] = e2

I What do we have to do to store a value?
I Evaluate e2 to vi

I Look up the address l1 of the variable v in E

I Look up the value of l1 in S as l2

I Change the value of l2 + vi in S to e1’s value

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 26/30

Store in IMP3 Cont.

I Here is the rule for store:

E ,S ` e1 : vi
E ,S ` e2 : v
l1 = E (id)
l2 = S (l1)
l3 = l2 + vi
S ′ = S [l3 ← v]

E ,S ` id [e1] = e2 : E ,S ′

I Again, this is a direct generalization of the store rule in IMP3

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 27/30

Store in IMP3 Cont.

I Here is the rule for store:

E ,S ` e1 : vi
E ,S ` e2 : v
l1 = E (id)
l2 = S (l1)
l3 = l2 + vi
S ′ = S [l3 ← v]

E ,S ` id [e1] = e2 : E ,S ′

I Again, this is a direct generalization of the store rule in IMP3

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 27/30

Store in IMP3 Cont.

I Here is the rule for store:

E ,S ` e1 : vi
E ,S ` e2 : v
l1 = E (id)
l2 = S (l1)
l3 = l2 + vi
S ′ = S [l3 ← v]

E ,S ` id [e1] = e2 : E ,S ′

I Again, this is a direct generalization of the store rule in IMP3

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 27/30

Arrays Discussion

I We have seen how to add pointer arrays to an imperative
language

I However, it is also possible to add arrays without introducing
pointers

I In this case, it is possible to get away without using a store

I You will write semantics for an array language without
pointers on the homework

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 28/30

Arrays Discussion

I We have seen how to add pointer arrays to an imperative
language

I However, it is also possible to add arrays without introducing
pointers

I In this case, it is possible to get away without using a store

I You will write semantics for an array language without
pointers on the homework

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 28/30

Arrays Discussion

I We have seen how to add pointer arrays to an imperative
language

I However, it is also possible to add arrays without introducing
pointers

I In this case, it is possible to get away without using a store

I You will write semantics for an array language without
pointers on the homework

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 28/30

Arrays Discussion

I We have seen how to add pointer arrays to an imperative
language

I However, it is also possible to add arrays without introducing
pointers

I In this case, it is possible to get away without using a store

I You will write semantics for an array language without
pointers on the homework

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 28/30

Further Features

I The imperative languages we studied still lack many features
of real languages

I Some features we did not discuss:

I How to handle different types

I Casting

I Expressions with side effects (e.g., i++)

I . . .

I But we covered all the important basics!

I If you think a little, you can now write semantics for any
missing feature

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 29/30

Further Features

I The imperative languages we studied still lack many features
of real languages

I Some features we did not discuss:

I How to handle different types

I Casting

I Expressions with side effects (e.g., i++)

I . . .

I But we covered all the important basics!

I If you think a little, you can now write semantics for any
missing feature

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 29/30

Further Features

I The imperative languages we studied still lack many features
of real languages

I Some features we did not discuss:
I How to handle different types

I Casting

I Expressions with side effects (e.g., i++)

I . . .

I But we covered all the important basics!

I If you think a little, you can now write semantics for any
missing feature

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 29/30

Further Features

I The imperative languages we studied still lack many features
of real languages

I Some features we did not discuss:
I How to handle different types

I Casting

I Expressions with side effects (e.g., i++)

I . . .

I But we covered all the important basics!

I If you think a little, you can now write semantics for any
missing feature

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 29/30

Further Features

I The imperative languages we studied still lack many features
of real languages

I Some features we did not discuss:
I How to handle different types

I Casting

I Expressions with side effects (e.g., i++)

I . . .

I But we covered all the important basics!

I If you think a little, you can now write semantics for any
missing feature

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 29/30

Further Features

I The imperative languages we studied still lack many features
of real languages

I Some features we did not discuss:
I How to handle different types

I Casting

I Expressions with side effects (e.g., i++)

I . . .

I But we covered all the important basics!

I If you think a little, you can now write semantics for any
missing feature

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 29/30

Further Features

I The imperative languages we studied still lack many features
of real languages

I Some features we did not discuss:
I How to handle different types

I Casting

I Expressions with side effects (e.g., i++)

I . . .

I But we covered all the important basics!

I If you think a little, you can now write semantics for any
missing feature

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 29/30

Further Features

I The imperative languages we studied still lack many features
of real languages

I Some features we did not discuss:
I How to handle different types

I Casting

I Expressions with side effects (e.g., i++)

I . . .

I But we covered all the important basics!

I If you think a little, you can now write semantics for any
missing feature

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 29/30

Further Features Cont.

I If you want to add a new feature, first think if you need more
information!

I Sometimes, you need another mapping (like environment E
and store S)

I In general, there are many correct ways to add features to
operational semantics

I But your goal is to add them cleanly!

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 30/30

Further Features Cont.

I If you want to add a new feature, first think if you need more
information!

I Sometimes, you need another mapping (like environment E
and store S)

I In general, there are many correct ways to add features to
operational semantics

I But your goal is to add them cleanly!

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 30/30

Further Features Cont.

I If you want to add a new feature, first think if you need more
information!

I Sometimes, you need another mapping (like environment E
and store S)

I In general, there are many correct ways to add features to
operational semantics

I But your goal is to add them cleanly!

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 30/30

Further Features Cont.

I If you want to add a new feature, first think if you need more
information!

I Sometimes, you need another mapping (like environment E
and store S)

I In general, there are many correct ways to add features to
operational semantics

I But your goal is to add them cleanly!

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 30/30

