
CS345H: Programming Languages

Lecture 17: Introduction to Object-Oriented
Languages

Thomas Dillig

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 1/31

Overview

I Today, we will study Object Oriented Programming

I Not in the sense of how to use it, but to understand the
fundamental aspects of this paradigm

I We will also explore how to formalize some aspects of it

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 2/31

Overview

I Today, we will study Object Oriented Programming

I Not in the sense of how to use it, but to understand the
fundamental aspects of this paradigm

I We will also explore how to formalize some aspects of it

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 2/31

Overview

I Today, we will study Object Oriented Programming

I Not in the sense of how to use it, but to understand the
fundamental aspects of this paradigm

I We will also explore how to formalize some aspects of it

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 2/31

Subtyping

I Before we actually look at object-orientation, let’s start with a
more basic observation that precedes object oriented thinking

I If we have expression e1 with type τ1 and expression e2 with
type τ2, we can sometimes safely use e2 instead of e1

I Example: τ1 = Int → Int and τ2 = α → Int

I We have seen this before:

Polymorphism

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 3/31

Subtyping

I Before we actually look at object-orientation, let’s start with a
more basic observation that precedes object oriented thinking

I If we have expression e1 with type τ1 and expression e2 with
type τ2, we can sometimes safely use e2 instead of e1

I Example: τ1 = Int → Int and τ2 = α → Int

I We have seen this before:

Polymorphism

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 3/31

Subtyping

I Before we actually look at object-orientation, let’s start with a
more basic observation that precedes object oriented thinking

I If we have expression e1 with type τ1 and expression e2 with
type τ2, we can sometimes safely use e2 instead of e1

I Example: τ1 = Int → Int and τ2 = α → Int

I We have seen this before:

Polymorphism

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 3/31

Subtyping

I Before we actually look at object-orientation, let’s start with a
more basic observation that precedes object oriented thinking

I If we have expression e1 with type τ1 and expression e2 with
type τ2, we can sometimes safely use e2 instead of e1

I Example: τ1 = Int → Int and τ2 = α → Int

I We have seen this before:

Polymorphism

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 3/31

Subtyping

I Before we actually look at object-orientation, let’s start with a
more basic observation that precedes object oriented thinking

I If we have expression e1 with type τ1 and expression e2 with
type τ2, we can sometimes safely use e2 instead of e1

I Example: τ1 = Int → Int and τ2 = α → Int

I We have seen this before: Polymorphism

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 3/31

Another Kind of Polymorphism

I However, there is also another kind of polymorphism that
arises from records called subtype polymorphism:

I Consider the following two data types in Java:
class X {

public int a;

};

class Y {

public int a;

public int b;

};

I Here, anyone who expects something of type X can work just
as well with something of type Y

I Why?

Because the fields of Y are a superset of the fields of X

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 4/31

Another Kind of Polymorphism

I However, there is also another kind of polymorphism that
arises from records called subtype polymorphism:

I Consider the following two data types in Java:
class X {

public int a;

};

class Y {

public int a;

public int b;

};

I Here, anyone who expects something of type X can work just
as well with something of type Y

I Why?

Because the fields of Y are a superset of the fields of X

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 4/31

Another Kind of Polymorphism

I However, there is also another kind of polymorphism that
arises from records called subtype polymorphism:

I Consider the following two data types in Java:
class X {

public int a;

};

class Y {

public int a;

public int b;

};

I Here, anyone who expects something of type X can work just
as well with something of type Y

I Why?

Because the fields of Y are a superset of the fields of X

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 4/31

Another Kind of Polymorphism

I However, there is also another kind of polymorphism that
arises from records called subtype polymorphism:

I Consider the following two data types in Java:
class X {

public int a;

};

class Y {

public int a;

public int b;

};

I Here, anyone who expects something of type X can work just
as well with something of type Y

I Why?

Because the fields of Y are a superset of the fields of X

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 4/31

Another Kind of Polymorphism

I However, there is also another kind of polymorphism that
arises from records called subtype polymorphism:

I Consider the following two data types in Java:
class X {

public int a;

};

class Y {

public int a;

public int b;

};

I Here, anyone who expects something of type X can work just
as well with something of type Y

I Why? Because the fields of Y are a superset of the fields of X

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 4/31

Subtyping Polymorphism

I Intuitively, if B is a subtype of A, it has to be safe to use a B
wherever an A is expected

I But the exact definition of subtype depends on the language!

I Observe that subtyping is really another kind of polymorphism
as it allows us to write code that works with more than one
type

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 5/31

Subtyping Polymorphism

I Intuitively, if B is a subtype of A, it has to be safe to use a B
wherever an A is expected

I But the exact definition of subtype depends on the language!

I Observe that subtyping is really another kind of polymorphism
as it allows us to write code that works with more than one
type

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 5/31

Subtyping Polymorphism

I Intuitively, if B is a subtype of A, it has to be safe to use a B
wherever an A is expected

I But the exact definition of subtype depends on the language!

I Observe that subtyping is really another kind of polymorphism
as it allows us to write code that works with more than one
type

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 5/31

Structural Suptyping

I One possible definition of subtype: B is a subtype of A if B
has all fields A has

I This is called structural subtyping

I With this, there is no need to declare that one type is a
supertype of another, it is just a direct function of the
structure of a type

I This is also known as “duck typing”

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 6/31

Structural Suptyping

I One possible definition of subtype: B is a subtype of A if B
has all fields A has

I This is called structural subtyping

I With this, there is no need to declare that one type is a
supertype of another, it is just a direct function of the
structure of a type

I This is also known as “duck typing”

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 6/31

Structural Suptyping

I One possible definition of subtype: B is a subtype of A if B
has all fields A has

I This is called structural subtyping

I With this, there is no need to declare that one type is a
supertype of another, it is just a direct function of the
structure of a type

I This is also known as “duck typing”

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 6/31

Structural Suptyping

I One possible definition of subtype: B is a subtype of A if B
has all fields A has

I This is called structural subtyping

I With this, there is no need to declare that one type is a
supertype of another, it is just a direct function of the
structure of a type

I This is also known as “duck typing”

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 6/31

Nominative Subtyping

I Contrasting approach: Programmer must explicitly declare
subtype relationships

I Usually, this is combined with language mechanisms that
ensure the resulting type is actually compatible

I This is know as nominative subtyping

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 7/31

Nominative Subtyping

I Contrasting approach: Programmer must explicitly declare
subtype relationships

I Usually, this is combined with language mechanisms that
ensure the resulting type is actually compatible

I This is know as nominative subtyping

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 7/31

Nominative Subtyping

I Contrasting approach: Programmer must explicitly declare
subtype relationships

I Usually, this is combined with language mechanisms that
ensure the resulting type is actually compatible

I This is know as nominative subtyping

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 7/31

Classes

I Next Key Idea using in object-oriented languages: Classes

I A class combines data with functions that operate on this data

I Crucially, the methods operating on data are bundled together
with the data and can access the data

I You can view a class as a type that includes both data and
functions to manipulate this data

I We create an instance of a class to use it

I Every instance has its own data

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 8/31

Classes

I Next Key Idea using in object-oriented languages: Classes

I A class combines data with functions that operate on this data

I Crucially, the methods operating on data are bundled together
with the data and can access the data

I You can view a class as a type that includes both data and
functions to manipulate this data

I We create an instance of a class to use it

I Every instance has its own data

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 8/31

Classes

I Next Key Idea using in object-oriented languages: Classes

I A class combines data with functions that operate on this data

I Crucially, the methods operating on data are bundled together
with the data and can access the data

I You can view a class as a type that includes both data and
functions to manipulate this data

I We create an instance of a class to use it

I Every instance has its own data

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 8/31

Classes

I Next Key Idea using in object-oriented languages: Classes

I A class combines data with functions that operate on this data

I Crucially, the methods operating on data are bundled together
with the data and can access the data

I You can view a class as a type that includes both data and
functions to manipulate this data

I We create an instance of a class to use it

I Every instance has its own data

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 8/31

Classes

I Next Key Idea using in object-oriented languages: Classes

I A class combines data with functions that operate on this data

I Crucially, the methods operating on data are bundled together
with the data and can access the data

I You can view a class as a type that includes both data and
functions to manipulate this data

I We create an instance of a class to use it

I Every instance has its own data

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 8/31

Classes

I Next Key Idea using in object-oriented languages: Classes

I A class combines data with functions that operate on this data

I Crucially, the methods operating on data are bundled together
with the data and can access the data

I You can view a class as a type that includes both data and
functions to manipulate this data

I We create an instance of a class to use it

I Every instance has its own data

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 8/31

Classes Example

I Consider the following program:

struct point {

int x;

int y;

};

void inc_x(point* p) {

p->x++;

}

point *p = new point;

inc_x(p);

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 9/31

Classes Example Cont.

I Here is the same program rewritten with classes:

class point {

int x;

int y;

void inc_x() {

this->x++;

}

};

point *p = new point;

p->inc_x();

I Here, p is an object

I Object = instantiated class

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 10/31

Classes Example Cont.

I Here is the same program rewritten with classes:

class point {

int x;

int y;

void inc_x() {

this->x++;

}

};

point *p = new point;

p->inc_x();

I Here, p is an object

I Object = instantiated class

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 10/31

Classes Example Cont.

I Here is the same program rewritten with classes:

class point {

int x;

int y;

void inc_x() {

this->x++;

}

};

point *p = new point;

p->inc_x();

I Here, p is an object

I Object = instantiated class

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 10/31

Terminology of OO

I Class: A kind of type that combines data and functions to
operate on this data

I Instance of a class: An object build from the class type

I Important: There is one class X in a program (even before
running it), but potentially many instances of X at run-time

I Functions in classes are called methods

I Data fields are (sometimes) called instance variables

I Important: Every instance of a class has its own set of
instance variables!

I Constructor: A special method that is run on instance creation

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 11/31

Terminology of OO

I Class: A kind of type that combines data and functions to
operate on this data

I Instance of a class: An object build from the class type

I Important: There is one class X in a program (even before
running it), but potentially many instances of X at run-time

I Functions in classes are called methods

I Data fields are (sometimes) called instance variables

I Important: Every instance of a class has its own set of
instance variables!

I Constructor: A special method that is run on instance creation

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 11/31

Terminology of OO

I Class: A kind of type that combines data and functions to
operate on this data

I Instance of a class: An object build from the class type

I Important: There is one class X in a program (even before
running it), but potentially many instances of X at run-time

I Functions in classes are called methods

I Data fields are (sometimes) called instance variables

I Important: Every instance of a class has its own set of
instance variables!

I Constructor: A special method that is run on instance creation

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 11/31

Terminology of OO

I Class: A kind of type that combines data and functions to
operate on this data

I Instance of a class: An object build from the class type

I Important: There is one class X in a program (even before
running it), but potentially many instances of X at run-time

I Functions in classes are called methods

I Data fields are (sometimes) called instance variables

I Important: Every instance of a class has its own set of
instance variables!

I Constructor: A special method that is run on instance creation

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 11/31

Terminology of OO

I Class: A kind of type that combines data and functions to
operate on this data

I Instance of a class: An object build from the class type

I Important: There is one class X in a program (even before
running it), but potentially many instances of X at run-time

I Functions in classes are called methods

I Data fields are (sometimes) called instance variables

I Important: Every instance of a class has its own set of
instance variables!

I Constructor: A special method that is run on instance creation

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 11/31

Terminology of OO

I Class: A kind of type that combines data and functions to
operate on this data

I Instance of a class: An object build from the class type

I Important: There is one class X in a program (even before
running it), but potentially many instances of X at run-time

I Functions in classes are called methods

I Data fields are (sometimes) called instance variables

I Important: Every instance of a class has its own set of
instance variables!

I Constructor: A special method that is run on instance creation

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 11/31

Terminology of OO

I Class: A kind of type that combines data and functions to
operate on this data

I Instance of a class: An object build from the class type

I Important: There is one class X in a program (even before
running it), but potentially many instances of X at run-time

I Functions in classes are called methods

I Data fields are (sometimes) called instance variables

I Important: Every instance of a class has its own set of
instance variables!

I Constructor: A special method that is run on instance creation

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 11/31

Classes Example Extended

I Here is a slightly extended version of the program

class point {

int x;

int y;

point() { this->x = 0; this->y = 0; }

void inc_x() {

this->x++;

}

};

point *p = new point();

point *q = new point();

p->inc_x();

I What is the value of y->x?

0

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 12/31

Classes Example Extended

I Here is a slightly extended version of the program

class point {

int x;

int y;

point() { this->x = 0; this->y = 0; }

void inc_x() {

this->x++;

}

};

point *p = new point();

point *q = new point();

p->inc_x();

I What is the value of y->x?

0

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 12/31

Classes Example Extended

I Here is a slightly extended version of the program

class point {

int x;

int y;

point() { this->x = 0; this->y = 0; }

void inc_x() {

this->x++;

}

};

point *p = new point();

point *q = new point();

p->inc_x();

I What is the value of y->x? 0

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 12/31

Objects and Subtyping

I Classes combine very powerfully with subtyping

I But subtyping now also needs to take methods into account!

I Specifically, any subtype must also have (at least) the same
methods as the original type

I This way, we can use the subtype in any context that expects
the original type

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 13/31

Objects and Subtyping

I Classes combine very powerfully with subtyping

I But subtyping now also needs to take methods into account!

I Specifically, any subtype must also have (at least) the same
methods as the original type

I This way, we can use the subtype in any context that expects
the original type

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 13/31

Objects and Subtyping

I Classes combine very powerfully with subtyping

I But subtyping now also needs to take methods into account!

I Specifically, any subtype must also have (at least) the same
methods as the original type

I This way, we can use the subtype in any context that expects
the original type

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 13/31

Objects and Subtyping

I Classes combine very powerfully with subtyping

I But subtyping now also needs to take methods into account!

I Specifically, any subtype must also have (at least) the same
methods as the original type

I This way, we can use the subtype in any context that expects
the original type

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 13/31

Virtual Methods and Subtyping

I But this has one problem. In general, we may need to change
the implementation of an existing method when defining a
subclass

I Allowing redefinition of methods is known as virtual methods

I This is another key OO feature

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 14/31

Virtual Methods and Subtyping

I But this has one problem. In general, we may need to change
the implementation of an existing method when defining a
subclass

I Allowing redefinition of methods is known as virtual methods

I This is another key OO feature

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 14/31

Virtual Methods and Subtyping

I But this has one problem. In general, we may need to change
the implementation of an existing method when defining a
subclass

I Allowing redefinition of methods is known as virtual methods

I This is another key OO feature

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 14/31

Virtual Method Example

I Consider the following code:
class point {

int x;

int y;

point() { this->x = 0; this->y = 0; }

virtual void inc_x() {

this->x++;

}

};

class bigpoint:public point {

int x;

int y;

virtual void inc_x() {

this->x+=2;

}

};

point *p = new bigpoint();

p->inc_x();

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 15/31

Static vs. Dynamic Types

I Allowing subtyping of classes means that every expression in a
program has two kinds of types:

1. Static Type: This is the type computed by the type checker at
compile time. For example, the static type of p in the example
is point.

2. Dynamic Type: This is the type of object a variable holds at
run-time. For example, the dynamic type of p in the example
is bigpoint.

I The dynamic type decides which virtual method is called!

I This is sometimes called the essence of OO

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 16/31

Static vs. Dynamic Types

I Allowing subtyping of classes means that every expression in a
program has two kinds of types:

1. Static Type: This is the type computed by the type checker at
compile time. For example, the static type of p in the example
is point.

2. Dynamic Type: This is the type of object a variable holds at
run-time. For example, the dynamic type of p in the example
is bigpoint.

I The dynamic type decides which virtual method is called!

I This is sometimes called the essence of OO

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 16/31

Static vs. Dynamic Types

I Allowing subtyping of classes means that every expression in a
program has two kinds of types:

1. Static Type: This is the type computed by the type checker at
compile time. For example, the static type of p in the example
is point.

2. Dynamic Type: This is the type of object a variable holds at
run-time. For example, the dynamic type of p in the example
is bigpoint.

I The dynamic type decides which virtual method is called!

I This is sometimes called the essence of OO

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 16/31

Static vs. Dynamic Types

I Allowing subtyping of classes means that every expression in a
program has two kinds of types:

1. Static Type: This is the type computed by the type checker at
compile time. For example, the static type of p in the example
is point.

2. Dynamic Type: This is the type of object a variable holds at
run-time. For example, the dynamic type of p in the example
is bigpoint.

I The dynamic type decides which virtual method is called!

I This is sometimes called the essence of OO

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 16/31

Static vs. Dynamic Types

I Allowing subtyping of classes means that every expression in a
program has two kinds of types:

1. Static Type: This is the type computed by the type checker at
compile time. For example, the static type of p in the example
is point.

2. Dynamic Type: This is the type of object a variable holds at
run-time. For example, the dynamic type of p in the example
is bigpoint.

I The dynamic type decides which virtual method is called!

I This is sometimes called the essence of OO

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 16/31

Relationship between Static and Dynamic Type

I The dynamic type of an object must always be a subtype of
its static type in any well-typed program

I Observe that the semantics of a program with virtual methods
require knowing the type of the object at run-time

I This is a new use of typing: So far, we only used types to
prevent run-time errors

I In OOP, we also use types at run-time to decide which
method to invoke!

I You can think of this operationally as an implicit run-time
check on a type tag that decides which version of a method is
called

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 17/31

Relationship between Static and Dynamic Type

I The dynamic type of an object must always be a subtype of
its static type in any well-typed program

I Observe that the semantics of a program with virtual methods
require knowing the type of the object at run-time

I This is a new use of typing: So far, we only used types to
prevent run-time errors

I In OOP, we also use types at run-time to decide which
method to invoke!

I You can think of this operationally as an implicit run-time
check on a type tag that decides which version of a method is
called

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 17/31

Relationship between Static and Dynamic Type

I The dynamic type of an object must always be a subtype of
its static type in any well-typed program

I Observe that the semantics of a program with virtual methods
require knowing the type of the object at run-time

I This is a new use of typing: So far, we only used types to
prevent run-time errors

I In OOP, we also use types at run-time to decide which
method to invoke!

I You can think of this operationally as an implicit run-time
check on a type tag that decides which version of a method is
called

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 17/31

Relationship between Static and Dynamic Type

I The dynamic type of an object must always be a subtype of
its static type in any well-typed program

I Observe that the semantics of a program with virtual methods
require knowing the type of the object at run-time

I This is a new use of typing: So far, we only used types to
prevent run-time errors

I In OOP, we also use types at run-time to decide which
method to invoke!

I You can think of this operationally as an implicit run-time
check on a type tag that decides which version of a method is
called

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 17/31

Relationship between Static and Dynamic Type

I The dynamic type of an object must always be a subtype of
its static type in any well-typed program

I Observe that the semantics of a program with virtual methods
require knowing the type of the object at run-time

I This is a new use of typing: So far, we only used types to
prevent run-time errors

I In OOP, we also use types at run-time to decide which
method to invoke!

I You can think of this operationally as an implicit run-time
check on a type tag that decides which version of a method is
called

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 17/31

Encapsulation

I The last major OOP feature we have not yet discussed in
encapsulation

I This means that class data can be made non-accessible to
clients of the class

I Example: Declaring an instance variable private

I Fortunately, this only rejects some programs at compile time
but does not change semantics

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 18/31

Encapsulation

I The last major OOP feature we have not yet discussed in
encapsulation

I This means that class data can be made non-accessible to
clients of the class

I Example: Declaring an instance variable private

I Fortunately, this only rejects some programs at compile time
but does not change semantics

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 18/31

Encapsulation

I The last major OOP feature we have not yet discussed in
encapsulation

I This means that class data can be made non-accessible to
clients of the class

I Example: Declaring an instance variable private

I Fortunately, this only rejects some programs at compile time
but does not change semantics

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 18/31

Encapsulation

I The last major OOP feature we have not yet discussed in
encapsulation

I This means that class data can be made non-accessible to
clients of the class

I Example: Declaring an instance variable private

I Fortunately, this only rejects some programs at compile time
but does not change semantics

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 18/31

Why Encapsulation?

I But why do we want to restrict access to object data?

I The idea is to force clients of a class to only rely on its public
interface

I We are therefore free to change the implementation of classes
without affecting its clients

I And we are free to pass any subtype with the same public
interface

I Actually, old idea: This is also known as abstract data types
(ADT) and predates OOP

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 19/31

Why Encapsulation?

I But why do we want to restrict access to object data?

I The idea is to force clients of a class to only rely on its public
interface

I We are therefore free to change the implementation of classes
without affecting its clients

I And we are free to pass any subtype with the same public
interface

I Actually, old idea: This is also known as abstract data types
(ADT) and predates OOP

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 19/31

Why Encapsulation?

I But why do we want to restrict access to object data?

I The idea is to force clients of a class to only rely on its public
interface

I We are therefore free to change the implementation of classes
without affecting its clients

I And we are free to pass any subtype with the same public
interface

I Actually, old idea: This is also known as abstract data types
(ADT) and predates OOP

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 19/31

Why Encapsulation?

I But why do we want to restrict access to object data?

I The idea is to force clients of a class to only rely on its public
interface

I We are therefore free to change the implementation of classes
without affecting its clients

I And we are free to pass any subtype with the same public
interface

I Actually, old idea: This is also known as abstract data types
(ADT) and predates OOP

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 19/31

Why Encapsulation?

I But why do we want to restrict access to object data?

I The idea is to force clients of a class to only rely on its public
interface

I We are therefore free to change the implementation of classes
without affecting its clients

I And we are free to pass any subtype with the same public
interface

I Actually, old idea: This is also known as abstract data types
(ADT) and predates OOP

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 19/31

Essential OOP Features

I The following four features are usually considered necessary
for a language to be object-oriented:

1. Subtyping

2. Classes

3. Virtual Methods

4. Encapsulation

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 20/31

Essential OOP Features

I The following four features are usually considered necessary
for a language to be object-oriented:

1. Subtyping

2. Classes

3. Virtual Methods

4. Encapsulation

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 20/31

Essential OOP Features

I The following four features are usually considered necessary
for a language to be object-oriented:

1. Subtyping

2. Classes

3. Virtual Methods

4. Encapsulation

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 20/31

Essential OOP Features

I The following four features are usually considered necessary
for a language to be object-oriented:

1. Subtyping

2. Classes

3. Virtual Methods

4. Encapsulation

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 20/31

Essential OOP Features

I The following four features are usually considered necessary
for a language to be object-oriented:

1. Subtyping

2. Classes

3. Virtual Methods

4. Encapsulation

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 20/31

Why OOP?

I The allure of the OOP model is that it allows you to view
your program as a collection of interacting entities (objects)
instead of a collection of data and sets of functions

I This often allows for much cleaner and more extensible code

I If the problem you are solving fits into the OO model!

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 21/31

Why OOP?

I The allure of the OOP model is that it allows you to view
your program as a collection of interacting entities (objects)
instead of a collection of data and sets of functions

I This often allows for much cleaner and more extensible code

I If the problem you are solving fits into the OO model!

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 21/31

Why OOP?

I The allure of the OOP model is that it allows you to view
your program as a collection of interacting entities (objects)
instead of a collection of data and sets of functions

I This often allows for much cleaner and more extensible code

I If the problem you are solving fits into the OO model!

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 21/31

Uses of OOP

I OOP is a great fit for:

I GUI toolkits

I Data Structures

I

I In fact, OOP fits so many problems reasonably well that it has
become the default paradigm used in most software

I In fact, many modern languages, such as Java, force an OOP
style

I However, not every problem maps well into objects!

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 22/31

Uses of OOP

I OOP is a great fit for:
I GUI toolkits

I Data Structures

I

I In fact, OOP fits so many problems reasonably well that it has
become the default paradigm used in most software

I In fact, many modern languages, such as Java, force an OOP
style

I However, not every problem maps well into objects!

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 22/31

Uses of OOP

I OOP is a great fit for:
I GUI toolkits

I Data Structures

I

I In fact, OOP fits so many problems reasonably well that it has
become the default paradigm used in most software

I In fact, many modern languages, such as Java, force an OOP
style

I However, not every problem maps well into objects!

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 22/31

Uses of OOP

I OOP is a great fit for:
I GUI toolkits

I Data Structures

I

I In fact, OOP fits so many problems reasonably well that it has
become the default paradigm used in most software

I In fact, many modern languages, such as Java, force an OOP
style

I However, not every problem maps well into objects!

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 22/31

Uses of OOP

I OOP is a great fit for:
I GUI toolkits

I Data Structures

I

I In fact, OOP fits so many problems reasonably well that it has
become the default paradigm used in most software

I In fact, many modern languages, such as Java, force an OOP
style

I However, not every problem maps well into objects!

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 22/31

Uses of OOP

I OOP is a great fit for:
I GUI toolkits

I Data Structures

I

I In fact, OOP fits so many problems reasonably well that it has
become the default paradigm used in most software

I In fact, many modern languages, such as Java, force an OOP
style

I However, not every problem maps well into objects!

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 22/31

Uses of OOP

I OOP is a great fit for:
I GUI toolkits

I Data Structures

I

I In fact, OOP fits so many problems reasonably well that it has
become the default paradigm used in most software

I In fact, many modern languages, such as Java, force an OOP
style

I However, not every problem maps well into objects!

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 22/31

History of OOP

I The idea of objects and subtyping originated at MIT in the
1950s and 1960s

I This was in the context of AI research in LISP

I Over the years, various features that we would call
object-oriented today made their way into various LISP
dialects

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 23/31

History of OOP

I The idea of objects and subtyping originated at MIT in the
1950s and 1960s

I This was in the context of AI research in LISP

I Over the years, various features that we would call
object-oriented today made their way into various LISP
dialects

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 23/31

History of OOP

I The idea of objects and subtyping originated at MIT in the
1950s and 1960s

I This was in the context of AI research in LISP

I Over the years, various features that we would call
object-oriented today made their way into various LISP
dialects

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 23/31

Object Orientation: History Cont.

I First object-oriented language: Simula 67

I Developed by Ole-Johan Dahl and Kristen Nygaard at the
Norwegian Computing Center in Oslo

I Simula was designed as an special-purpose language for
discrete event simulations

I But it as certainly not designed as a general-purpose
programming language

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 24/31

Object Orientation: History Cont.

I First object-oriented language: Simula 67
I Developed by Ole-Johan Dahl and Kristen Nygaard at the

Norwegian Computing Center in Oslo

I Simula was designed as an special-purpose language for
discrete event simulations

I But it as certainly not designed as a general-purpose
programming language

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 24/31

Object Orientation: History Cont.

I First object-oriented language: Simula 67
I Developed by Ole-Johan Dahl and Kristen Nygaard at the

Norwegian Computing Center in Oslo

I Simula was designed as an special-purpose language for
discrete event simulations

I But it as certainly not designed as a general-purpose
programming language

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 24/31

Object Orientation: History Cont.

I First object-oriented language: Simula 67
I Developed by Ole-Johan Dahl and Kristen Nygaard at the

Norwegian Computing Center in Oslo

I Simula was designed as an special-purpose language for
discrete event simulations

I But it as certainly not designed as a general-purpose
programming language

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 24/31

Features Combined in Simula

I Subtyping

I Classes

I virtual methods

I Garbage Collection

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 25/31

Features Combined in Simula

I Subtyping

I Classes

I virtual methods

I Garbage Collection

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 25/31

Features Combined in Simula

I Subtyping

I Classes

I virtual methods

I Garbage Collection

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 25/31

Features Combined in Simula

I Subtyping

I Classes

I virtual methods

I Garbage Collection

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 25/31

From Simlula to Smalltalk

I Simula was extremely successful in speeding up writing of
discrete event simulations

I In fact, so successful that a group at Xerox PARC decided to
create a general-purpose language based on this paradigm
called Smalltalk

I Smalltalk coined the term “object oriented”

I And lead to a huge wave of OO languages

I This was an huge fad in the late 90’s

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 26/31

From Simlula to Smalltalk

I Simula was extremely successful in speeding up writing of
discrete event simulations

I In fact, so successful that a group at Xerox PARC decided to
create a general-purpose language based on this paradigm
called Smalltalk

I Smalltalk coined the term “object oriented”

I And lead to a huge wave of OO languages

I This was an huge fad in the late 90’s

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 26/31

From Simlula to Smalltalk

I Simula was extremely successful in speeding up writing of
discrete event simulations

I In fact, so successful that a group at Xerox PARC decided to
create a general-purpose language based on this paradigm
called Smalltalk

I Smalltalk coined the term “object oriented”

I And lead to a huge wave of OO languages

I This was an huge fad in the late 90’s

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 26/31

From Simlula to Smalltalk

I Simula was extremely successful in speeding up writing of
discrete event simulations

I In fact, so successful that a group at Xerox PARC decided to
create a general-purpose language based on this paradigm
called Smalltalk

I Smalltalk coined the term “object oriented”

I And lead to a huge wave of OO languages

I This was an huge fad in the late 90’s

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 26/31

From Simlula to Smalltalk

I Simula was extremely successful in speeding up writing of
discrete event simulations

I In fact, so successful that a group at Xerox PARC decided to
create a general-purpose language based on this paradigm
called Smalltalk

I Smalltalk coined the term “object oriented”

I And lead to a huge wave of OO languages

I This was an huge fad in the late 90’s

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 26/31

OO in the Real World

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 27/31

OO in the Real World

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 28/31

Other OO languages

I C++

I Java

I C#

I Pretty much any newer imperative language (and plenty
functional ones as well)

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 29/31

Other OO languages

I C++

I Java

I C#

I Pretty much any newer imperative language (and plenty
functional ones as well)

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 29/31

Other OO languages

I C++

I Java

I C#

I Pretty much any newer imperative language (and plenty
functional ones as well)

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 29/31

Other OO languages

I C++

I Java

I C#

I Pretty much any newer imperative language (and plenty
functional ones as well)

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 29/31

The OO paradigm in the wild

I Object oriented programming is one of the very few
techniques that actually seems to make it easer for humans to
build software

I But it does not work well for every problem

I However, since it is so pervasive, this tends to be forgotten

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 30/31

The OO paradigm in the wild

I Object oriented programming is one of the very few
techniques that actually seems to make it easer for humans to
build software

I But it does not work well for every problem

I However, since it is so pervasive, this tends to be forgotten

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 30/31

The OO paradigm in the wild

I Object oriented programming is one of the very few
techniques that actually seems to make it easer for humans to
build software

I But it does not work well for every problem

I However, since it is so pervasive, this tends to be forgotten

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 30/31

Summay

I We have looked at the four aspects that define object-oriented
programming

I Next time: Some issues with semantics and typing in OO
languages

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 31/31

Summay

I We have looked at the four aspects that define object-oriented
programming

I Next time: Some issues with semantics and typing in OO
languages

Thomas Dillig, CS345H: Programming Languages Lecture 17: Introduction to Object-Oriented Languages 31/31

