
CS345H: Programming Languages

Lecture 6: Parsing Algorithms

Thomas Dillig

Thomas Dillig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 1/27

Outline

I Extend CFGs to build parse trees

I We will build a parser that recognizes a CFG

I We will look at syntactic grammar restrictions that allows our
algorithm to always succeed

I Error recovery

Thomas Dillig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 2/27

Extending CFGs for program parsing

I CFGs describe the structure of a program.

I But we also need this structure in form of a tree, not just a
yes/no answer

I Insight: We do not need all program structure, only the
relevant part

I We call this an abstract syntax tree

Thomas Dillig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 3/27

ASTs

I Consider the grammar: E → int | (E ) | E + E

I And the string 5 + (2 + 3)

I After lexical analysis as string of tokens:
INT(5) ’+’ ’(’ INT(2) ’+’ INT(3) ’)’

I During parsing, we built a parse tree:

Thomas Dillig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 4/27

Example of Parse Tree

E

E

E

+

INT(2)

( )

INT(3)

E E

+E

E

INT(5)

I Captures the nesting structure

I But too much information!

I Example: We do not care about the parentheses

Thomas Dillig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 5/27

Example of Abstract Syntax Tree

PLUS

PLUS

5

2 3

I Also captures the nesting structure

I But abstracts from the concrete syntax

I More compact and easier to use

Thomas Dillig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 6/27

1



Semantic Actions to built the AST

I Each grammar symbol has one attribute

I For terminals (lexer tokens), the attribute is just the token

I Each production has a action computing its resulting attribute

I Written as: X → Y1 . . .Yn{action}

Thomas Dillig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 7/27

Semantic Actions: An Example

I Consider again the grammar: E → int | (E ) | E + E

I For each non-terminal on left-hand side, define its value in
terms of symbols on right-hand side

I Recall: The value of each terminal is just its token

I Assume value of symbol S is given by S .val

I Grammar annotated with actions to compute the AST:

E → int {E.val = int.val}
E → E1 + E2 {E.val = makeAstPlus(E1.val, E2.val)}
E → (E ′) {E.val = E′.val}

Thomas Dillig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 8/27

Semantic Actions to built the AST

I You can think of semantic actions as defining a system of
equations that describe the values of the let-hand sides in
terms of values on the right-hand side

I Recall again

E → int {E.val = int.val}
E → E1 + E2 {E.val = makeAstPlus(E1.val, E2.val)}
E → (E ′) {E.val = E′.val}

I Question: What order do we need to evaluate these equations
to compute a solution?

I Answer: Bottom-up

Thomas Dillig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 9/27

Semantic Actions: An Example cont.

E

E

E

+

INT(2)

( )

INT(3)

E E

+E

E

INT(5)

E

E

E

+

INT(2)

( )

INT(3)

E E

+E

E

INT(5)

2

E

E

E

+

INT(2)

( )

INT(3)

E E

+E

E

INT(5)

2 3

E

E

E

+

INT(2)

( )

INT(3)

E E

+E

E

INT(5)

PLUS

2 3

E

E

E

+

INT(2)

( )

INT(3)

E E

+E

E

INT(5)
PLUS

2 3

E

E

E

+

INT(2)

( )

INT(3)

E E

+E

E

INT(5)

5

PLUS

2 3

E

E

E

+

INT(2)

(

INT(3)

E E

+E

E

INT(5)

PLUS

PLUS

5

2 3

Thomas Dillig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 10/27

Semantic Actions

I We have seen how we can use semantic actions to build the
AST

I Next: How to build the parser that will allow us to execute
these semantic actions

Thomas Dillig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 11/27

Parsing

I Consider the non-ambiguous grammar for simple arithmetic
expressions:

S → E | E + S
E → int | int ∗ E | (S )

I Assume token stream is ( INT5 )

I Idea: Start with start symbol S and try rules for S in order,
backtrack if we made the wrong choice

Thomas Dillig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 12/27

2



Parsing

S → E | E + S
E → int | int ∗ E | (S )

S

( INT5 )

S

E

( INT5 )

S

E

( INT5 )

INT5

S

E

( INT5 )

INT5

Mismatch! ( is not INT
Backtrack... 

S

E

EINT5

( INT5 )

*

S

E

EINT5

( INT5 )
Mismatch: ( is not INT
Backtrack again...

*

S

E

S( )

( INT5 )

S

E

S( )

( INT5 ) Match! Advance input 

S

E

S( )

( INT5 ) Match! Advance input 

S

E

S

E

( )

( INT5 )

S

E

S

E

INT5

( )

( INT5 )

S

E

S

E

INT5

( )

( INT5 )

Match! 
Advance input

S

E

S

E

INT5

( )

( INT5 )

S

E

S

E

INT5

( )

( INT5 )

Match! 
Advance input

S

E

S

E

INT5

( )

( INT5 )

Successful parse

Thomas Dillig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 13/27

Recursive Descent Parsing

I This parsing strategy is called recursive-descent parsing

I It is easy to automate this strategy: For this assume:
I TOKEN is the type of tokens

I next is global pointer to array of TOKEN’s

Thomas Dillig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 14/27

Recursive Descent Parsing 1

I Define boolean functions that check token stream for match
and advance the next pointer

I Generic function for each terminal:
bool term(TOKEN tok) { return token == *next++;}

I For the n’th production of a non-terminal S , we will define
bool S_n() { ... }

I To try all productions of a non-terminal S , we will define
bool S() { ... }

Thomas Dillig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 15/27

Recursive Descent Parsing 2
I For production S → E

bool S_1() { return E(); }

I For production S → E + S
bool S_2() { return E() && term(PLUS) && S(); }

I For all production S (with backtracking)
bool S() {

TOKEN* save = next;

if(S_1() == true) return true;

next = save;

return S_2(); }

I Or, equivalently written as
bool S() {

return ((next = save, S_1())

|| ((next = save, S_2()) }
Thomas Dillig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 16/27

Recursive Descent Parsing 3

I Now, the functions E → int | int ∗ E | (S ):

bool E_1() { return TERM(INT); }

bool E_2() { return TERM(INT) &&

term(TIMES) && T(); }

bool E_3() { return TERM(LPAREN) && S() &&

TERM(RPAREN) }

I For all productions in E , again with backtracking:
bool E() {

TOKEN* save = next;

return (next = save, E_1()) ||

(next = save, E_2()) ||

(next = save, E_3())

}

Thomas Dillig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 17/27

Complete Parser

bool term(TOKEN tok) { return token == *next++;}

bool S_1() { return E(); }

bool S_2() { return E() && term(PLUS) && S(); }

bool S() { return ((next = save, S_1())

|| ((next = save, S_2()) }

bool E_1() { return TERM(INT); }

bool E_2() { return TERM(INT) &&

term(TIMES) && T(); }

bool E_3() { return TERM(LPAREN) && S() &&

TERM(RPAREN) }

bool E() {

TOKEN* save = next;

return (next = save, E_1()) ||

(next = save, E_2()) ||

(next = save, E_3())

}

Thomas Dillig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 18/27

3



Recursive Descent Parsing 4

I To start this parser, initialize next to the first token and call
S()

I This simulates the example parse and is easy to implement by
hand

Thomas Dillig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 19/27

Are we done?

I Consider a production of the form

S → Sa

I We will generate the following functions using our scheme:
bool S_1() { return S() && term(a); }

bool S() { return S_1; }

I Here, S() goes into an infinite loop

I General Problem: If for some non-terminal S, it is possible to
derive S →∗ Sα, recursive descent does not work

I Such grammars are called left-recursive

Thomas Dillig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 20/27

Eliminating Left-Recursion

I Fortunately, it is always possible to eliminate left-recursion
from grammars

I Example: Consider the grammar:

S → Sα | β

I This grammar generates all strings starting with one β and
followed by one or more αs

I Can rewrite using right-recursion:

S → βS ′

S ′ → αS ′ | ε

Thomas Dillig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 21/27

Eliminating Left-Recursion cont.
I In general:

S → Sα1 | . . . | Sαn | β1 | . . . | βm

I Insight: All strings derived from S start with one of
β1, . . . , βm and continue with several instances of α1, . . . , αn

I Rewrite as:

S → β1S
′ | . . . | βmS ′

S ′ → α1S
′ | . . . | αnS

′ | ε

I Easy to generalize this procedure slightly for non-direct
left-recursion, such as

S → Aα
A → Sβ | ε

Thomas Dillig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 22/27

Recursive Descent Parsing

I Result: Recursive Descent parsing can parse any
non-ambiguous grammar

I Downside: Potentially expensive to backtrack

I Left-recursion must be eliminated for recursive descent parsing
to work, but this can be done automatically

I In practice, you can often eliminate much backtracking by
restricting the grammar

Thomas Dillig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 23/27

Other Parsing Algorithms

I Researchers works for 20 years to develop efficient paring
algorithms, known as LL(1), LR(1), etc

I All these algorithms avoid branching by some (bounded) token
lookahead and only work on some grammars.

I However: With computers getting faster every year, recursive
descent parsing is very popular

I Example: GCC and G++ both use a hand-written recursive
descent parser

I However, you will use the parser-generator bison for your
homework which has some restrictions on your grammar.
Read the posted manual!

Thomas Dillig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 24/27

4



Dealing with Errors

I Reality: Not every string of tokens can be parsed

I Example: let let lambda x . .

I Option 1: Abort with an error message

I This is what you will do in PA2

I Often a reasonable choice

I Option 2: Try to continue parsing after some tokens to report
more errors

I Often results in garbage error reports

Thomas Dillig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 25/27

Dealing with Errors cont.

I Option 3: Try to find ”nearby” program that parses

I Typically, try inserting and deleting tokens until program
compiles

I Drawbacks:
I Hard to implement

I Can be very slow

I ”Nearby” program is often not intended program

I This used to be a big research area, but today nobody cares

I Question: Why is this the case?

Thomas Dillig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 26/27

Real Example
I Cornell developed a programming language called CUPL that

parsed every program

I If you feed to following to the CUPL compiler:
“To be, or not to be, that is the question:
Whether ’tis Nobler in the mind to suffer
The Slings and Arrows of outrageous Fortune,
Or to take Arms against a Sea of troubles,
... ”

I Unknown construct "To be", did you mean BEGIN?

I Unknown construct ", or", did you mean "VAR or" ?

I . . .

I Final output: BEGIN END

Thomas Dillig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 27/27

5


