Announcements

- WA1 and PA0 are due Today
- WA2 and PA1 out today :-)
- If you are not very, very busy right now, get started now

Outline

- Last time: Specifying lexical structure using regular expressions
- Today: How to recognize strings matching regular expressions using finite automata.
- We will see deterministic finite automata (DFAs) and non-deterministic finite automata (NFAs)
- High-level story: RegEx -> NFA -> DFA -> Tables

Regular Expressions in Lexical Specifications

- Last lecture: How to specify the predicate $s \in L(R)$
- But yes/no answer is not enough!
- We really want to partition input into tokens
- We adapt regular expressions for this goal

Regular Expressions to Lexical Specifications (1)

- Step 1: Write a regular expression for the lexemes of each token
 - Integer constant: digit^+
 - Identifier: $\text{letter} (\text{letter} + \text{digit})^*$
 - Lambda: ‘lambda’
 - ...

Regular Expressions to Lexical Specifications (2)

- Step 2: Construct R, matching lexemes for all tokens
 - $R = \text{Integer constant} + \text{Identifier} + \text{Lambda} + ...$
Regular Expressions to Lexical Specifications (3)

- Let the input be characters $x_1 \ldots x_n$
- **Step 3:** For each $1 \leq i \leq n$ check $x_1 \ldots x_i \in L(R)$ for some j
- Then, remove $x_1 \ldots x_j$ from input and repeat

Ambiguities I

- There are ambiguities in this algorithm. Where?
- How much input is used? What if $x_1 \ldots x_i \in L(R)$ and $x_1 \ldots x_j \in L(R)$?
- **Example:** identifier = letter (letter + digit)*, if = 'i' 'f'
- **Rule:** Pick longest possible string in $L(R)$
- This is known as "maximal munch"

Ambiguities II

- What if two rules match with the same number of characters?
 - $x_1 \ldots x_i \in L(R_1)$ and $x_1 \ldots x_i \in L(R_2)$?
- **Example:** "if"
- **Rule:** Use rule listed first
- This is how "if" is matched as a keyword, not identifier

Error Handling

- What if no rule matches a prefix of the input?
- **Solution 1:** Get stuck ⇒ Unacceptable
- **Better Solution:** Write a rule matching all "bad" strings
- **Question:** What kind of rule and where to place it?

Where are we?

- We now know how we can partition input string into tokens assuming we can decide if a string is in the language described by a regular expression.
- **Next:** How to decide if $s \in L(R)$

Finite Automata

- Regular Expressions ⇔ Specification
- Finite Automata ⇔ Implementation
- A finite automata formally consists of:
 - An input alphabet Σ
 - A set of states S
 - A start state n
 - A set of accepting states $F \subseteq S$
 - A set of transitions state \rightarrow input state
Finite Automata

- Transition $S_1 \rightarrow^\alpha S_2$
- This means: In state S_1 and input character α, go to state S_2
- If end of input and in accepting state \Rightarrow accept
- Otherwise \Rightarrow reject

Finite Automata as State Graphs

- It is much easier to imagine finite automata visually:
 - A state:
 - The start state:
 - An accepting state:
 - A transition:

A Simple Example

- Here is an automaton that only accepts the string "1":

Another Simple Example

- A finite automaton accepting any number of 1’s followed by a single 0
 - Alphabet: $\{0, 1\}$

And Another Example

- Alphabet: $\{0, 1\}$
 - What language does this automata recognize?

Epsilon Moves

- Another kind of transition: ε-moves
 - Machine can move from state A to B without reading any input
Deterministic and Nondeterministic Automata

- Deterministic Finite Automata (DFA)
 - At most one transition per input on any state
 - No ε moves
- Nondeterministic Finite Automate (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves

Execution of Finite Automata

- A DFA can only take one path through the state graph that is completely determined by the input
- NFAs can choose:
 - Whether to make ε moves
 - Which one of multiple transitions for a single input to take

Acceptance of NFAs

- This means: A NFA can get into multiple states at the same time
- Consider again the alphabet $\Sigma = \{0, 1\}$ and the language of all strings ending in at least two 0s.
- Consider input $1 \ 0 \ 0$

- Rule: NFA accepts if it can get to a final state

NFAs vs. DFAs

- Fundamental Result: NFAs and DFAs recognize the same set of languages (regular languages)
- DFAs are faster to execute, since there are no choices to consider
- But NFAs can be much simpler for the same language
- Result: DFAs can be exponentially larger than NFA recognizing same language

Regular Expressions to Finite Automata

- High-Level Sketch:
 - Lexical Specification
 - Regular Expressions
 - NFA
 - DFA
 - Implementation of DFA
- \Rightarrow Lexer

Regular Expressions to NFA (1)

- For each kind of regular expression, define an NFA and combine
- Will use the following notation: NFA for regular expression M:

 ε

- Base cases:
 - For ε:
 - For input a:
Regular Expressions to NFA (2)

- For AB:

- For $A + B$:

Example of Regular Expression to NFA conversion

- Consider the regular expression $(1 + 0)^*1$

NFA to DFA: The Trick

- Insight: Simulate the NFA
- At any given time, the NFA is in a set of states
- States in the DFA ⇒ all (reachable) subsets of states in the NFA
- Start State: the set of states reachable through ε moves from the NFA start state
- Add transition $A \rightarrow a B$ to DFA iff:
 - B is in the set of states reachable from any state in A after seeing input a, considering ε moves as well

NFA to DFA: Example

Recall our friendly NFA for $(1 + 0)^*1$:

NFA to DFA: How many states?

- We need a state in the DFA for each set of states the NFA can be in
- How many different states?
- If there are N states, the NFA must be in some subset of those N states
- How many subsets of N states? 2^N
A DFA can be implemented by a 2D table T
- One dimension is "states"
- Other dimension is "input symbols"
- For every transition $A \rightarrow c B$, define $T[A,c] = B$

DFA "execution": If in state A and input c, read $T[A,c] = B$ and skip to state B

Very efficient

Writing regular expressions as NFAs and converting them to DFAs is exactly what flex does

In fact, if you open the auto-generated flex file `lex.yy.c`, you will see these tables emitted

But, these DFAs can be huge

In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations