CS345H: Programming Languages
Lecture 2: Lambda Calculus II and Introduction to L
Thomas Dillig

Administrativa
- Forgot to mention last time: No Textbook
- Today thee handouts: L Reference Manual, Written Assignment 1 and Programming Assignment 0.
- Piazza course site is set up with discussion forum
- Please use forum instead of email

Recursion
- I claimed last lecture that λ-calculus was as expressive as any programming language, e.g. it is Turing-complete
- But for Turing completeness, we need to write recursive functions in λ-calculus

Recall: Named Function
- Write function definition as
 \begin{verbatim}
 fun f with x in e ≡ let f = λx.e in ...
 \end{verbatim}
- Function call is now just application $(f e_1) → (\lambda x.e)e_1$
- What about recursion?

Recursion
- Let us try to define a function that computes the factorial of a number
- Recall recursive factorial definition:
 - Factorial of 0 is 1
 - Factorial of n is $n \times$ Factorial of $(n - 1)$
- Let’s try to write this in λ-calculus:
 \begin{verbatim}
 fun f with n = (if n = 0 then 1 else n * (f (n - 1))) in ...
 \end{verbatim}
- Does this work?
Recursion

- Next, expand the let binding:
- Recall: let \(x = e_1 \) in \(e_2 \) defined as \(e_2[e_1/x] \)
- let \(f = \lambda n.(\text{if } n = 0 \text{ then } 1 \text{ else } n \ast (f(n-1))) \in (f 3) \rightarrow (\lambda n.(\text{if } n = 0 \text{ then } 1 \text{ else } n \ast (f(n-1)))) 3 \)
- Left with undefined symbol \(f \)
- Conclusion: We cannot encode recursion using named functions

What about Recursion?

- On the face of it, \(\lambda \)-calculus does not seem to allow recursion
- But this would make \(\lambda \)-calculus very boring; not many interesting functions can be computed without recursion
- Amazing fact: It is possible to encode recursion in \(\lambda \)-calculus
- It is just a little bit involved (but very instructive to understand)
- Any ideas?

Encoding Recursion

- Recall again the factorial function we would like to compute:
 - fun \(f \) with \(n = (\text{if } n = 0 \text{ then } 1 \text{ else } n \ast (f(n-1))) \)
- We can view this function definition as an equation:
 - \((f n) = (\text{if } n = 0 \text{ then } 1 \text{ else } n \ast (f(n-1))) \)
- This states that the value of \(f n \) is 1 if \(n \) is 0 and \(n \ast (f(n-1)) \) otherwise

Encoding Recursion Cont.

- Now, we can use a \(\lambda \)-abstraction to remove \(n \) from the left-hand side: \((f n) = (\text{if } n = 0 \text{ then } 1 \text{ else } n \ast (f(n-1))) \)
- \(f = \lambda n.(\text{if } n = 0 \text{ then } 1 \text{ else } n \ast (f(n-1))) \)
- Consider defining another function \(G \) by moving \(f \) to the right-hand side:
 - \(G = \lambda f. \lambda n.(\text{if } n = 0 \text{ then } 1 \text{ else } n \ast (f(n-1))) \)
- To see that this is correct, show that \(f = G(f) \) at home

Fixed Points

- A fixed point of function \(h \) is value \(v \) such that \(v = h(v) \)
- Intuition: The fixed point of \(h \) is applying \(h \) until \(v = h(v) \), i.e., base case of the recursion is hit
- But completely unclear how we can compute fixed-point of \(h \)
- An expression that computes a fixed point is called a fixed point operator

The \(Y \)-combinator

- We can define a fixed-point operator in \(\lambda \)-calculus as follows:
 - \(Y = \lambda f.(\lambda x.f(x x))(\lambda x.f(x x)) \)
- This bizarre expression is called \(Y \)-combinator
- Recall property of fixed-point: \(v = h(v) \) for any function \(h \)
- Lets confirm that \(Y \) has this property:
 - \(Y h \rightarrow \lambda f.(\lambda x.f(x x))(\lambda x.f(x x)) h \rightarrow (\lambda x.h(x x))(\lambda x.h(x x)) \rightarrow (h(x x))(\lambda x.h(x x))/x \rightarrow h(\lambda x.h(x x))(\lambda x.h(x x)) \rightarrow h(Y h) \)
Using the Y-combinator

Let’s see how we can use the Y-combinator to compute factorial:

Recall: \(G = \lambda f . \lambda n. (\text{if } n = 0 \text{ then } 1 \text{ else } n \ast (f (n - 1))) \)

Claim: Factorial of \(n \) can be computed as \((YG)n\)

Example:

\[
(YG)2 \\
\rightarrow (G(YG))2 \\
\rightarrow (\lambda f . \lambda n. (\text{if } n = 0 \text{ then } 1 \text{ else } n \ast ((YG)(n - 1))))((YG)2) \\
\rightarrow \lambda n. (\text{if } n = 0 \text{ then } 1 \text{ else } n \ast ((YG)(n - 1)))2 \\
\rightarrow \lambda n. (\text{if } n = 0 \text{ then } 1 \text{ else } n \ast ((YG)(n - 1)))2 \\
\rightarrow \lambda n. (\text{if } n = 0 \text{ then } 1 \text{ else } 2 \ast ((YG)1)) \\
\rightarrow 2 \ast ((YG)1) \\
\rightarrow ... \\
\]

Fixed points Summary

We can compute recursive functions in \(\lambda \)-calculus using fixed-point operators.

We have seen the most famous fixed-point operator, the Y-combinator.

However, there are other \(\lambda \) expressions that also compute fixed points.

Remember: Not every recursive function has to terminate, so this means we can write \(\lambda \) terms that will reduce forever.

Next: Your course project

Course Project Overview

You will implement a lexer, parser, interpreter for the L language.

You can find a reference interpreter on the UT Austin machines to run L programs on (see the L Language handout for details).

As the name suggests, L is very similar to \(\lambda \)-calculus, but still a useful language.

L has a bizarre property that is (almost) unique among programming languages: At the end of the semester, there will be many more interpreters for L than L programs.

Language Overview

In L, every expression evaluates to a value.

The result of running a L program is the value of the program.

Example: let \(x = 3 \) in \(x \) will evaluate to "3"

In addition to integers, L also supports strings.

Example: let \(x = "cs312" \) in \(x \) will evaluate to "cs312"

Of course, L has the \(\lambda \)-operator.

Example: (lambda x. x+3 2) will evaluate to "5"

Note: You must write parenthesis for any applications!

This means \(\lambda \) \(x \cdot x+3 \) 2 is not a valid L program.
More L Examples

- let g = lambda a. if a>0 then 2*a else 3*a in
 let u = 12 in
 (g u)
- Value: "24"

- L also supports currying:
 - let x = lambda a,b. a+b in
 - let y = (x 2) in
 - (y 3)
- Value: "5"

Functions in L

- For convenience, L also has built-in function definitions:
 - fun compute_grade with percent =
 if percent>90 then "A" else
 if percent>80 then "B" else "F"
 in
 (compute_grade 73)
 - Result: "F"

Recursion in L

- Unlike λ-calculus, L allows you to write "naturally" recursive functions
 - fun factorial with n =
 if n<=0 then 1 else n* (factorial (n-1)) in
 ...
 - Can also write "naturally recursive" anonymous functions:
 - let fact =
 lambda n. if n=0 then 1 else n* (fact (n-1)) in
 (fact 6)
 - We will learn later how L allows natural recursion

Input/Output in L

- L has special operators for input/output:
 - let _ = print "Please enter an integer: " in
 - let i = readInt in
 - let _ = print i in
 - let _ = print "String read: " in
 - let _ = print s in
 - 0

Lists in L

- L also supports lists

- Lists are represented as pairs with a head and tail element

- This allows very generic data structures, no just linear lists

- L has the following list operators:
 - isNil: 1 if list is empty, 0 otherwise
 - e1@e2: Returns a list with e1 as head and e2 as tail
 - !e1: Returns head of e1 if e1 is list, e1 otherwise
 - #e1: Returns tail of e1 if e1 is list, Nil otherwise

List Examples

- let x = 1@2@3@4 in x
 - Value: "[1, [2, [3, 4]]]"

- let x = 1@2@3@4 in !x
 - Value: "1"

- let x = 1@2@3@4 in #x
 - Value: "[2, [3, 4]]"
More List Examples

- How about computing the length of a list?
- \[
\text{fun length with } l = \begin{cases}
0 & \text{if isNil } l \\
1 + (\text{length } (#l)) & \text{else}
\end{cases}
\]
- Value: "3"

Run-time errors

- There are many run-time errors possible in L programs:
- Example: let x = "hello" in x+3
- Result: "Run-time error: Binop + can only be applied to expressions of same type"
- The L reference manual lists all possible errors

Course Project Details

- Your first four programming assignments will use L and built an L interpreter
 - Assignment 0: Develop and L program
 - Assignment 1: Lexer
 - Assignment 2: Parser
 - Assignment 3: Interpreter
 - Assignment 4: Type Inference
- You will complete these assignments in L and C++
- I posted a quick C++ introduction on the website
- But we will use only tiny subset of C++, easy to pick up