Announcements

- WA1 and PA0 are due Today
Announcements

- WA1 and PA0 are due Today
- WA2 and PA1 out today :-)

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis
Announcements

▶ WA1 and PA0 are due Today
▶ WA2 and PA1 out today :-)
▶ If you are not very, very busy right now, get started now
Outline

- Last time: Specifying lexical structure using regular expressions
Outline

- Last time: Specifying lexical structure using regular expressions
- Today: How to recognize strings matching regular expressions using finite automata.
Last time: Specifying lexical structure using regular expressions

Today: How to recognize strings matching regular expressions using finite automata.

We will see determinist finite automata (DFAs) and non-deterministic finite automata (NFAs)
Last time: Specifying lexical structure using regular expressions

Today: How to recognize strings matching regular expressions using finite automata.

We will see deterministic finite automata (DFAs) and non-deterministic finite automata (NFAs)

High-level story: RegEx -> NFA -> DFA -> Tables
Regular Expressions in Lexical Specifications

- Last lecture: How to specify the predicate $s \in L(R)$
Regular Expressions in Lexical Specifications

- Last lecture: How to specify the predicate $s \in L(R)$
- But yes/no answer is not enough!
Regular Expressions in Lexical Specifications

- Last lecture: How to specify the predicate $s \in L(R)$
- But yes/no answer is not enough!
- We really want to partition input into tokens
Regular Expressions in Lexical Specifications

- Last lecture: How to specify the predicate $s \in L(R)$
- But yes/no answer is not enough!
- We really want to partition input into tokens
- We adapt regular expressions for this goal
Regular Expressions to Lexical Specifications (1)

- **Step 1:** Write a regular expression for the lexemes of each token

 - Integer constant: `digit`\(^+\)
 - Identifier: `letter (letter + digit)\(^*\)`
 - Lambda: `'lambda'`
Regular Expressions to Lexical Specifications (1)

- **Step 1:** Write a regular expression for the lexemes of each token
 - Integer constant: digit$^+$
Step 1: Write a regular expression for the lexemes of each token

- Integer constant: digit^+

- Identifier: letter (letter + digit)^*
Step 1: Write a regular expression for the lexemes of each token

- Integer constant: digit^+
- Identifier: letter (letter + digit)^*
- Lambda: 'lambda'
Step 1: Write a regular expression for the lexemes of each token

- Integer constant: digit

- Identifier: letter (letter + digit)*

- Lambda: 'lambda'

- ...
Regular Expressions to Lexical Specifications (2)

- Step 2: Construct R, matching lexemes for all tokens
Step 2: Construct R, matching lexemes for all tokens

$R = \text{Integer constant} + \text{Identifier} + \text{Lambda} + \ldots$
Let the input be characters $x_1\ldots x_n$.

Step 3: For each $1 \leq i \leq n$ check $x_1\ldots x_j \in \mathcal{L}(R)$ for some j.

Then, remove $x_1\ldots x_j$ from input and repeat.
Let the input be characters $x_1 \ldots x_n$

Step 3: For each $1 \leq i \leq n$ check $x_1 \ldots x_j \in L(R)$ for some j
Let the input be characters $x_1 \ldots x_n$

Step 3: For each $1 \leq i \leq n$ check $x_1 \ldots x_j \in L(R)$ for some j

Then, remove $x_1 \ldots x_j$ from input and repeat
There are ambiguities in this algorithm. Where?

Example: identifier = letter (letter + digit)∗, if = 'i' 'f'

Rule: Pick longest possible string in \(L(R)\)

This is known as “maximal munch”
Ambiguities I

- There are ambiguities in this algorithm. Where?

- How much input is used? What if $x_1...x_i \in L(R)$ and $x_1...x_j \in L(R)$?
There are ambiguities in this algorithm. Where?

How much input is used? What if \(x_1 \ldots x_i \in L(R) \) and \(x_1 \ldots x_j \in L(R) \)?

Example: identifier = letter (letter + digit)*, if = ’i’ ’f’
There are ambiguities in this algorithm. Where?

How much input is used? What if $x_1 \ldots x_i \in L(R)$ and $x_1 \ldots x_j \in L(R)$?

Example: identifier = letter (letter + digit)*, if = 'i' 'f'

Rule: Pick longest possible string in $L(R)$
Ambiguities I

- There are ambiguities in this algorithm. Where?

- How much input is used? What if $x_1 \ldots x_i \in L(R)$ and $x_1 \ldots x_j \in L(R)$?

- Example: identifier = letter (letter + digit)*, if = 'i' 'f'

- Rule: Pick longest possible string in $L(R)$

- This is known as “maximal munch”
What if two rules match with the same number of characters?
What if two rules match with the same number of characters?

\[x_1 \ldots x_i \in L(R_1) \text{ and } x_1 \ldots x_i \in L(R_2) \]
What if two rules match with the same number of characters?

\[x_1 \ldots x_i \in L(R_1) \text{ and } x_1 \ldots x_i \in L(R_2) \]?

Example: "if"
Ambiguities II

- What if two rules match with the same number of characters?

- $x_1...x_i \in L(R_1)$ and $x_1...x_i \in L(R_2)$?

- Example: "if"

- Rule: Use rule listed first
Ambiguities II

- What if two rules match with the same number of characters?

- $x_1...x_i \in L(R_1)$ and $x_1...x_i \in L(R_2)$?

- Example: "if"

- Rule: Use rule listed first

- This is how "if" is matched as a keyword, not identifier
Error Handling

- What if no rule matches a prefix of the input?
Error Handling

- What if no rule matches a prefix of the input?

- **Solution 1:** Get stuck
Error Handling

- What if no rule matches a prefix of the input?

- Solution 1: Get stuck \Rightarrow Unacceptable
Error Handling

- What if no rule matches a prefix of the input?
 - Solution 1: Get stuck ⇒ Unacceptable
 - Better Solution: Write a rule matching all “bad” strings
Error Handling

- What if no rule matches a prefix of the input?
- Solution 1: Get stuck \Rightarrow Unacceptable
- Better Solution: Write a rule matching all “bad” strings
- Question: What kind of rule and where to place it?
Where are we?

- We now know how we can partition input string into tokens assuming we can decide if a string is in the language described by a regular expression.
Where are we?

- We now know how we can partition input string into tokens assuming we can decide if a string is in the language described by a regular expression.

- **Next:** How to decide if $s \in L(R)$
Finite Automata

- Regular Expressions \Leftrightarrow Specification
Finite Automata

- Regular Expressions \Leftrightarrow Specification
- Finite Automata \Leftrightarrow Implementation
Finite Automata

- Regular Expressions \Leftrightarrow Specification
- Finite Automata \Leftrightarrow Implementation
- A finite automata formally consists of:
Finite Automata

- Regular Expressions ⇔ Specification
- Finite Automata ⇔ Implementation
- A finite automata formally consists of:
 - An input alphabet Σ
Finite Automata

- Regular Expressions ⇔ Specification
- Finite Automata ⇔ Implementation
- A finite automata formally consists of:
 - An input alphabet \(\Sigma \)
 - A set of states \(S \)
Finite Automata

- Regular Expressions \Leftrightarrow Specification

- Finite Automata \Leftrightarrow Implementation

- A finite automata formally consists of:
 - An input alphabet Σ
 - A set of states S
 - A start state s
Finite Automata

- Regular Expressions \Leftrightarrow Specification
- Finite Automata \Leftrightarrow Implementation

A finite automata formally consists of:
- An input alphabet Σ
- A set of states S
- A start state n
- A set of accepting states $F \subseteq S$
Finite Automata

- Regular Expressions \Leftrightarrow Specification
- Finite Automata \Leftrightarrow Implementation

- A finite automata formally consists of:
 - An input alphabet Σ
 - A set of states S
 - A start state n
 - A set of accepting states $F \subseteq S$
 - A set of transitions state $\rightarrow^{\text{input}}$ state
Finite Automata

- Transition $S_1 \rightarrow^\alpha S_2$
Finite Automata

- Transition $S_1 \rightarrow^\alpha S_2$

- This means: In state S_1 and input character α, go to state S_2
Finite Automata

- Transition $S_1 \xrightarrow{\alpha} S_2$
- This means: In state S_1 and input character α, go to state S_2
- If end of input and in accepting state \Rightarrow accept
Finite Automata

- Transition $S_1 \rightarrow^\alpha S_2$

- This means: In state S_1 and input character α, go to state S_2

- If end of input and in accepting state \Rightarrow accept

- Otherwise \Rightarrow reject
Finite Automata as State Graphs

- It is much easier to imagine finite automata visually:
Finite Automata as State Graphs

- It is much easier to imagine finite automata visually:

A state:
Finite Automata as State Graphs

- It is much easier to imagine finite automata visually:

 A state:

 The start state:
Finite Automata as State Graphs

- It is much easier to imagine finite automata visually:

A state:

The start state:

An accepting state:
Finite Automata as State Graphs

- It is much easier to imagine finite automata visually:

A state:

The start state:

An accepting state:

A transition:
A Simple Example

- Here is an automaton that only accepts the string "1":

```
  1
```
A Simple Example

- Here is an automaton that only accepts the string "1":

```
   1
```

1
1
Another Simple Example

- A finite automaton accepting any number of 1’s followed by a single 0
Another Simple Example

- A finite automaton accepting any number of 1’s followed by a single 0
- Alphabet: \{0, 1\}
Another Simple Example

- A finite automaton accepting any number of 1’s followed by a single 0

- Alphabet: \{0, 1\}
And Another Example

- Alphabet: \(\{0, 1\} \)
And Another Example

- Alphabet: \{0, 1\}

- What language does this automata recognize?
And Another Example

- Alphabet: \(\{0, 1\} \)

- What language does this automata recognize?
Epsilon Moves

- Another kind of transition: ε-moves
Epsilon Moves

- Another kind of transition: ε-moves
Epsilon Moves

- Another kind of transition: ε-moves

- Machine can move from state A to B without reading any input
Deterministic and Nondeterministic Automata

- Deterministic Finite Automata (DFA)

 ▶ At most one transition per input on any state
 ▶ No ϵ-moves

- Nondeterministic Finite Automata (NFA)
 ▶ Can have multiple transitions for one input in a given state
 ▶ Can have ϵ-moves
Deterministic and Nondeterministic Automata

- Deterministic Finite Automata (DFA)
 - At most one transition per input on any state

- Nondeterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves
Deterministic and Nondeterministic Automata

- **Deterministic Finite Automata (DFA)**
 - At most one transition per input on any state
 - No ε moves
Deterministic and Nondeterministic Automata

- Deterministic Finite Automata (DFA)
 - At most one transition per input on any state
 - No ε moves

- Nondeterministic Finite Automata (NFA)
Deterministic and Nondeterministic Automata

- **Deterministic Finite Automata (DFA)**
 - At most one transition per input on any state
 - No ε moves

- **Nondeterministic Finite Automata (NFA)**
 - Can have multiple transitions for one input in a given state
Deterministic and Nondeterministic Automata

- **Deterministic Finite Automata (DFA)**
 - At most one transition per input on any state
 - No ε moves

- **Nondeterministic Finite Automata (NFA)**
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves
Execution of Finite Automata

- A DFA can only take one path through the state graph that is completely determined by the input
Execution of Finite Automata

- A DFA can only take one path through the state graph that is completely determined by the input

- NFAs can choose:
 - Whether to make ε-moves
 - Which one of multiple transitions for a single input to take
Execution of Finite Automata

- A DFA can only take one path through the state graph that is completely determined by the input

- NFAs can choose:
 - Whether to make ε moves
Execution of Finite Automata

- A DFA can only take one path through the state graph that is completely determined by the input.

- NFAs can choose:
 - Whether to make ε moves
 - Which one of multiple transitions for a single input to take
Acceptance of NFAs

- This means: A NFA can get into multiple states at the same time
Acceptance of NFAs

- This means: A NFA can get into multiple states at the same time

- Consider again the alphabet $\Sigma = \{0, 1\}$ and the language of all strings ending in at least two 0s.
Acceptance of NFAs

- This means: A NFA can get into multiple states at the same time

- Consider again the alphabet $\Sigma = \{0, 1\}$ and the language of all strings ending in at least two 0s.

![NFA Diagram]
Acceptance of NFAs

▶ This means: A NFA can get into multiple states at the same time

▶ Consider again the alphabet $\Sigma = \{0, 1\}$ and the language of all strings ending in at least two 0s.

▶ Consider input 1 0 0
Acceptance of NFAs

- This means: A NFA can get into multiple states at the same time

- Consider again the alphabet $\Sigma = \{0, 1\}$ and the language of all strings ending in at least two 0s.

- Consider input $1\ 0\ 0$
Acceptance of NFAs

- This means: A NFA can get into multiple states at the same time

- Consider again the alphabet $\Sigma = \{0, 1\}$ and the language of all strings ending in at least two 0s.

- Consider input 1 0 0

![NFA Diagram](image-url)
Acceptance of NFAs

- This means: A NFA can get into multiple states at the same time

- Consider again the alphabet $\Sigma = \{0, 1\}$ and the language of all strings ending in at least two 0s.

- Consider input $1\ 0\ 0$

Diagram of NFA:

- Initial state
- States with 0
- States with 1
- Final state

Rule: NFA accepts if it can get to a final state.
Acceptance of NFAs

- This means: A NFA can get into multiple states at the same time

- Consider again the alphabet $\Sigma = \{0, 1\}$ and the language of all strings ending in at least two 0s.

- Consider input 1 0 0

- Rule: NFA accepts if it can get to a final state
NFAs vs. DFAs

- **Fundamental Result:** NFAs and DFAs recognize the same set of languages (regular languages)
NFAs vs. DFAs

- **Fundamental Result:** NFAs and DFAs recognize the same set of languages (regular languages)

- DFAs are faster to execute, since there are no choices to consider
NFAs vs. DFAs

- **Fundamental Result:** NFAs and DFAs recognize the same set of languages (regular languages)

- DFAs are faster to execute, since there are no choices to consider

- But NFAs can be much simpler for the same language
NFAs vs. DFAs

- **Fundamental Result:** NFAs and DFAs recognize the same set of languages (regular languages)
- DFAs are faster to execute, since there are no choices to consider
- But NFAs can be much simpler for the same language
- **Result:** DFAs can be exponentially larger than NFA recognizing same language
Regular Expressions to Finite Automata

- High-Level Sketch:
Regular Expressions to Finite Automata

▶ High-Level Sketch:
 ▶ Lexical Specification
Regular Expressions to Finite Automata

High-Level Sketch:
- Lexical Specification
- Regular Expressions
Regular Expressions to Finite Automata

- High-Level Sketch:
 - Lexical Specification
 - Regular Expressions
 - NFA
Regular Expressions to Finite Automata

- High-Level Sketch:
 - Lexical Specification
 - Regular Expressions
 - NFA
 - DFA
Regular Expressions to Finite Automata

- High-Level Sketch:
 - Lexical Specification
 - Regular Expressions
 - NFA
 - DFA
 - Implementation of DFA
Regular Expressions to Finite Automata

- High-Level Sketch:
 - Lexical Specification
 - Regular Expressions
 - NFA
 - DFA
 - Implementation of DFA

⇒ Lexer
Regular Expressions to NFA (1)

- For each kind of regular expression, define an NFA and combine
Regular Expressions to NFA (1)

- For each kind of regular expression, define an NFA and combine

- Will use the following notation: NFA for regular expression M:
Regular Expressions to NFA (1)

- For each kind of regular expression, define an NFA and combine

- Will use the following notation: NFA for regular expression \(M \):

- Base cases:
For each kind of regular expression, define an NFA and combine.

Will use the following notation: NFA for regular expression M:

Base cases:

- For ϵ:
Regular Expressions to NFA (1)

- For each kind of regular expression, define an NFA and combine

- Will use the following notation: NFA for regular expression M:

- Base cases:
 - For ε:
 - For input a:
Regular Expressions to NFA (2)

For AB:
Regular Expressions to NFA (2)

For AB:

For $A + B$:
Regular Expressions to NFA (3)

- For A^*:
Example of Regular Expression to NFA conversion

▶ Consider the regular expression \((1 + 0)^*1\)
Example of Regular Expression to NFA conversion

- Consider the regular expression \((1 + 0)^*1\)
Example of Regular Expression to NFA conversion

Consider the regular expression $(1 + 0)^*1$
Example of Regular Expression to NFA conversion

Consider the regular expression \((1 + 0)^*1\)
Consider the regular expression \((1 + 0)^*1\)
Example of Regular Expression to NFA conversion

Consider the regular expression \((1 + 0)^*1\)
NFA to DFA: The Trick

- **Insight:** Simulate the NFA

 - States in the DFA → all (reachable) subsets of states in the NFA
 - Start State: the set of states reachable through ε moves from the NFA start state
 - Add transition $A \rightarrow a B$ to DFA iff:
 - B is in the set of states reachable from any state in A after seeing input a, considering ε moves as well
NFA to DFA: The Trick

▶ Insight: Simulate the NFA

▶ At any given time, the NFA is in a set of states
NFA to DFA: The Trick

- **Insight:** Simulate the NFA

- At any given time, the NFA is in a set of states

- States in the DFA \(\Rightarrow\) all (reachable) subsets of states in the NFA
NFA to DFA: The Trick

- **Insight:** Simulate the NFA

- At any given time, the NFA is in a set of states

- States in the DFA \Rightarrow all (reachable) subsets of states in the NFA

- **Start State:**
NFA to DFA: The Trick

- **Insight:** Simulate the NFA

- At any given time, the NFA is in a set of states

- States in the DFA ⇒ all (reachable) subsets of states in the NFA

- **Start State:** the set of states reachable through ε moves from the NFA start state
NFA to DFA: The Trick

- **Insight:** Simulate the NFA

- At any given time, the NFA is in a **set of states**

- States in the DFA \Rightarrow **all (reachable) subsets of states in the NFA**

- **Start State:** the set of states reachable through ε moves from the NFA start state

- Add transition $A \rightarrow^{a} B$ to DFA iff:
NFA to DFA: The Trick

▶ **Insight:** Simulate the NFA

▶ At any given time, the NFA is in a set of states

▶ States in the DFA ⇒ all (reachable) subsets of states in the NFA

▶ **Start State:** the set of states reachable through ε moves from the NFA start state

▶ Add transition $A \rightarrow^a B$ to DFA iff:
 ▶ B is in the set of states reachable from any state in A after seeing input a, considering ε moves as well
NFA to DFA: Example

Recall our friendly NFA for \((1 + 0)^*1:\)
NFA to DFA: Example

Recall our friendly NFA for \((1 + 0)^*1:\)
Recall our friendly NFA for $(1 + 0)^*1$:
NFA to DFA: Example

Recall our friendly NFA for \((1 + 0)^*1:\)

\[
\begin{array}{c}
A \\
B \\
C \\
D \\
E \\
F \\
G \\
H \\
I \\
J
\end{array}
\]

\[
\begin{array}{c}
\epsilon \\
\epsilon \\
0 \\
1 \\
\epsilon \\
\epsilon \\
\epsilon \\
\epsilon \\
\epsilon \\
\epsilon
\end{array}
\]

\[
\begin{array}{c}
A \\
B \\
C \\
D \\
E \\
F \\
G \\
H \\
I \\
J
\end{array}
\]

ABCDHI
Recall our friendly NFA for \((1 + 0)^*1:\)

\[
\begin{array}{c}
A \\
B \\
C \\
D \\
E \\
F \\
G \\
H \\
I \\
J
\end{array}
\]
NFA to DFA: Example

Recall our friendly NFA for \((1 + 0)^*1\):

\[
\begin{align*}
A & \xrightarrow{\varepsilon} B \\
B & \xrightarrow{\varepsilon} C \\
C & \xrightarrow{1} E \\
D & \xrightarrow{0} F \\
E & \xrightarrow{\varepsilon} G \\
F & \xrightarrow{\varepsilon} G \\
G & \xrightarrow{\varepsilon} H \\
H & \xrightarrow{\varepsilon} I \\
I & \xrightarrow{1} J
\end{align*}
\]
Recall our friendly NFA for \((1 + 0)^*1:\)
NFA to DFA: Example

Recall our friendly NFA for \((1 + 0)^*1:\)

\[
\begin{array}{c}
A \quad B \\
C \quad D \\
E \\
F \\
G \quad H \\
I \\
J
\end{array}
\]

\[
\begin{array}{c}
\varepsilon \\
\varepsilon \\
1 \\
0 \\
\varepsilon \\
\varepsilon \\
1
\end{array}
\]

ABCDHI

ABCDFGHI

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 29/33
NFA to DFA: Example

Recall our friendly NFA for \((1 + 0)^*1:\)

\[
\begin{align*}
\begin{array}{ccccccccccc}
A & B & C & D & E & G & H & I & J \\
\varepsilon & 0 & 1 & \varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon & 1 \\
\end{array}
\end{align*}
\]
Recall our friendly NFA for \((1 + 0)^*1\):
NFA to DFA: Example

Recall our friendly NFA for \((1 + 0)^*1:\)
NFA to DFA: Example

Recall our friendly NFA for \((1 + 0)^* 1\):

\[\text{ABCDFGHI} \quad \text{ABCDEGHIJ}\]
Recall our friendly NFA for \((1 + 0)^*1:\)
NFA to DFA: Example

Recall our friendly NFA for \((1 + 0)^*1:\)
Recall our friendly NFA for \((1 + 0)^*1:\)
Recall our friendly NFA for \((1 + 0)^*1\):
NFA to DFA: Example

Recall our friendly NFA for \((1 + 0)^*1:\)
NFA to DFA: Example

Recall our friendly NFA for \((1 + 0)^*1\):
NFA to DFA: Example

Recall our friendly NFA for $(1 + 0)^*1$:
Recall our friendly NFA for \((1 + 0)^*1:\)
Recall our friendly NFA for \((1 + 0)^*1\):
Recall our friendly NFA for \((1 + 0)^*1\):
NFA to DFA: How many states?

- We need a state in the DFA for each set of states the NFA can be in.
NFA to DFA: How many states?

- We need a state in the DFA for each set of states the NFA can be in.
- How many different states?
NFA to DFA: How many states?

- We need a state in the DFA for each set of states the NFA can be in.
- How many different states?
- If there are N states, the NFA must be in some subset of those N states.
We need a state in the DFA for each set of states the NFA can be in.

How many different states?

If there are N states, the NFA must be in some subset of those N states.

How many subsets of N states?
NFA to DFA: How many states?

- We need a state in the DFA for each set of states the NFA can be in.

- How many different states?

- If there are N states, the NFA must be in some subset of those N states.

- How many subsets of N states? 2^N
Implementation

- A DFA can be implemented by a 2D table T
Implementation

- A DFA can be implemented by a 2D table T
 - One dimension is “states”
A DFA can be implemented by a 2D table T

- One dimension is “states”
- Other dimension is “input symbols”
Implementation

- A DFA can be implemented by a 2D table T
 - One dimension is “states”

- Other dimension is “input symbols”

- For every transition $A \xrightarrow{c} B$, define $T[A, c] = B$
Implementation

- A DFA can be implemented by a 2D table T
 - One dimension is “states”
 - Other dimension is “input symbols”
 - For every transition $A \rightarrow^c B$, define $T[A, c] = B$
- DFA “execution”: If in state A and input c, read $T[A, c] = B$ and skip to state B
A DFA can be implemented by a 2D table T
 - One dimension is “states”
 - Other dimension is “input symbols”
 - For every transition $A \rightarrow^c B$, define $T[A, c] = B$

DFA “execution”: If in state A and input c, read $T[A, c] = B$ and skip to state B

Very efficient
Table Implementation of a DFA
Table Implementation of a DFA

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>S</td>
<td>U</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>U</td>
<td>T</td>
<td>U</td>
</tr>
</tbody>
</table>

Diagram:

- States: S, T, U
- Transitions:
 - S -> 0: T
 - S -> 1: U
 - T -> 1: U
 - U -> 0: T
 - U -> 1: U

Starting state: S
Writing regular expressions as NFAs and converting them to DFAs is exactly what flex does.
Implementation cont.

- Writing regular expressions as NFAs and converting them to DFAs is exactly what `flex` does.

- In fact, if you open the auto-generated `flex` file `lex.yy.c`, you will see these tables emitted.
Writing regular expressions as NFAs and converting them to DFAs is exactly what flex does.

In fact, if you open the auto-generated flex file lex.yy.c, you will see these tables emitted.

But, these DFAs can be huge.
Implementation cont.

- Writing regular expressions as NFAs and converting them to DFAs is exactly what flex does.

- In fact, if you open the auto-generated flex file lex.yy.c, you will see these tables emitted.

- But, these DFAs can be huge.

- In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations.