
CS345H: Programming Languages

Lecture 3: Lexical Analysis

Thomas Dillig

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 1/38

Syntactic Analysis

I Main Question: How to give structure to strings

I Analogy: Understanding an English sentence
I First, we separate a string into words

I Second, we understand sentence structure by diagramming the
sentence

I Separating a string into words is called lexing and our topic
today

I Observe that this is not necessarily trivial

I Consider the string if x <> 3 then ...

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 2/38

Outline

I Informal sketch of lexical analysis

I Issues in lexical analysis
I Lookahead

I Ambiguities

I Specifying Lexers
I Regular Expressions

I Examples of regular expressions

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 3/38

Lexical Analysis

I Consider the following L program:
if x <> y then

3

else

"hello"

I This “program” is just a string of characters
if x <> y then\n\t3\nelse\n\t"hello"

I Goal: Portion the input string into substrings where the
substrings are tokens

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 4/38

What is a Token?

I Token is a syntactic category

I Example in English: noun, verbs, adjectives, . . .

I In a programming language: constants, identifiers, keywords,
whitespaces...

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 5/38

Tokens

I Tokens correspond to sets of strings

I Identifier in L: strings of letters, digits and ’ ’ starting with a
letter

I Integer in L: a non-empty string of digits

I Keywords in L: “let”, “lambda”, “if”, . . .

I Whitespace: a non-empty sequence of blanks, newlines, and
tabs

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 6/38

1



What are Tokens For?

I Classify program substrings according to their role

I Output of lexical analysis is a stream of tokens...

I ...which is input to the parser

I Parser relies on token distinction
I An identifier is treated different than a keyword

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 7/38

Defining a Lexical Analyzer: Step 1

I Define a finite set of tokens

I Tokens describe all items of interest
I This means no tokens for items not of interest, such as

comments, whitespaces,...

I Choice of tokens depends on language and design of the parser

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 8/38

Example

I Recall:
if x <> y then\n\t3\nelse\n\t"hello"

I Useful tokens for this expression: Identifier, Keyword, Integer,
Relation, Whitespace,...

I Important point: < is a character here, but token is <>

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 9/38

Defining a Lexical Analyzer: Step 2

I Describe which strings belong to each token

I Recall:
I Identifier in L: strings of letters, digits and ’ ’ starting with a

letter

I Integer in L: a non-empty string of digits

I Keywords in L: “let”, “lambda”, “if”, . . .

I Whitespace: a non-empty sequence of blanks, newlines, and
tabs

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 10/38

Lexical Analyzer: Implementation

I A lexer implementation must do two things:

1. Recognize substrings corresponding to tokens

2. Return the value (called lexeme) of the token

I The lexeme is just the substring

I Example: "234" Token: Integer Lexeme: 234

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 11/38

Example

I Recall:
if x <> y then\n\t3\nelse\n\t"hello"

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 12/38

2



Lexical Analyzer: Implementation

I The lexer usually discards “uninteresting” toekens that don’t
contribute to parsing

I Examples: Comments, whitespaces

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 13/38

True Crimes of Lexical Analysis

I Is this as easy as it sounds?

I Not quite!

I Let’s look at some history...

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 14/38

Lexical Analysis in FORTRAN

I FORTRAN rule: Whitespace is insignificant

I Example: VAR1 is the same as VA R1

I Reason: Easy to mess up whitespace when typing punch cards

I A terrible design!

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 15/38

Example

I Consider
DO 5 I=1,25

DO 5 I=1.25

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 16/38

Lexical Analysis in FORTRAN (Cont.)

I Two important points to take away from this example:

1. The goal is to partition the string. This is implemented by
reading left-to-right, recognizing one token at a time

2. Lookahead may be required to decide where one token ends
and the next token begins

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 17/38

Lookahead

I Even our simple example has lookahead issues:

I i vs. if

I < vs. <>

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 18/38

3



Lexical Analysis in PL/I

I PL/I keywords are not reserved

I This means the following is a legal PL/I program
IF ELSE THEN THEN = ELSE; ELSE ELSE = THEN

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 19/38

Lexical Analysis in PL/I (cont.)

I PL/I array references: array(i)

I PL/I declarations: DECLARE(ARG1,...,ARGN)

I Cannot tell whether DECLARE is a keyword or array reference
until after the ), requiring arbitrary lookahead!

I Notice: PL/I will continue to entertain us throughout this
course

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 20/38

Lexical Analysis in C++

I Unfortunately, these problems still exist in today’s languages

I C++ template syntax: vector<int>

I C++ stream syntax: cin >> var

I But there is a conflict with nested templates:
list<vector<int>>

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 21/38

Review

I The goal of lexical analysis is:
I Partition the input string into lexemes

I Identify the token of each lexeme

I Left-to-right scan ⇒ lookahead sometimes required

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 22/38

Next

I We still need a way to describe the (often infinite) set of
lexemes of each token

I And a way to resolve ambiguities
I Is if to variables i and j?

I Is <> to operators < and >?

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 23/38

Regular Languages

I We could specify tokens in many ways

I Regular Languages are the most popular
I Simple and useful theory

I Easy to understand

I Efficient to implement

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 24/38

4



Languages

I Definition: Let Σ be a set of characters, A language over Σ is
a set of strings from characters drawn from Σ

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 25/38

Examples of Languages

I Alphabet: English characters Language: English sentences

I Alphabet: Not every string of English characters is an English
sentence

I Alphabet: ASCII Language: C programs

I Observe: ASCII character set is different from English
character set

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 26/38

Notation

I Languages are sets of strings

I Need some notation for specifying which sets we want

I The standard notation for regular languages is regular
expressions

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 27/38

Atomic Regular Expressions

I Single character: ′c′ = {“c”}

I Epsilon: ε = {“”}

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 28/38

Compound Regular Expressions

I Union: A + B = {s|s ∈ A or s ∈ B}

I Concatenation: AB = {ab|a ∈ A and b ∈ B}

I Iteration: A∗ =
⋃

i≥0A
i where Ai = A...i times A

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 29/38

Regular Expressions

I The regular expressions over Σ are the smallest set of
expressions including

I ε

I ′c′ where c ∈ Σ

I A + B where A,B are regular expressions over Σ

I AB where A,B are regular expressions over Σ

I A∗ where A is a regular expression over Σ

I Regular expressions are simple, but very useful

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 30/38

5



Example: Keyword

I Keywords: lambda, else, if, ...

I Regular Expression: ’lambda’ + ’else’ + ’if’+ ...

I Note: ’lambda’ short for ’l’ ’a’ ’m’ ’b’ ’d’ ’a’

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 31/38

Example: Integers

I Integer: non-empty string of digits

I digit = ’0’ + ’1’ + ’2’ + ’3’ + ’4’ + ’5’ + ’6’ +

’7’ + ’8’ + ’9’

I integer = digit digit∗

I Abbreviation: A+ = AA∗

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 32/38

Example: Identifier

I Identifier: strings of letters or digits, starting with a letter

I letter = ’A’+...+’Z’+’a’+...’z’+’_’

I identifier = letter (letter + digit)∗

I Question: Is (letter∗ + digit∗) the same?

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 33/38

Example: Whitespace

I Whitespace: a non-empty sequence of blanks, newlines and
tabs

I (’ ’ + ’\n’ + ’\t’)+

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 34/38

Example: Phone numbers

I Regular expressions are everywhere!

I Consider (757)-221-1234
I Σ = digits ∪ {−, (, )}

I exchange = digit3

I phone = digit4

I area = digit3

I phone_number = ’(’ area ’)-’exchange’-’phone

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 35/38

Last Example: email addresses

I Consider W&M cs emails: anyone@cs.wm.edu format

I Σ = letters ∪ { . , @}

I name = letter+

I address = name ’@’ name ’.’ name ’.’ name

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 36/38

6



Other real-world examples

I File names

I Grep tool

I Anything else?

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 37/38

Summary

I Regular expressions describe many useful languages

I Regular languages are only a specification, we still need an
implementation

I Next time: Given a string s and a regular expression R is
s ∈ L(R)?

Thomas Dillig, CS345H: Programming Languages Lecture 3: Lexical Analysis 38/38

7


