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Regular Languages

> Last time, we saw that regular languages are very useful for
partitioning input into tokens
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Regular Languages

> Last time, we saw that regular languages are very useful for
partitioning input into tokens

> But regular languages are not expressive enough to turn a
stream of tokens into structure

» For this, we need a more expressive formal language
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Beyond Regular Languages

» Many languages are not regular
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Beyond Regular Languages

» Many languages are not regular
» Classic Example: Strings of balanced parenthesis:
{C) ] i=0}

» Question: Why is there no automata that can recognize this
language?
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What Can Regular Languages Express?

> Languages requiring counting modulo a fixed integer

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 5/39



What Can Regular Languages Express?

> Languages requiring counting modulo a fixed integer

» Intuition: A finite automaton that runs long enough must
repeat states

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 5/39



What Can Regular Languages Express?

> Languages requiring counting modulo a fixed integer

» Intuition: A finite automaton that runs long enough must
repeat states

» Finite automaton cannot remember the number of times it
has visited a particular state
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Side Note: Comments in L

» Recall: Comments in L start with (*, end with *) and can be
nested
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Side Note: Comments in L

» Recall: Comments in L start with (*, end with *) and can be
nested

» Also Recall: Comments are removed during lexing

» Question: Are comments in L a regular language?
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The Functionality of the Parser

> Input: sequence of tokens from the lexer

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 7/39



The Functionality of the Parser

> Input: sequence of tokens from the lexer

» Output: parse tree of the program
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Example

» Consider the following L expression:
if x<>y then 1 else 2
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Example

» Consider the following L expression:
if x<>y then 1 else 2

> Parse Input: TOKEN_IF TOKEN_ID("x") TOKEN_NEQ
TOKEN_ID("y") TOKEN_THEN TOKEN_INT(1) TOKEN_ELSE
TOKEN_INT(2)

» Parser Output:
Branch

NEQ INT:1 INT:2

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing



Parsing vs. Lexing

Phase | Input Output
Lexer
Parser
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Parsing vs. Lexing

Phase | Input Output
Lexer | String of characters | String of tokens
Parser | String of tokens Parse tree
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The Role of the Parser

» Not all strings of tokens are programs ...
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The Role of the Parser

» Not all strings of tokens are programs ...

» Parser must distinguish between valid and invalid strings of
tokens

» We need:

» A language for describing valid strings of tokens

» A method for recognizing if a string of tokens is in this
language or not
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Context-free Grammars (CFGs)

» Programming language constructs have recursive structure
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» Programming language constructs have recursive structure

» Example: An L expression is expression + expression,
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Context-free Grammars (CFGs)

» Programming language constructs have recursive structure
» Example: An L expression is expression + expression,

if expression then expression else expression,

» Context free grammars are a natural notation for this
recursive structure
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CFGs in more detail

» A CFG consists of:
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CFGs in more detail

» A CFG consists of:

» A set of terminals T
> A set of non-terminals N
» A start symbol S (non-terminal)

» A set of productions
X — Y1 YQ e Yn

where X € N and Y; € (TUN U {e})
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Notational Conventions in this Class

> Non-terminals are always written upper-case
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Notational Conventions in this Class

> Non-terminals are always written upper-case
» Terminals are written lower-case

» The start symbol is the left-hand side of the first production
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CFG Examples

» A fragment of L
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CFG Examples

> A fragment of L
EXPR — if EXPR then EXPR else EXPR
| EXPR + EXPR
| id
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CFG Examples continued

» Simple arithmetic expressions:
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CFG Examples continued

» Simple arithmetic expressions:
EXPR — E * E
| E+E
| (E)
| id
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The Language of a CFG

» Recall production rules: X — Y7...Y,
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» Means that X can be replaced by Y;... Yy

» More specifically:
1. Begin with string consisting of the start symbol "S"

2. Replace any non-terminal X in string with the right-hand side
of some production
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The Language of a CFG

» Recall production rules: X — Y;...Y,

» Means that X can be replaced by Y;... Yy

» More specifically:
1. Begin with string consisting of the start symbol "S”

2. Replace any non-terminal X in string with the right-hand side
of some production

X—-Y1..Y,

3. Repeat (2) until there are no non-terminals in the string
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The Language of a CFG continued

» More formally, write
XleXn _>X1Xz—1Y1 YmXH—an
if there is a production

Xi—) Yl...Ym
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The Language of a CFG continued

> More formally, write

XleXn—>X1Xz_1Y1Ysz+1

if there is a production

Xi—> Yl...Ym

» Abbreviation: Write Xj... X,, =>* Y7... Y, if
X1...X, —...—= Yy... Y, in 0 or more steps

X,
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The Language of a CFG continued

> Now, let G' be a context-free grammar with start symbol S.
Then the language of G is:

{ai...a,|S = a1...a, and every q; is a terminal}
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Terminals

» Terminals are called "terminals” because there are no rules for
replacing them
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Terminals

» Terminals are called "terminals” because there are no rules for
replacing them

» Once generated, terminals are permanent

» Question: What should terminals be when parsing a
programming language?

» Answer: Tokens
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Examples

» L(G) is the language of CFG G
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Examples
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» Strings of balanced parentheses:
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» CFG:
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Examples

» L(G) is the language of CFG G

» Strings of balanced parentheses:

{CYli = 0}

» CFG:
S —(9)
S —e
or equivalently
S—(9)|e
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Examples

> Recall the earlier fragment of L:
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Examples

» Recall the earlier fragment of L.:
EXPR — if EXPR then EXPR else EXPR
| EXPR + EXPR
| id

» Some strings in this language:

» ID
IF ID THEN ID ELSE ID
ID + ID
IF ID THEN ID+ID ELSE ID
IF IF ID THEN ID ELSE IF THEN ID ELSE ID
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Examples

> Recall simple arithmetic expressions:
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Examples

» Recall simple arithmetic expressions:

EXPR — E * E
| E+ E
| (B
| id

Some strings in this language:

id

(id)
(id) *id
id+id
id*id
id*(id)
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Where are we?

> The idea of a CFG is a big step towards parsing tokens.
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Where are we?

> The idea of a CFG is a big step towards parsing tokens.

» But we don't just want to know if a string of tokens is in a
language, we also need parse tree of input tokens
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Where are we?

v

The idea of a CFG is a big step towards parsing tokens.

v

But we don't just want to know if a string of tokens is in a
language, we also need parse tree of input tokens

v

Must also handle errors gracefully

v

Need an implementation of CFGs (e.g., bison)

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 23/39



From Derivations to Parse Trees

> A derivation is a sequence of productions

S = .= =
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From Derivations to Parse Trees

> A derivation is a sequence of productions
S— ... ==

> A derivation can be drawn as a tree
» Start symbol is the tree's root

» For a production X — Y;...Y, add children Y;...Y, to
node X
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Derivation Example

: T

E+E EE + EE

ExE+E
id*E+E
id*id + E

* .
id*id + id E E id

U AN
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Derivation in Detail
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— E+E E + E
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Derivation in Detail

: T

— E+E E + E

— ExE+E
— 1d*E+E
— id*xid + E
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Derivation in Detail

: T

E+E EE + EE

ExE+E
id*E+E
id*id + E

* .
id*id + id E E id

Ll 4l
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Notes on Derivations

> A parse tree has terminals at the leaves and non-terminals at
the interior nodes
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Notes on Derivations

v

A parse tree has terminals at the leaves and non-terminals at
the interior nodes

v

An in-order traversal of the leaves is the original input

v

The parse tree shows the associativity of operations, the input
token string does not

v

Example: The parse tree from the last slide encodes that
times has higher precedence than plus
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Left-most and Right-most Derivations

» The example we looked at is a left-most derivation
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Left-most and Right-most Derivations

» The example we looked at is a left-most derivation

» This means: At each step, we replace the left-most
non-terminal

> There is also an equivalent notion of right-most derivation
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Right-most Derivation in Detail
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Right-most Derivation in Detail

— E+E E + E
— E+id '
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Right-most Derivation in Detail

: T

— E+E E + E

— E+id
— ExE+id
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Right-most Derivation in Detail

: T

— E+E E + E

— E+id
— ExE+id
— Exid + id .
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Right-most Derivation in Detail

U A

E

E+E

E+id
ExE+id
Exid + id
id*id + id
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Derivations and Parse Trees

» Observe that left-most and right-most derivations have the
same parse tree
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Derivations and Parse Trees

» Observe that left-most and right-most derivations have the
same parse tree
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» But when parsing tokens, we only care about the final parse
tree, which may have many different derivations

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing

30/39



Derivations and Parse Trees

Thomas Dilig,

Observe that left-most and right-most derivations have the
same parse tree

The only difference is the order in which branches are added

But when parsing tokens, we only care about the final parse
tree, which may have many different derivations

Left-most and right-most derivations are important in parser
implementations
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Ambiguity

> Recall our example grammar:
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| id
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Ambiguity

> Recall our example grammar:
EXPR — E * E
| E+E
| (E)
| id

» Now, consider the string id*id+id
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Ambiguity continued

» This string has two parse trees!
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Ambiguity continued
> This string has two parse trees!
E E
*

ST TN

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 32/39



Ambiguity

» A grammar is ambiguous if it has more than one parse tree for
some string
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Ambiguity

» A grammar is ambiguous if it has more than one parse tree for

some string

» Equivalently: There is more than one left-most or right-most
derivation for some string

» Ambiguity is bad!

> Leaves meaning of programs ill-defined
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Dealing with Ambiguity

> First method: Rewrite grammar unambiguously
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Dealing with Ambiguity

» First method: Rewrite grammar unambiguously

» Question: How can we write simple arithmetic expressions
unambiguously?

» Solution: Enforce precedence of times over plus by generating
all pluses fist:

S —- E+S|E
E — idxE|id|(S)*xE|(S)
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Ambiguity

» However, converting grammars to unambiguous form can be
very difficult
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Ambiguity

» However, converting grammars to unambiguous form can be
very difficult

> It also often results in horrible, unintuitive grammars with
many non-terminals

» It is also fundamentally impossible to transform an ambiguous
grammar into a unambiguous grammar

» For this reason, tools such as bison include disambiguation
mechanisms
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Precedence and Associativity

> Instead of rewriting the grammar:
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Precedence and Associativity

> Instead of rewriting the grammar:
» Use the more natural ambiguous grammar

» Along with disambiguating declarations

» The parser tool bison allows you to declare precedence and
associativity for this
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Associativity Declarations

» Consider the grammar E — E+ FE | id
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Associativity Declarations

» Consider the grammar £ — E + FE | id

» Ambiguous: Two parse trees of input id + id + id

E E
L T
AT TN
SRR
id id id id
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Associativity Declarations

» Consider the grammar E — E+ FE | id

» Ambiguous: Two parse trees of input id + id + id

E E
/l\ /l\
AT TN
AL A
id id id id

» Declare left associativity of plus as: %left +
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Associativity Declarations

» Consider the grammar E — E+ FE | id

» Ambiguous: Two parse trees of input id + id + id

/IE\ ;
AT
A
id id id id

» Declare left associativity of plus as: %left +
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Precedence Declarations

» Consider the grammar E — E + F | id and input
id + id * id
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Precedence Declarations

» Consider the grammar E — E + E | id and input
id + id * id

E E
AT A
AR
id id id id
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Precedence Declarations

» Consider the grammar E — E + E | id and input
id + id * id

E E
AT 0
AR
id id id id
» Precedence Declaration:
%left +
%left *

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing

38/39



Precedence Declarations

» Consider the grammar E — E + E | id and input
id + id * id

/IE\
X
< {0

id id

» Precedence Declaration:
Yleft +
%left *
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Conclusion

» We have seem how to specify programming language syntax
with CFGs

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 39/39



Conclusion

» We have seem how to specify programming language syntax
with CFGs

» We built parse trees that express the high-level syntactic
structure

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 39/39



Conclusion

» We have seem how to specify programming language syntax
with CFGs

» We built parse trees that express the high-level syntactic
structure

> Parse trees of programs are known as abstract syntax trees

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 39/39



Conclusion

We have seem how to specify programming language syntax
with CFGs

We built parse trees that express the high-level syntactic
structure

Parse trees of programs are known as abstract syntax trees

We discussed ambiguity of CFGs
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