CS345H: Programming Languages

Lecture 16: Imperative Languages |l

Thomas Dillig

Thomas Dillig, CS345H: ing Langu: Lecture 16: ive Languages |1 1/30

Overview

> Last time, we have seen how we can give meaning to a simple
imperative language

Thomas Dillig, CS345H: ing Langu: Lecture 16: ive Languages Il 2/30

Overview

> Last time, we have seen how we can give meaning to a simple
imperative language

» Specifically, we wrote operational semantics for the IMP1
language

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages Il 2/30

Overview

> Last time, we have seen how we can give meaning to a simple
imperative language

» Specifically, we wrote operational semantics for the IMP1
language

» Today: How to give semantics to more feature-rich imperative
languages

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 2/30

Pointers

> In the language IMP1, perhaps the biggest missing feature is
pointers

Thomas Dillig, CS345H: ing Langu: Lecture 16: ive Languages I 3/30

Pointers

> In the language IMP1, perhaps the biggest missing feature is
pointers

> A pointer is a reference to a memory location

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages Il 3/30

Pointers

> In the language IMP1, perhaps the biggest missing feature is
pointers

> A pointer is a reference to a memory location

» Pointers are naturally supported by hardware through load and
store instructions

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages Il 3/30

Pointers

Thomas Dilig,

In the language IMP1, perhaps the biggest missing feature is
pointers

A pointer is a reference to a memory location

Pointers are naturally supported by hardware through load and
store instructions

In fact, pretty much all code turns into pointer manipulation
at the assembly level

CS345H: Programming Languages Lecture 16: Imperative Languages 11

Why Pointers?

» What are pointers good for?

Thomas Dillig, CS345H: ing Langu: Lecture 16: ive Languages Il 4/30

Why Pointers?

» What are pointers good for?
» Call-by-reference in a call-by-value language

Thomas Dillig, CS345H: ing Langu: Lecture 16: ive Languages Il 4/30

Why Pointers?

» What are pointers good for?
» Call-by-reference in a call-by-value language

» Clever and efficient data structures

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages Il 4/30

Why Pointers?

» What are pointers good for?
» Call-by-reference in a call-by-value language

» Clever and efficient data structures

» Avoid copying of data if it can be shared

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages Il 4/30

Why Pointers?

» What are pointers good for?
» Call-by-reference in a call-by-value language

» Clever and efficient data structures

» Avoid copying of data if it can be shared

> It is not uncommon for pointers to to be 100x faster than
copying data!

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages Il 4/30

Why Pointers?

» What are pointers good for?
» Call-by-reference in a call-by-value language

» Clever and efficient data structures

» Avoid copying of data if it can be shared

> It is not uncommon for pointers to to be 100x faster than
copying datal!

» For this reason, pointers are essential for most
performance-critical task.

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 4/30

A Simple Pointer Language

> Let us consider the following simple language with pointers we

9 | P1;P1 | S

if(C) then Sy else so fi |id=¢e| xid=¢
| while(C') do S od | id = alloc

id | e1+ex| eg—ex | int | xid

will call IMP2:
P —
S —
e —
cC —

61§62‘61=€2|n0t0|013nd Co

Thomas Dillig,

CS345H: Programming Languages Lecture 16: Imperative Languages Il

5/30

A Simple Pointer Language

> Let us consider the following simple language with pointers we
will call IMP2:

P — €|P1;P1|S

S — if(C) then Sy else safi |id=¢e| xid=c¢
| while(C') do S od | id = alloc

e — dd|ete|e—e|int| xid

cC — 61§62‘61=62|n0t0|013nd6'2

» This is the same as IMP1, just with a load and store operation

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 5/30

A Simple Pointer Language

> Let us consider the following simple language with pointers we
will call IMP2:

P — €|P1;P1|S

S — if(C) then Sy else so fi |id=¢e| xid =e
| while(C') do S od | id = alloc

id | e1+ e | er —ex|int | xid
61§€2‘61:62|n0t0’013nd02

e

_>
cC —

» This is the same as IMP1, just with a load and store operation

» Here, | am using C syntax for loading and storing

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 5/30

A Simple Pointer Language

> Let us consider the following simple language with pointers we
will call IMP2:

P — €|P1;P1|S

S — if(C) then Sy else so fi |id=¢e| xid =e
| while(C') do S od | id = alloc

id | e1+ e | er —ex|int | xid
61§€2‘61:62|n0t0’013nd02

e

_>
cC —

» This is the same as IMP1, just with a load and store operation

» Here, | am using C syntax for loading and storing

» Addition: Alloc allocates fresh memory

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 5/30

Operational Semantics with Pointers

» We want to give operational semantics to this language

Thomas Dillig, CS345H: ing Langu: Lecture 16: ive Languages Il 6/30

Operational Semantics with Pointers

» We want to give operational semantics to this language

» But how can we handle pointers?

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages Il 6/30

Operational Semantics with Pointers

» We want to give operational semantics to this language
» But how can we handle pointers?

» Recall: So far, we only had a environment.

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages Il 6/30

Operational Semantics with Pointers

v

We want to give operational semantics to this language

v

But how can we handle pointers?

v

Recall: So far, we only had a environment.

» The environment mapped variables to values

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages Il 6/30

Operational Semantics with Pointers

v

We want to give operational semantics to this language

v

But how can we handle pointers?

v

Recall: So far, we only had a environment.

» The environment mapped variables to values

v

But how can we look up the value of a pointer?

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 6/30

Operational Semantics with Pointers Cont.

» |dea: Add one level of indirection in the environment.

Thomas Dillig, CS345H: ing Langu: Lecture 16: ive Languages Il 7/30

Operational Semantics with Pointers Cont.

» |dea: Add one level of indirection in the environment.

» We used to have one environment that maps variables to
values

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages Il 7/30

Operational Semantics with Pointers Cont.

» |dea: Add one level of indirection in the environment.

» We used to have one environment that maps variables to

values

» Now, we will have:

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages Il

7/30

Operational Semantics with Pointers Cont.

» |dea: Add one level of indirection in the environment.

» We used to have one environment that maps variables to

values

» Now, we will have:
» An environment E mapping variables to addresses

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages Il 7/30

Operational Semantics with Pointers Cont.

» |dea: Add one level of indirection in the environment.

» We used to have one environment that maps variables to

values

» Now, we will have:
» An environment E mapping variables to addresses

» A store S mapping addresses to values stored at this address

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages Il 7/30

Operational Semantics with Pointers Cont.

v

Idea: Add one level of indirection in the environment.

v

We used to have one environment that maps variables to
values

» Now, we will have:
» An environment E mapping variables to addresses

» A store S mapping addresses to values stored at this address

v

The store is emulating memory when executing a program!

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 7/30

The Store

» This means that our operational semantics will now be of the
form

E,SF...

Thomas Dillig, CS345H: ing Langu: Lecture 16: ive Languages Il 8/30

The Store

» This means that our operational semantics will now be of the
form

E,SH...
» Specifically, expression rules will be of the form:

E,Ste:w

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages Il 8/30

The Store

» This means that our operational semantics will now be of the
form

» Specifically, expression rules will be of the form:
» Conditional rules are of the form:

E, St e: bool

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages Il 8/30

The Store

» This means that our operational semantics will now be of the
form

» Specifically, expression rules will be of the form:
» Conditional rules are of the form:

» And statement rules are of the form:

E.SFe:E,S

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages Il 8/30

The Store

» This means that our operational semantics will now be of the
form

» Specifically, expression rules will be of the form:
» Conditional rules are of the form:

» And statement rules are of the form:

E.SFe:E,S

» Statements now both change the environment and the store!

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages Il 8/30

The Store in Action

> Let start with expressions and take a look at the rule for id

Thomas Dillig, CS345H: ing Langu: Lecture 16: ive Languages I 9/30

The Store in Action

> Let start with expressions and take a look at the rule for id

» Recall, in IMP1 the operational semantics for id just returned
E(id)

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages Il 9/30

The Store in Action

> Let start with expressions and take a look at the rule for id

» Recall, in IMP1 the operational semantics for id just returned
E(id)

» Now, let’s write the same rule for IMP2:

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages Il 9/30

The Store in Action

> Let start with expressions and take a look at the rule for id

» Recall, in IMP1 the operational semantics for id just returned
E(id)

» Now, let’s write the same rule for IMP2:

L = E(id)
v=_S(h)
E.SFid:ov

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages Il 9/30

The alloc Statement

» Intended semantics of alloc: Return a fresh address in S that
is not used by anyone else

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 10/30

The alloc Statement

» Intended semantics of alloc: Return a fresh address in S that
is not used by anyone else

» Here are the operational semantics of alloc:

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages II 10/30

The alloc Statement

» Intended semantics of alloc: Return a fresh address in S that
is not used by anyone else

» Here are the operational semantics of alloc:

Iy fresh

S = S[lf — 0]

S" = S'E(v) «]
E, St id=alloc: F,S"

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages II 10/30

Load in IMP2

» Next: The load expression

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages II 11/30

Load in IMP2
» Next: The load expression

» What do we have to do to load a value?

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 11/30

Load in IMP2
» Next: The load expression

» What do we have to do to load a value?
» Look up the address I, of the variable in E

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 11/30

Load in IMP2
» Next: The load expression

» What do we have to do to load a value?
» Look up the address I, of the variable in E

» Look up the value of /; in S as v,

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 11/30

Load in IMP2
» Next: The load expression

» What do we have to do to load a value?
» Look up the address I, of the variable in E

» Look up the value of /; in S as v,

» Look up the value of vy in S

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 11/30

Load in IMP2
» Next: The load expression

» What do we have to do to load a value?
» Look up the address I, of the variable in E

» Look up the value of /; in S as v,
» Look up the value of vy in S

» Here is the rule for load:

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 11/30

Load in IMP2
» Next: The load expression

» What do we have to do to load a value?
» Look up the address I, of the variable in E

» Look up the value of /; in S as v,
» Look up the value of vy in S

» Here is the rule for load:

L = E(id)
v = S(ll)
vy = S(vp)

E, St xid : v

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 11/30

Store in IMP2

» Next: The store statement *id = ¢

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 12/30

Store in IMP2

» Next: The store statement *id = ¢

» What do we have to do to store a value?

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages II 12/30

Store in IMP2

» Next: The store statement *id = ¢

» What do we have to do to store a value?
» Look up the address [; of the variable v in E

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages II 12/30

Store in IMP2

» Next: The store statement *id = ¢

» What do we have to do to store a value?
» Look up the address [; of the variable v in E

» Look up the value of [y in S as Iy

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages II 12/30

Store in IMP2

» Next: The store statement *id = ¢

» What do we have to do to store a value?
» Look up the address [; of the variable v in E

» Look up the value of [y in S as Iy

» Change the value of Iy in S to e's value

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 12/30

Store in IMP2

» Next: The store statement *id = ¢

» What do we have to do to store a value?
» Look up the address [; of the variable v in E

» Look up the value of [y in S as Iy
» Change the value of Iy in S to e's value

» Here is the rule for store:

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages |1 12/30

Store in IMP2

» Next: The store statement *id = ¢

» What do we have to do to store a value?
» Look up the address [; of the variable v in E

» Look up the value of [y in S as Iy
» Change the value of Iy in S to e's value

» Here is the rule for store:

E,Ske:w

I = E(id)
b=2S(h)

S = S[lg — ’U]

E,SFExid=e:FE,S

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages |1 12/30

Storage for Variables

» So far, we have been sloppy about the storage associated with
variables

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages II 13/30

Storage for Variables

» So far, we have been sloppy about the storage associated with
variables

» Specifically, we have assumed that every variable can be
looked up in £

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 13/30

Storage for Variables

» So far, we have been sloppy about the storage associated with
variables

» Specifically, we have assumed that every variable can be
looked up in £

» But this is clearly not the case unless some rule adds them to
E!

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 13/30

Storage for Variables

Thomas Dilig,

So far, we have been sloppy about the storage associated with
variables

Specifically, we have assumed that every variable can be
looked up in E

But this is clearly not the case unless some rule adds them to
E!

Question: How can we solve this problem?

CS345H: Programming Languages Lecture 16: Imperative Languages 11 13/30

Storage for Variables Cont

» Solution 1: Two cases for each rule where we use a variables

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 14/30

Storage for Variables Cont

» Solution 1: Two cases for each rule where we use a variables
» One case if the variable is already in

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 14/30

Storage for Variables Cont

» Solution 1: Two cases for each rule where we use a variables
» One case if the variable is already in

» One case if variable is not yet in F

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 14/30

Storage for Variables Cont

» Solution 1: Two cases for each rule where we use a variables
» One case if the variable is already in

» One case if variable is not yet in F

» Solution 2: Add variable declarations to our language

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 14/30

Storage for Variables Cont

» Solution 1: Two cases for each rule where we use a variables
» One case if the variable is already in

» One case if variable is not yet in F
» Solution 2: Add variable declarations to our language

» Specifically, add a declare id statement

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 14/30

Storage for Variables Cont

» Solution 1: Two cases for each rule where we use a variables
» One case if the variable is already in

» One case if variable is not yet in F
» Solution 2: Add variable declarations to our language
» Specifically, add a declare id statement

» Semantics of declare id:

ly fresh
E' = Elid <]
E,S+ declare id : S, E’

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 14/30

Storage for Variables Cont

» Solution 1: Two cases for each rule where we use a variables
» One case if the variable is already in F

» One case if variable is not yet in F

v

Solution 2: Add variable declarations to our language

v

Specifically, add a declare id statement

Semantics of declare id:

v

ly fresh
E = E[’id — lf]
E, S+ declare id : S, E’

v

This is the solution preferred by most imperative languages

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11

14/30

Aliasing

> As soon as we allow pointers, we also allow aliasing

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages |1 15/30

Aliasing

> As soon as we allow pointers, we also allow aliasing

» Two pointers alias if they point to the same memory location

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages |1 15/30

Aliasing

> As soon as we allow pointers, we also allow aliasing
» Two pointers alias if they point to the same memory location

» Here is a simple example program:

declare x, y;
x = alloc;

y = %5

*X 3;
*y = 4;

Thomas Dillig,

CS345H: Programming Languages Lecture 16: Imperative Languages |1

15/30

Aliasing

> As soon as we allow pointers, we also allow aliasing
» Two pointers alias if they point to the same memory location

» Here is a simple example program:

declare x, y;
x = alloc;

y = x5
*x = 3;
*y=4;

» What is the value of *x?

Thomas Dillig,

CS345H: Programming Languages Lecture 16: Imperative Languages |1

15/30

Aliasing Cont.

> In one sense, aliasing is great.

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages II 16/30

Aliasing Cont.

> In one sense, aliasing is great.

» In fact, many the cases where pointers are really useful involve
some kind of aliasing

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages II 16/30

Aliasing Cont.

> In one sense, aliasing is great.

» In fact, many the cases where pointers are really useful involve
some kind of aliasing

> However, in another sense, aliasing is awful

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages II 16/30

Aliasing Cont.

v

In one sense, aliasing is great.

v

In fact, many the cases where pointers are really useful involve
some kind of aliasing

v

However, in another sense, aliasing is awful

v

Because of aliasing, storing a value into any location can
potentially change every other location’s value!

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages II 16/30

Aliasing Cont.

In one sense, aliasing is great.

In fact, many the cases where pointers are really useful involve
some kind of aliasing

However, in another sense, aliasing is awful

Because of aliasing, storing a value into any location can
potentially change every other location’s value!

This is very bad news for any kind of expressive type system

Thomas Dillig,

CS345H: Programming Languages Lecture 16: Imperative Languages II

16/30

Run-time errors

» Question: What kind of new run-time errors can happen in
IMP27?

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages II 17/30

Run-time errors

» Question: What kind of new run-time errors can happen in
IMP27

> Run-time errors everywhere!

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages II 17/30

Run-time errors

» Question: What kind of new run-time errors can happen in
IMP27

» Run-time errors everywhere!

» This is another typical “side effect” of adding pointers to a
language

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages II 17/30

Even More Features

> Another popular feature of imperative languages: arrays

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 18/30

Even More Features

> Another popular feature of imperative languages: arrays

» Array is nothing but a list of values

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 18/30

Even More Features

> Another popular feature of imperative languages: arrays

» Array is nothing but a list of values
> Indexed by position

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 18/30

Even More Features

> Another popular feature of imperative languages: arrays

» Array is nothing but a list of values
> Indexed by position

» Corresponds to a contiguous region of memory

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 18/30

Even More Features

> Another popular feature of imperative languages: arrays

» Array is nothing but a list of values
> Indexed by position

» Corresponds to a contiguous region of memory

» Popular because fast

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages |1 18/30

Even More Features

> Another popular feature of imperative languages: arrays

» Array is nothing but a list of values
> Indexed by position

» Corresponds to a contiguous region of memory

» Popular because fast
» Accessing an element only requires adding to the base pointer

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages II 18/30

Even More Features

> Another popular feature of imperative languages: arrays

» Array is nothing but a list of values
> Indexed by position

» Corresponds to a contiguous region of memory

» Popular because fast
» Accessing an element only requires adding to the base pointer

» Can perform in-place updates of values

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages II 18/30

Arrays

» Important: What is called an array in Python is not what we
are talking about here!

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 19/30

Arrays

» Important: What is called an array in Python is not what we
are talking about here!

» Python arrays are lists of values

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 19/30

Arrays

» Important: What is called an array in Python is not what we
are talking about here!

» Python arrays are lists of values

» These lists can even contain elements of different type

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 19/30

Arrays

Important: What is called an array in Python is not what we
are talking about here!

v

v

Python arrays are lists of values

These lists can even contain elements of different type

v

v

We are talking about the C/Java style array here

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 19/30

Arrays

» Important: What is called an array in Python is not what we
are talking about here!

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 20/30

Arrays

» Important: What is called an array in Python is not what we
are talking about here!

» Python arrays are lists of values

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 20/30

Arrays

» Important: What is called an array in Python is not what we
are talking about here!

» Python arrays are lists of values

» These lists can even contain elements of different type

Thomas Dillig, CS345H: Programming Languages Lecture 16: Imperative Languages II 20/30

Arrays

Important: What is called an array in Python is not what we
are talking about here!

v

v

Python arrays are lists of values

These lists can even contain elements of different type

v

v

We are talking about the C/Java style array here

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 20/30

Array Language

» Consider the following modified language we will call IMP3:

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 21/30

Array Language

» Consider the following modified language we will call IMP3:

P
S

9]

%
_>

_>
—

9 ‘ Pl;Pl ‘ S

if(C) then S; else sy fi | id = e | id[e1] = e2
| while(C') do S od | id = alloc | declare id
id | e1+ ey | e — ey | int | id[e]
elgezlelzeg\notC\ C1 and Cy

Thomas Dillig,

CS345H: Programming Languages Lecture 16: Imperative Languages 11

21/30

Array Language

» Consider the following modified language we will call IMP3:

P — ¢ ‘ pl;Pl ‘ S

S — if(C) then S; else sp fi | id = e | id[e1] = €2
| while(C') do S od | id = alloc | declare id

e — id|e+e| e —e|int| ide]

C — e <el|e=e|ntC|Cand Cy

» Observe that load and store are replaces with array load and
store = pointer arrays are a generalization of pointers

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 21/30

Array Language

» Consider the following modified language we will call IMP3:

P — ¢ ‘ Pl;Pl ‘ S

S — if(C) then S; else sp fi | id = e | id[e1] = €2
| while(C') do S od | id = alloc | declare id

e — id|e+e| e —e|int| ide]

C — e <el|e=e|ntC|Cand Cy

» Observe that load and store are replaces with array load and
store = pointer arrays are a generalization of pointers

» Also, assume that alloc allocates arrays of infinite size

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 21/30

Semantics of IMP3

» The only new statements are array load and array store

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages |1 22/30

Semantics of IMP3

» The only new statements are array load and array store

» They replace load and store from IMP2

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages |1 22/30

Semantics of IMP3

» The only new statements are array load and array store
» They replace load and store from IMP2

» Question: How can we emulate pointer load and store in
IMP37?

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages |1 22/30

Semantics of IMP3

v

The only new statements are array load and array store

v

They replace load and store from IMP2

v

Question: How can we emulate pointer load and store in
IMP37?

v

Answer: Pointer load id = *e is the same as id = e[0]

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages |1 22/30

Semantics of IMP3

v

The only new statements are array load and array store

v

They replace load and store from IMP2

» Question: How can we emulate pointer load and store in
IMP37?

» Answer: Pointer load id = *e is the same as id = e[0]

» Pointer store *id = e is the same as id[0] = e

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages |1 22/30

On to the Operational Semantics

» Fortunately, the only change from IMP2 are the array load
and store

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages |1 23/30

On to the Operational Semantics

» Fortunately, the only change from IMP2 are the array load
and store

» Therefore, we only need to write two new rules

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages |1 23/30

On to the Operational Semantics

» Fortunately, the only change from IMP2 are the array load
and store

» Therefore, we only need to write two new rules

> First order of business: Array load

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages |1 23/30

Load in IMP3

» What do we have to do to load a value in an array?

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 24/30

Load in IMP3

» What do we have to do to load a value in an array?

» Specifically, how do we process id[e]?

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages II 24/30

Load in IMP3

» What do we have to do to load a value in an array?

» Specifically, how do we process id[e]?
» Evaluate e to v;

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages II 24/30

Load in IMP3

» What do we have to do to load a value in an array?

» Specifically, how do we process id[e]?
» Evaluate e to v;

» Look up the address [; of the variable id in E

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 24/30

Load in IMP3

» What do we have to do to load a value in an array?

» Specifically, how do we process id[e]?
» Evaluate e to v;

» Look up the address [; of the variable id in E

» Look up the value of [} in S as v,

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 24/30

Load in IMP3

» What do we have to do to load a value in an array?

» Specifically, how do we process id[e]?
» Evaluate e to v;

» Look up the address [; of the variable id in E
» Look up the value of [} in S as v,

» Add the index v; to v; as vy

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 24/30

Load in IMP3

» What do we have to do to load a value in an array?

» Specifically, how do we process id[e]?
» Evaluate e to v;

v

Look up the address [; of the variable id in E

v

Look up the value of I; in S as v,

v

Add the index v; to v; as v

v

Look up the value of Iy in S

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 24/30

Load in IMP3

» Here is the rule for load:

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 25/30

Load in IMP3

» Here is the rule for load:

E,Ste:wv

L = E(id)

U1 :S(ll)

Vg = V1 + U;

113:5(1}2)
E,; St idle] : vs

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 25/30

Load in IMP3

» Here is the rule for load:

E,Ste:wv
L = E(id)
v = S(ll)
Vg = V1 + U;
v3 = S(w2)

E,; St idle] : vs

» Observe how this is a generalization of the earlier rule for
pointer load

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 25/30

Store in IMP3

» Next: The store statement id[e;] = e

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 26/30

Store in IMP3

» Next: The store statement id[e;] = e

» What do we have to do to store a value?

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 26/30

Store in IMP3

» Next: The store statement id[e;] = e

» What do we have to do to store a value?
» Evaluate ey to v;

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 26/30

Store in IMP3

» Next: The store statement id[e;] = e

» What do we have to do to store a value?
» Evaluate ey to v;

» Look up the address I; of the variable v in

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 26/30

Store in IMP3

» Next: The store statement id[e;] = e

» What do we have to do to store a value?
» Evaluate ey to v;

» Look up the address I; of the variable v in

» Look up the value of [; in § as I,

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 26/30

Store in IMP3

» Next: The store statement id[e;] = e

» What do we have to do to store a value?
» Evaluate ey to v;

» Look up the address I; of the variable v in
» Look up the value of [; in § as I,

» Change the value of [, + v; in S to e;'s value

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 26/30

Store in IMP3 Cont.

» Here is the rule for store:

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 27/30

Store in IMP3 Cont.

» Here is the rule for store:

E . Ske vy

E . Ste:wv
L = E(id)

b= S(l)

I3 =105+ v

S = S[lg — ’U]

E,S F id[el] =€ E,S'

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 27/30

Store in IMP3 Cont.

» Here is the rule for store:

E.Stke vy
E,Ste:v
L = E(id)
b=2S()

I3 =105+ v

S = S[lg — ’U]

E,Stidle]] =e: E, S

» Again, this is a direct generalization of the store rule in IMP3

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 27/30

Arrays Discussion

» We have seen how to add pointer arrays to an imperative
language

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages II 28/30

Arrays Discussion

» We have seen how to add pointer arrays to an imperative
language

» However, it is also possible to add arrays without introducing
pointers

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages II 28/30

Arrays Discussion

» We have seen how to add pointer arrays to an imperative
language

» However, it is also possible to add arrays without introducing
pointers

> In this case, it is possible to get away without using a store

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages II 28/30

Arrays Discussion

» We have seen how to add pointer arrays to an imperative
language

» However, it is also possible to add arrays without introducing
pointers

> In this case, it is possible to get away without using a store

» You will write semantics for an array language without
pointers on the homework

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages II 28/30

Further Features

» The imperative languages we studied still lack many features
of real languages

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 29/30

Further Features

» The imperative languages we studied still lack many features
of real languages

» Some features we did not discuss:

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 29/30

Further Features

» The imperative languages we studied still lack many features
of real languages

» Some features we did not discuss:
» How to handle different types

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 29/30

Further Features

» The imperative languages we studied still lack many features
of real languages

» Some features we did not discuss:
» How to handle different types

» Casting

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 29/30

Further Features

» The imperative languages we studied still lack many features
of real languages

» Some features we did not discuss:
» How to handle different types

» Casting

» Expressions with side effects (e.g., i++)

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 29/30

Further Features

» The imperative languages we studied still lack many features
of real languages

» Some features we did not discuss:
» How to handle different types

» Casting

» Expressions with side effects (e.g., i++)

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 29/30

Further Features

» The imperative languages we studied still lack many features
of real languages

» Some features we did not discuss:
» How to handle different types

» Casting

» Expressions with side effects (e.g., i++)

» But we covered all the important basics!

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 29/30

Further Features

» The imperative languages we studied still lack many features
of real languages

» Some features we did not discuss:
» How to handle different types

» Casting

» Expressions with side effects (e.g., i++)

» But we covered all the important basics!

» If you think a little, you can now write semantics for any
missing feature

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages 11 29/30

Further Features Cont.

> |If you want to add a new feature, first think if you need more
information!

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages Il 30/30

Further Features Cont.

> |If you want to add a new feature, first think if you need more
information!

» Sometimes, you need another mapping (like environment E
and store S)

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages Il 30/30

Further Features Cont.

> |If you want to add a new feature, first think if you need more
information!

» Sometimes, you need another mapping (like environment E
and store S)

> In general, there are many correct ways to add features to
operational semantics

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages Il 30/30

Further Features Cont.

> |If you want to add a new feature, first think if you need more
information!

» Sometimes, you need another mapping (like environment E
and store S)

> In general, there are many correct ways to add features to
operational semantics

» But your goal is to add them cleanly!

Thomas Dilig, CS345H: Programming Languages Lecture 16: Imperative Languages Il 30/30

