Recursion

- I claimed last lecture that λ-calculus was as expressive as any programming language, e.g. it is Turing-complete
- But for Turing completeness, we need to write recursive functions in λ-calculus

Recall: Named Function

- Write function definition as
 fun f with x in e ≡ let f = λx.e in
- Function call is now just application (f e₁) → (λx.e)e₁
- What about recursion?

Recursion

- Let us try to define a function that computes the factorial of a number
- Recall recursive factorial definition:
 - Factorial of 0 is 1
 - Factorial of n is n× Factorial of (n − 1)
- Let’s try to write this in λ-calculus:
 - fun f with n = (if n = 0 then 1 else n × (f(n − 1))) in ...
 - Does this work?
Recursion

- Next, expand the let binding:
- Recall: let \(z = e_1 \) in \(e_2 \) defined as \(e_2[e_1/x] \)
- let \(f = \lambda n. (\text{if } n = 0 \text{ then } 1 \text{ else } n \ast (f(n-1))) \) in \((f\ 3) \rightarrow (\lambda n. (\text{if } n = 0 \text{ then } 1 \text{ else } n \ast (f(n-1))))\ 3 \)
- Left with undefined symbol \(f \)
- Conclusion: We cannot encode recursion using named functions

What about Recursion?

- On the face of it, \(\lambda \)-calculus does not seem to allow recursion
- But this would make \(\lambda \)-calculus very boring; not many interesting functions can be computed without recursion
- Amazing fact: It is possible to encode recursion in \(\lambda \)-calculus
- It is just a little bit involved (but very instructive to understand)
- Any ideas?

Encoding Recursion

- Recall again the factorial function we would like to compute:
 - fun \(f \) with \(n \) = (if \(n = 0 \) then 1 else \(n \ast (f(n-1)) \))
- Next, expand the let binding:
- Recall: let \(x = e_1 \) in \(e_2 \) defined as \(e_2[e_1/x] \)
- let \(f = \lambda n. (\text{if } n = 0 \text{ then } 1 \text{ else } n \ast (f(n-1))) \) named
- functions

Encoding Recursion Cont.

- Now, we can use a \(\lambda \)-abstraction to remove \(n \) from the left-hand side: \((f\ n) = (\text{if } n = 0 \text{ then } 1 \text{ else } n \ast (f(n-1))) \)
- \(f = \lambda n. (\text{if } n = 0 \text{ then } 1 \text{ else } n \ast (f(n-1))) \)
- Consider defining another function \(G \) by moving \(f \) to the right-hand side:
 - \(G = \lambda f. \lambda n. (\text{if } n = 0 \text{ then } 1 \text{ else } n \ast (f(n-1))) \)
- To see that this is correct, show that \(f = G(f) \) at home

Fixed Points

- A fixed point of function \(h \) is value \(v \) such that \(v = h(v) \)
- Intuition: The fixed point of \(h \) is applying \(h \) until \(v = h(v) \), i.e., the base case of the recursion is hit
- But completely unclear how we can compute fixed-point of \(h \)
- An expression that computes a fixed point is called a fixed point operator

The \(Y \)-combinator

- We can define a fixed-point operator in \(\lambda \)-calculus as follows:
 - \(Y = \lambda f. (\lambda x. f(x\ x))(\lambda x. f(x\ x)) \)
- This bizarre expression is called \(Y \)-combinator
- Recall property of fixed-point: \(v = h(v) \) for any function \(h \).
- Lets confirm that \(Y \) has this property:
 - \(Y \ h \rightarrow \lambda f. (\lambda x. f(x\ x))(\lambda x. f(x\ x)) \ h \rightarrow (\lambda x. h(x\ x))(\lambda x. h(x\ x)) \rightarrow (h(x\ x))[(\lambda x. h(x\ x))/x] \rightarrow h(\lambda x. h(x\ x))(\lambda x. h(x\ x)) \rightarrow h(Y h) \)
Using the Y-combinator

- Let’s see how we can use the Y—combinator to compute factorial:

 - Recall: \(G = \lambda f . \lambda n. (\text{if } n = 0 \text{ then } 1 \text{ else } n \times (f \ (n - 1))) \)

 - Claim: Factorial of \(n \) can be computed as \((YG)\ n\)

 - Example:

 \[
 \begin{align*}
 (YG)\ 2 & \rightarrow (G(YG))\ 2 \\
 & \rightarrow (Af.\lambda n. (\text{if } n = 0 \text{ then } 1 \text{ else } n \times ((YG)\ (n - 1))))\ 2 \\
 & \rightarrow \lambda n. (\text{if } n = 0 \text{ then } 1 \text{ else } n \times ((YG)\ (n - 1))))\ 2 \\
 & \rightarrow \text{if } 2 = 0 \text{ then } 1 \text{ else } 2 \times ((YG)\ 1) \\
 & \rightarrow 2 \times ((YG)\ 1) \\
 & \rightarrow \ldots
 \end{align*}
 \]

Fixed points Summary

- We can compute recursive functions in \(\lambda\)-calculus using fixed-point operators

- We have seen the most famous fixed-point operator, the Y—combinator

- However, there are other \(\lambda\) expressions that also compute fixed points.

- Remember: Not every recursive function has to terminate, so this means we can write \(\lambda\) terms that will reduce forever

Next: Your course project

Course Project Overview

- You will implement a lexer, parser, interpreter for the L language

- You can find a reference interpreter on the UT Austin machines to run L programs on (see the L Language handout for details)

- As the name suggests, L is very similar to \(\lambda\)-calculus, but still a useful language

- L has a bizarre property that is (almost) unique among programming languages. At the end of the semester, there will be many more interpreters for L than L programs

Language Overview

- In L, every expression evaluates to a value

- The result of running a L program is the value of the program

- Example: let \(x = 3 \) in \(x \) will evaluate to “3”

- In addition to integers, L also supports strings

- Example: let \(x = "cs312" \) in \(x \) will evaluate to “cs312”

Language Overview

- Of course, L has the \(\lambda\)-operator

- Example: \((\lambda x. \ x + 3)\ 2\) will evaluate to “5”

- Note: You must write parenthesis for any applications!

- This means \(\lambda x. \ x + 3\ 2\) is not a valid L program
More L Examples

- let g = lambda a. if a > 0 then 2*a else 3*a in
 let u = 12 in
 (g u)
- Value: "24"
- L also supports currying:
 - let x = lambda a, b. a + b in
 let y = (x 2) in
 (y 3)
- Value: "5"

Functions in L

- For convenience, L also has built-in function definitions:
 - fun compute_grade with percent =
 if percent > 90 then "A" else
 if percent > 80 then "B" else "F"
 in
 (compute_grade 73)
 - Result: "F"

Recursion in L

- Unlike \(\lambda\)-calculus, L allows you to write "naturally" recursive functions
 - fun factorial with n =
 if n <= 0 then 1 else n * (factorial (n-1)) in
 - Can also write "naturally recursive" anonymous functions:
 - let fact = lambda n. if n = 0 then 1 else n * (fact (n-1)) in
 (fact 6)
 - We will learn later how L allows natural recursion

Input/Output in L

- L has special operators for input/output:
 - let _ = print "Please enter an integer: " in
 let i = readInt in
 let _ = print "Please enter a string: " in
 let s = readString in
 let _ = print "Integer read: " in
 let _ = print i in
 let _ = print "String read: " in
 let _ = print s in
 0

Lists in L

- L also supports lists
- Lists are represented as pairs with a head and tail element
- This allows very generic data structures, no just linear lists
- L has the following list operators:
 - isNil: 1 if list is empty, 0 otherwise
 - e1@e2: Returns a list with e1 as head and e2 as tail
 - !e1: Returns head of e1 if e1 is list, e1 otherwise
 - #e1: Returns tail of e1 if e1 is list, Nil otherwise

List Examples

- let x = 1@2@3@4 in x
- Value: "[1, [2, [3, 4]]]"
- let x = 1@2@3@4 in !x
- Value: "1"
- let x = 1@2@3@4 in #x
- Value: "[2, [3, 4]]"
More List Examples

- How about computing the length of a list?
- fun length with l =
 if isNil l then 0 else 1 + (length (#l))
 in
 (length "A"@"B"@"C")
- Value: "3"

Run-time errors

- There are many run-time errors possible in L programs:
- Example: let x = "hello" in x+3
- Result: "Run-time error: Binop + can only be applied to expressions of same type"
- The L reference manual lists all possible errors

Course Project Details

- Your first four programming assignments will use L and built an L interpreter
 - Assignment 0: Develop and L program
 - Assignment 1: Lexer
 - Assignment 2: Parser
 - Assignment 3: Interpreter
 - Assignment 4: Type Inference
- You will complete these assignments in L and C++
- I posted a quick C++ introduction on the website
- But we will use only tiny subset of C++, easy to pick up