
CS345H: Programming Languages

Lecture 5: Introduction to Parsing

Thomas Dillig

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 1/39

Outline

I Limitations of Regular Languages

I Parser Overview

I Context-free Grammars (CFGs)

I Derivations

I Ambiguity

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 2/39

Regular Languages

I Last time, we saw that regular languages are very useful for
partitioning input into tokens

I But regular languages are not expressive enough to turn a
stream of tokens into structure

I For this, we need a more expressive formal language

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 3/39

Beyond Regular Languages

I Many languages are not regular

I Classic Example: Strings of balanced parenthesis:

{(i)j | i ≥ 0}

I Question: Why is there no automata that can recognize this
language?

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 4/39

What Can Regular Languages Express?

I Languages requiring counting modulo a fixed integer

I Intuition: A finite automaton that runs long enough must
repeat states

I Finite automaton cannot remember the number of times it
has visited a particular state

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 5/39

Side Note: Comments in L

I Recall: Comments in L start with (*, end with *) and can be
nested

I Also Recall: Comments are removed during lexing

I Question: Are comments in L a regular language?

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 6/39

1

The Functionality of the Parser

I Input: sequence of tokens from the lexer

I Output: parse tree of the program

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 7/39

Example

I Consider the following L expression:
if x<>y then 1 else 2

I Parse Input: TOKEN_IF TOKEN_ID("x") TOKEN_NEQ

TOKEN_ID("y") TOKEN_THEN TOKEN_INT(1) TOKEN_ELSE

TOKEN_INT(2)

I Parser Output:
Branch

NEQ INT:1 INT:2

ID:x ID:y

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 8/39

Parsing vs. Lexing

Phase Input Output

Lexer String of characters String of tokens

Parser String of tokens Parse tree

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 9/39

The Role of the Parser

I Not all strings of tokens are programs . . .

I Parser must distinguish between valid and invalid strings of
tokens

I We need:
I A language for describing valid strings of tokens

I A method for recognizing if a string of tokens is in this
language or not

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 10/39

Context-free Grammars (CFGs)

I Programming language constructs have recursive structure

I Example: An L expression is expression + expression,

if expression then expression else expression,

...

I Context free grammars are a natural notation for this
recursive structure

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 11/39

CFGs in more detail

I A CFG consists of:
I A set of terminals T

I A set of non-terminals N

I A start symbol S (non-terminal)

I A set of productions

X → Y1Y2 . . .Yn

where X ∈ N and Yi ∈ (T ∪N ∪ {ε})

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 12/39

2

Notational Conventions in this Class

I Non-terminals are always written upper-case

I Terminals are written lower-case

I The start symbol is the left-hand side of the first production

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 13/39

CFG Examples

I A fragment of L
EXPR → if EXPR then EXPR else EXPR

| EXPR + EXPR

| id

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 14/39

CFG Examples continued

I Simple arithmetic expressions:
EXPR → E * E

| E + E

| (E)

| id

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 15/39

The Language of a CFG

I Recall production rules: X → Y1 . . .Yn

I Means that X can be replaced by Y1 . . .YN

I More specifically:

1. Begin with string consisting of the start symbol ”S”

2. Replace any non-terminal X in string with the right-hand side
of some production

X → Y1 . . .Yn

3. Repeat (2) until there are no non-terminals in the string

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 16/39

The Language of a CFG continued

I More formally, write

X1 . . .Xi . . .Xn → X1 . . .Xi−1Y1 . . .YmXi+1 . . .Xn

if there is a production

Xi → Y1 . . .Ym

I Abbreviation: Write X1 . . .Xn →∗ Y1 . . .Ym if
X1 . . .Xn → . . .→ Y1 . . .Ym in 0 or more steps

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 17/39

The Language of a CFG continued

I Now, let G be a context-free grammar with start symbol S .
Then the language of G is:

{a1 . . . an |S →∗ a1 . . . an and every ai is a terminal}

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 18/39

3

Terminals

I Terminals are called ”terminals” because there are no rules for
replacing them

I Once generated, terminals are permanent

I Question: What should terminals be when parsing a
programming language?

I Answer: Tokens

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 19/39

Examples

I L(G) is the language of CFG G

I Strings of balanced parentheses:

{(i)j |i ≥ 0}

I CFG:
S → (S)
S → ε

or equivalently
S → (S) | ε

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 20/39

Examples

I Recall the earlier fragment of L:
EXPR → if EXPR then EXPR else EXPR

| EXPR + EXPR

| id

I Some strings in this language:

I ID

IF ID THEN ID ELSE ID

ID + ID

IF ID THEN ID+ID ELSE ID

IF IF ID THEN ID ELSE IF THEN ID ELSE ID

...

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 21/39

Examples

I Recall simple arithmetic expressions:
EXPR → E * E

| E + E

| (E)

| id

I Some strings in this language:

I id

(id)

(id)*id

id+id

id*id

id*(id) ...

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 22/39

Where are we?

I The idea of a CFG is a big step towards parsing tokens.

I But we don’t just want to know if a string of tokens is in a
language, we also need parse tree of input tokens

I Must also handle errors gracefully

I Need an implementation of CFGs (e.g., bison)

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 23/39

From Derivations to Parse Trees

I A derivation is a sequence of productions

S → . . .→ . . .→ . . .

I A derivation can be drawn as a tree
I Start symbol is the tree’s root

I For a production X → Y1 . . .Yn add children Y1 . . .Yn to
node X

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 24/39

4

Derivation Example

E

→ E+E

→ E*E+E

→ id*E+E

→ id*id + E

→ id*id + id

E

E E+

E E*

id id

id

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 25/39

Derivation in Detail

E

→ E+E

→ E*E+E

→ id*E+E

→ id*id + E

→ id*id + id

E E

E E+

E

E E+

E E*

E

E E+

E E*

id

E

E E+

E E*

id id

E

E E+

E E*

id id

id

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 26/39

Notes on Derivations

I A parse tree has terminals at the leaves and non-terminals at
the interior nodes

I An in-order traversal of the leaves is the original input

I The parse tree shows the associativity of operations, the input
token string does not

I Example: The parse tree from the last slide encodes that
times has higher precedence than plus

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 27/39

Left-most and Right-most Derivations

I The example we looked at is a left-most derivation

I This means: At each step, we replace the left-most
non-terminal

I There is also an equivalent notion of right-most derivation

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 28/39

Right-most Derivation in Detail

E

→ E+E

→ E+id

→ E*E+id

→ E*id + id

→ id*id + id

E E

E E+

E

E E+

id

E

E E+

E E* id

E

E E+

E E*

id

id

E

E E+

E E*

id id

id

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 29/39

Derivations and Parse Trees

I Observe that left-most and right-most derivations have the
same parse tree

I The only difference is the order in which branches are added

I But when parsing tokens, we only care about the final parse
tree, which may have many different derivations

I Left-most and right-most derivations are important in parser
implementations

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 30/39

5

Ambiguity

I Recall our example grammar:
EXPR → E * E

| E + E

| (E)

| id

I Now, consider the string id*id+id

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 31/39

Ambiguity continued

I This string has two parse trees!

E

E E+

E E*

id id

id

E

EE

+E E

*

id id

id

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 32/39

Ambiguity

I A grammar is ambiguous if it has more than one parse tree for
some string

I Equivalently: There is more than one left-most or right-most
derivation for some string

I Ambiguity is bad!

I Leaves meaning of programs ill-defined

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 33/39

Dealing with Ambiguity

I First method: Rewrite grammar unambiguously

I Question: How can we write simple arithmetic expressions
unambiguously?

I Solution: Enforce precedence of times over plus by generating
all pluses fist:

S → E + S | E
E → id ∗ E | id | (S) ∗ E | (S)

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 34/39

Ambiguity

I However, converting grammars to unambiguous form can be
very difficult

I It also often results in horrible, unintuitive grammars with
many non-terminals

I It is also fundamentally impossible to transform an ambiguous
grammar into a unambiguous grammar

I For this reason, tools such as bison include disambiguation
mechanisms

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 35/39

Precedence and Associativity

I Instead of rewriting the grammar:
I Use the more natural ambiguous grammar

I Along with disambiguating declarations

I The parser tool bison allows you to declare precedence and
associativity for this

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 36/39

6

Associativity Declarations

I Consider the grammar E → E + E | id

I Ambiguous: Two parse trees of input id + id + id

E

E E+

E E+

id id

id

E

EE

+E E

+

id id

id

E

EE

+E E

+

id id

id

I Declare left associativity of plus as: %left +

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 37/39

Precedence Declarations

I Consider the grammar E → E + E | id and input
id + id * id

E

E E*

E E+

id id

id

E

E E*

E E+

id id

id

E

EE +

E E*

id id

id

I Precedence Declaration:
%left +

%left *

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 38/39

Conclusion

I We have seem how to specify programming language syntax
with CFGs

I We built parse trees that express the high-level syntactic
structure

I Parse trees of programs are known as abstract syntax trees

I We discussed ambiguity of CFGs

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 39/39

7

