CS345H: Programming Languages

Lecture 5: Introduction to Parsing

Thomas Dillig

Thomas Dilig, CS345H: Programming Languages Lecture 5 Introduction to Parsing 1/39

Outline

» Limitations of Regular Languages

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 2/39

Outline

» Limitations of Regular Languages

» Parser Overview

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 2/39

Outline

» Limitations of Regular Languages
» Parser Overview

» Context-free Grammars (CFGs)

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 2/39

Outline

v

Limitations of Regular Languages

Parser Overview

v

v

Context-free Grammars (CFGs)

Derivations

v

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 2/39

Outline

v

Limitations of Regular Languages

Parser Overview

v

v

Context-free Grammars (CFGs)

Derivations

v

v

Ambiguity

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 2/39

Regular Languages

> Last time, we saw that regular languages are very useful for
partitioning input into tokens

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 3/39

Regular Languages

> Last time, we saw that regular languages are very useful for
partitioning input into tokens

> But regular languages are not expressive enough to turn a
stream of tokens into structure

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 3/39

Regular Languages

> Last time, we saw that regular languages are very useful for
partitioning input into tokens

> But regular languages are not expressive enough to turn a
stream of tokens into structure

» For this, we need a more expressive formal language

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 3/39

Beyond Regular Languages

» Many languages are not regular

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 4/39

Beyond Regular Languages

» Many languages are not regular

» Classic Example: Strings of balanced parenthesis:

{Cy 1i=0}

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 4/39

Beyond Regular Languages

» Many languages are not regular
» Classic Example: Strings of balanced parenthesis:
{C)] i=0}

» Question: Why is there no automata that can recognize this
language?

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 4/39

What Can Regular Languages Express?

> Languages requiring counting modulo a fixed integer

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 5/39

What Can Regular Languages Express?

> Languages requiring counting modulo a fixed integer

» Intuition: A finite automaton that runs long enough must
repeat states

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 5/39

What Can Regular Languages Express?

> Languages requiring counting modulo a fixed integer

» Intuition: A finite automaton that runs long enough must
repeat states

» Finite automaton cannot remember the number of times it
has visited a particular state

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 5/39

Side Note: Comments in L

» Recall: Comments in L start with (*, end with *) and can be
nested

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 6/39

Side Note: Comments in L

» Recall: Comments in L start with (*, end with *) and can be
nested

» Also Recall: Comments are removed during lexing

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 6/39

Side Note: Comments in L

» Recall: Comments in L start with (*, end with *) and can be
nested

» Also Recall: Comments are removed during lexing

» Question: Are comments in L a regular language?

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 6/39

The Functionality of the Parser

> Input: sequence of tokens from the lexer

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 7/39

The Functionality of the Parser

> Input: sequence of tokens from the lexer

» Output: parse tree of the program

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 7/39

Example

» Consider the following L expression:
if x<>y then 1 else 2

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 8/39

Example

» Consider the following L expression:
if x<>y then 1 else 2

» Parse Input: TOKEN_IF TOKEN_ID("x") TOKEN_NEQ
TOKEN_ID("y") TOKEN_THEN TOKEN_INT(1) TOKEN_ELSE
TOKEN_INT(2)

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 8/39

Example

» Consider the following L expression:
if x<>y then 1 else 2

> Parse Input: TOKEN_IF TOKEN_ID("x") TOKEN_NEQ
TOKEN_ID("y") TOKEN_THEN TOKEN_INT(1) TOKEN_ELSE
TOKEN_INT(2)

» Parser Output:
Branch

NEQ INT:1 INT:2

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing

Parsing vs. Lexing

Phase | Input Output
Lexer
Parser
Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 9/39

Parsing vs. Lexing

Phase | Input Output
Lexer | String of characters
Parser
Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 9/39

Parsing vs. Lexing

Phase | Input Output
Lexer | String of characters | String of tokens
Parser
Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 9/39

Parsing vs. Lexing

Phase | Input Output
Lexer | String of characters | String of tokens
Parser | String of tokens

Thomas Dillig,

CS345H: Programming Languages Lecture 5: Introduction to Parsing

9/39

Parsing vs. Lexing

Phase | Input Output
Lexer | String of characters | String of tokens
Parser | String of tokens Parse tree

Thomas Dillig,

CS345H: Programming Languages Lecture 5: Introduction to Parsing

9/39

The Role of the Parser

» Not all strings of tokens are programs ...

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 10/39

The Role of the Parser

» Not all strings of tokens are programs ...

» Parser must distinguish between valid and invalid strings of
tokens

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 10/39

The Role of the Parser

» Not all strings of tokens are programs ...

» Parser must distinguish between valid and invalid strings of
tokens

» We need:

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 10/39

The Role of the Parser

» Not all strings of tokens are programs ...

» Parser must distinguish between valid and invalid strings of
tokens

» We need:

» A language for describing valid strings of tokens

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 10/39

The Role of the Parser

» Not all strings of tokens are programs ...

» Parser must distinguish between valid and invalid strings of
tokens

» We need:

» A language for describing valid strings of tokens

» A method for recognizing if a string of tokens is in this
language or not

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 10/39

Context-free Grammars (CFGs)

» Programming language constructs have recursive structure

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 11/39

Context-free Grammars (CFGs)

» Programming language constructs have recursive structure

» Example: An L expression is expression + expression,
if expression then expression else expression,

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 11/39

Context-free Grammars (CFGs)

» Programming language constructs have recursive structure
» Example: An L expression is expression + expression,

if expression then expression else expression,

» Context free grammars are a natural notation for this
recursive structure

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 11/39

CFGs in more detail

» A CFG consists of:

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 12/39

CFGs in more detail

» A CFG consists of:

> A set of terminals T

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 12/39

CFGs in more detail

» A CFG consists of:

» A set of terminals T

» A set of non-terminals N

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 12/39

CFGs in more detail

» A CFG consists of:

» A set of terminals T
» A set of non-terminals N

» A start symbol S (non-terminal)

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 12/39

CFGs in more detail

» A CFG consists of:

» A set of terminals T
> A set of non-terminals N
» A start symbol S (non-terminal)

» A set of productions
X — Y1 YQ e Yn

where X € N and Y; € (TUN U {e})

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 12/39

Notational Conventions in this Class

> Non-terminals are always written upper-case

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 13/39

Notational Conventions in this Class

> Non-terminals are always written upper-case

» Terminals are written lower-case

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 13/39

Notational Conventions in this Class

> Non-terminals are always written upper-case
» Terminals are written lower-case

» The start symbol is the left-hand side of the first production

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 13/39

CFG Examples

» A fragment of L

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 14/39

CFG Examples

> A fragment of L
EXPR — if EXPR then EXPR else EXPR
| EXPR + EXPR
| id

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 14/39

CFG Examples continued

» Simple arithmetic expressions:

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 15/39

CFG Examples continued

» Simple arithmetic expressions:
EXPR — E * E
| E+E
| (E)
| id

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing

15/39

The Language of a CFG

» Recall production rules: X — Y7...Y,

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 16/39

The Language of a CFG

» Recall production rules: X — Y7...Y,

» Means that X can be replaced by Y;... Yy

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 16/39

The Language of a CFG

» Recall production rules: X — Y7...Y,

» Means that X can be replaced by Y;... Yy

» More specifically:

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 16/39

The Language of a CFG

» Recall production rules: X — Y7...Y,

» Means that X can be replaced by Y;... Yy

» More specifically:
1. Begin with string consisting of the start symbol "S"

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 16/39

The Language of a CFG

» Recall production rules: X — Y7...Y,

» Means that X can be replaced by Y;... Yy

» More specifically:
1. Begin with string consisting of the start symbol "S"

2. Replace any non-terminal X in string with the right-hand side
of some production

X5 Y,...Y,

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 16/39

The Language of a CFG

» Recall production rules: X — Y;...Y,

» Means that X can be replaced by Y;... Yy

» More specifically:
1. Begin with string consisting of the start symbol "S”

2. Replace any non-terminal X in string with the right-hand side
of some production

X—-Y1..Y,

3. Repeat (2) until there are no non-terminals in the string

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 16/39

The Language of a CFG continued

» More formally, write
XleXn _>X1Xz—1Y1 YmXH—an
if there is a production

Xi—) Yl...Ym

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 17/39

The Language of a CFG continued

> More formally, write

XleXn—>X1Xz_1Y1Ysz+1

if there is a production

Xi—> Yl...Ym

» Abbreviation: Write Xj... X,, =>* Y7... Y, if
X1...X, —...—= Yy... Y, in 0 or more steps

X,

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing

17/39

The Language of a CFG continued

> Now, let G' be a context-free grammar with start symbol S.
Then the language of G is:

{ai...a,|S = a1...a, and every q; is a terminal}

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 18/39

Terminals

» Terminals are called "terminals” because there are no rules for
replacing them

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 19/39

Terminals

» Terminals are called "terminals” because there are no rules for
replacing them

» Once generated, terminals are permanent

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 19/39

Terminals

» Terminals are called "terminals” because there are no rules for
replacing them

» Once generated, terminals are permanent

» Question: What should terminals be when parsing a
programming language?

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 19/39

Terminals

» Terminals are called "terminals” because there are no rules for
replacing them

» Once generated, terminals are permanent

» Question: What should terminals be when parsing a
programming language?

» Answer: Tokens

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 19/39

Examples

» L(G) is the language of CFG G

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 20/39

Examples

» L(G) is the language of CFG G

» Strings of balanced parentheses:

{CYli = 0}

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 20/39

Examples

» L(G) is the language of CFG G

» Strings of balanced parentheses:
{CY]i >0}

» CFG:

S —(9)
S —e€

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 20/39

Examples

» L(G) is the language of CFG G

» Strings of balanced parentheses:

{CYli = 0}

» CFG:
S —(9)
S —e
or equivalently
S—(9)|e

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 20/39

Examples

> Recall the earlier fragment of L:

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 21/39

Examples

> Recall the earlier fragment of L:
EXPR — if EXPR then EXPR else EXPR
| EXPR + EXPR
| id

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 21/39

Examples

> Recall the earlier fragment of L:
EXPR — if EXPR then EXPR else EXPR
| EXPR + EXPR
| id

» Some strings in this language:

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 21/39

Examples

» Recall the earlier fragment of L.:
EXPR — if EXPR then EXPR else EXPR
| EXPR + EXPR
| id

» Some strings in this language:

» ID
IF ID THEN ID ELSE ID
ID + ID
IF ID THEN ID+ID ELSE ID
IF IF ID THEN ID ELSE IF THEN ID ELSE ID

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 21/39

Examples

> Recall simple arithmetic expressions:

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 22/39

Examples

» Recall simple arithmetic expressions:
EXPR — E *x E
| E+E
| (E)
| id

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing

22/39

Examples

» Recall simple arithmetic expressions:
EXPR — E *x E
| E+E
| (E)
| id

» Some strings in this language:

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing

22/39

Examples

» Recall simple arithmetic expressions:

EXPR — E * E
| E+ E
| (B
| id

Some strings in this language:

id

(id)
(id) *id
id+id
id*id
id*(id)

Thomas Dillig,

CS345H: Programming Languages Lecture 5: Introduction to Parsing

22/39

Where are we?

> The idea of a CFG is a big step towards parsing tokens.

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 23/39

Where are we?

> The idea of a CFG is a big step towards parsing tokens.

» But we don't just want to know if a string of tokens is in a
language, we also need parse tree of input tokens

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 23/39

Where are we?

> The idea of a CFG is a big step towards parsing tokens.

» But we don't just want to know if a string of tokens is in a
language, we also need parse tree of input tokens

» Must also handle errors gracefully

Thomas Dillig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 23/39

Where are we?

v

The idea of a CFG is a big step towards parsing tokens.

v

But we don't just want to know if a string of tokens is in a
language, we also need parse tree of input tokens

v

Must also handle errors gracefully

v

Need an implementation of CFGs (e.g., bison)

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 23/39

From Derivations to Parse Trees

> A derivation is a sequence of productions

S = .= =

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 24/39

From Derivations to Parse Trees

> A derivation is a sequence of productions
S— ... ==

» A derivation can be drawn as a tree

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 24/39

From Derivations to Parse Trees

> A derivation is a sequence of productions
S— ... ==

> A derivation can be drawn as a tree
» Start symbol is the tree's root

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing

24/39

From Derivations to Parse Trees

> A derivation is a sequence of productions
S— ... ==

> A derivation can be drawn as a tree
» Start symbol is the tree's root

» For a production X — Y;...Y, add children Y;...Y, to
node X

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 24/39

Derivation Example

: T

E+E EE + EE

ExE+E
id*E+E
id*id + E

* .
id*id + id E E id

U AN

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 25/39

Derivation in Detail

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 26/39

Derivation in Detail

— E+E E + E

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 26/39

Derivation in Detail

: T

— E+E E + E

— EXxE+E /I\

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 26/39

Derivation in Detail

: T

— E+E E + E

— ExE+E
— 1d*E+E

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 26/39

Derivation in Detail

: T

— E+E E + E

— ExE+E
— 1d*E+E
— id*xid + E

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 26/39

Derivation in Detail

: T

E+E EE + EE

ExE+E
id*E+E
id*id + E

* .
id*id + id E E id

Ll 4l

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 26/39

Notes on Derivations

> A parse tree has terminals at the leaves and non-terminals at
the interior nodes

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 27/39

Notes on Derivations

> A parse tree has terminals at the leaves and non-terminals at
the interior nodes

> An in-order traversal of the leaves is the original input

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 27/39

Notes on Derivations

> A parse tree has terminals at the leaves and non-terminals at
the interior nodes

> An in-order traversal of the leaves is the original input

» The parse tree shows the associativity of operations, the input
token string does not

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 27/39

Notes on Derivations

v

A parse tree has terminals at the leaves and non-terminals at
the interior nodes

v

An in-order traversal of the leaves is the original input

v

The parse tree shows the associativity of operations, the input
token string does not

v

Example: The parse tree from the last slide encodes that
times has higher precedence than plus

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 27/39

Left-most and Right-most Derivations

» The example we looked at is a left-most derivation

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 28/39

Left-most and Right-most Derivations

» The example we looked at is a left-most derivation

» This means: At each step, we replace the left-most
non-terminal

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 28/39

Left-most and Right-most Derivations

» The example we looked at is a left-most derivation

» This means: At each step, we replace the left-most
non-terminal

> There is also an equivalent notion of right-most derivation

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 28/39

Right-most Derivation in Detail

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 29/39

Right-most Derivation in Detail

— E+E E + E

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 29/39

Right-most Derivation in Detail

— E+E E + E
— E+id '

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 29/39

Right-most Derivation in Detail

: T

— E+E E + E

— E+id
— ExE+id

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 29/39

Right-most Derivation in Detail

: T

— E+E E + E

— E+id
— ExE+id
— Exid + id .

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing

29/39

Right-most Derivation in Detail

U A

E

E+E

E+id
ExE+id
Exid + id
id*id + id

Thomas Dillig,

CS345H: Programming Languages Lecture 5: Introduction to Parsing

29/39

Derivations and Parse Trees

» Observe that left-most and right-most derivations have the
same parse tree

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 30/39

Derivations and Parse Trees

» Observe that left-most and right-most derivations have the
same parse tree

» The only difference is the order in which branches are added

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 30/39

Derivations and Parse Trees

» Observe that left-most and right-most derivations have the
same parse tree

» The only difference is the order in which branches are added

» But when parsing tokens, we only care about the final parse
tree, which may have many different derivations

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing

30/39

Derivations and Parse Trees

Thomas Dilig,

Observe that left-most and right-most derivations have the
same parse tree

The only difference is the order in which branches are added

But when parsing tokens, we only care about the final parse
tree, which may have many different derivations

Left-most and right-most derivations are important in parser
implementations

CS345H: Programming Languages Lecture 5: Introduction to Parsing

30/39

Ambiguity

> Recall our example grammar:

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 31/39

Ambiguity

> Recall our example grammar:
EXPR — E * E
| E+E
| (E)
| id

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 31/39

Ambiguity

> Recall our example grammar:
EXPR — E * E
| E+E
| (E)
| id

» Now, consider the string id*id+id

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing

31/39

Ambiguity continued

» This string has two parse trees!

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 32/39

Ambiguity continued

» This string has two parse trees!

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 32/39

Ambiguity continued
> This string has two parse trees!
E E
*

ST TN

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 32/39

Ambiguity

» A grammar is ambiguous if it has more than one parse tree for
some string

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 33/39

Ambiguity

» A grammar is ambiguous if it has more than one parse tree for
some string

» Equivalently: There is more than one left-most or right-most
derivation for some string

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 33/39

Ambiguity

» A grammar is ambiguous if it has more than one parse tree for
some string

» Equivalently: There is more than one left-most or right-most
derivation for some string

» Ambiguity is bad!

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 33/39

Ambiguity

» A grammar is ambiguous if it has more than one parse tree for

some string

» Equivalently: There is more than one left-most or right-most
derivation for some string

» Ambiguity is bad!

> Leaves meaning of programs ill-defined

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 33/39

Dealing with Ambiguity

> First method: Rewrite grammar unambiguously

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 34/39

Dealing with Ambiguity

» First method: Rewrite grammar unambiguously

» Question: How can we write simple arithmetic expressions
unambiguously?

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 34/39

Dealing with Ambiguity

» First method: Rewrite grammar unambiguously

» Question: How can we write simple arithmetic expressions
unambiguously?

» Solution: Enforce precedence of times over plus by generating
all pluses fist:

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 34/39

Dealing with Ambiguity

» First method: Rewrite grammar unambiguously

» Question: How can we write simple arithmetic expressions
unambiguously?

» Solution: Enforce precedence of times over plus by generating
all pluses fist:

S —- E+S|E
E — idxE|id|(S)*xE|(S)

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing

34/39

Ambiguity

» However, converting grammars to unambiguous form can be
very difficult

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 35/39

Ambiguity

» However, converting grammars to unambiguous form can be
very difficult

> |t also often results in horrible, unintuitive grammars with
many non-terminals

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 35/39

Ambiguity

» However, converting grammars to unambiguous form can be
very difficult

> It also often results in horrible, unintuitive grammars with
many non-terminals

» It is also fundamentally impossible to transform an ambiguous
grammar into a unambiguous grammar

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 35/39

Ambiguity

» However, converting grammars to unambiguous form can be
very difficult

> It also often results in horrible, unintuitive grammars with
many non-terminals

» It is also fundamentally impossible to transform an ambiguous
grammar into a unambiguous grammar

» For this reason, tools such as bison include disambiguation
mechanisms

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 35/39

Precedence and Associativity

> Instead of rewriting the grammar:

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 36/39

Precedence and Associativity

> Instead of rewriting the grammar:
» Use the more natural ambiguous grammar

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 36/39

Precedence and Associativity

> Instead of rewriting the grammar:
» Use the more natural ambiguous grammar

» Along with disambiguating declarations

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 36/39

Precedence and Associativity

> Instead of rewriting the grammar:
» Use the more natural ambiguous grammar

» Along with disambiguating declarations

» The parser tool bison allows you to declare precedence and
associativity for this

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 36/39

Associativity Declarations

» Consider the grammar E — E+ FE | id

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 37/39

Associativity Declarations

» Consider the grammar £ — E + FE | id

» Ambiguous: Two parse trees of input id + id + id

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 37/39

Associativity Declarations

» Consider the grammar £ — E + FE | id

» Ambiguous: Two parse trees of input id + id + id

/IE\
A
Sk
id id

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 37/39

Associativity Declarations

» Consider the grammar £ — E + FE | id

» Ambiguous: Two parse trees of input id + id + id

E E
L T
AT TN
SRR
id id id id

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 37/39

Associativity Declarations

» Consider the grammar E — E+ FE | id

» Ambiguous: Two parse trees of input id + id + id

E E
/l\ /l\
AT TN
AL A
id id id id

» Declare left associativity of plus as: %left +

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 37/39

Associativity Declarations

» Consider the grammar E — E+ FE | id

» Ambiguous: Two parse trees of input id + id + id

/IE\ ;
AT
A
id id id id

» Declare left associativity of plus as: %left +

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 37/39

Precedence Declarations

» Consider the grammar E — E + F | id and input
id + id * id

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 38/39

Precedence Declarations

» Consider the grammar E — E + F | id and input
id + id * id

/IE\
A
S
id id

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 38/39

Precedence Declarations

» Consider the grammar E — E + E | id and input
id + id * id

E E
AT A
AR
id id id id

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing

38/39

Precedence Declarations

» Consider the grammar E — E + E | id and input
id + id * id

E E
AT 0
AR
id id id id
» Precedence Declaration:
%left +
%left *

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing

38/39

Precedence Declarations

» Consider the grammar E — E + E | id and input
id + id * id

/IE\
X
< {0

id id

» Precedence Declaration:
Yleft +
%left *

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing

38/39

Conclusion

» We have seem how to specify programming language syntax
with CFGs

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 39/39

Conclusion

» We have seem how to specify programming language syntax
with CFGs

» We built parse trees that express the high-level syntactic
structure

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 39/39

Conclusion

» We have seem how to specify programming language syntax
with CFGs

» We built parse trees that express the high-level syntactic
structure

> Parse trees of programs are known as abstract syntax trees

Thomas Dilig, CS345H: Programming Languages Lecture 5: Introduction to Parsing 39/39

Conclusion

We have seem how to specify programming language syntax
with CFGs

We built parse trees that express the high-level syntactic
structure

Parse trees of programs are known as abstract syntax trees

We discussed ambiguity of CFGs

Thomas Dillig,

CS345H: Programming Languages Lecture 5: Introduction to Parsing 39/39

