CS345H: Programming Languages

Lecture 6: Parsing Algorithms

Thomas Dillig

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 1/21



Outline

» Extend CFGs to build parse trees

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 2/27



Outline

» Extend CFGs to build parse trees

» We will build a parser that recognizes a CFG

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms. 2/27



Outline

» Extend CFGs to build parse trees
» We will build a parser that recognizes a CFG

» We will look at syntactic grammar restrictions that allows our
algorithm to always succeed

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 2/27



Outline

v

Extend CFGs to build parse trees

v

We will build a parser that recognizes a CFG

v

We will look at syntactic grammar restrictions that allows our
algorithm to always succeed

v

Error recovery
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Extending CFGs for program parsing

» CFGs describe the structure of a program.
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Extending CFGs for program parsing

» CFGs describe the structure of a program.

» But we also need this structure in form of a tree, not just a
yes/no answer

» Insight: We do not need all program structure, only the
relevant part
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Extending CFGs for program parsing

v

CFGs describe the structure of a program.

v

But we also need this structure in form of a tree, not just a
yes/no answer

v

Insight: We do not need all program structure, only the
relevant part

v

We call this an abstract syntax tree
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ASTs

» Consider the grammar: E —int | (E) | E4+ E
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ASTs
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ASTs

v

Consider the grammar: E —int | (E) | E4+ E

v

And the string 5 + (2 + 3)

v

After lexical analysis as string of tokens:
INT(5) >+’ 2 (’> INT(2) ’+’ INT(3) °’)’

v

During parsing, we built a parse tree:
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Example of Parse Tree
E
N
E + E
| |
INT(5) E
RN
( ||5 )
e NE

INT(2) INT(3)
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Example of Parse Tree
E
N
E + E
| |
INT(5) E
RN
( ||5 )
E/+\E

INT(2) INT(3)

» Captures the nesting structure
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Example of Parse Tree
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| |

INT(5) E
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( ||5 )
e e

INT(2) INT(3)

» Captures the nesting structure

» But too much information!
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Example of Parse Tree
E
N

E + E

| |

INT(5) E
RN
( IIE )
e e

INT(2) INT(3)

» Captures the nesting structure
» But too much information!

» Example: We do not care about the parentheses
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Example of Abstract Syntax Tree

/J PLUS

PLUS

7

2 3
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Example of Abstract Syntax Tree

PLUS
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» Also captures the nesting structure

» But abstracts from the concrete syntax
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Example of Abstract Syntax Tree

PLUS
PLUS
4
2 3

» Also captures the nesting structure
» But abstracts from the concrete syntax

» More compact and easier to use
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Semantic Actions to built the AST

» Each grammar symbol has one attribute
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» Each grammar symbol has one attribute
» For terminals (lexer tokens), the attribute is just the token
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Semantic Actions to built the AST

» Each grammar symbol has one attribute

» For terminals (lexer tokens), the attribute is just the token

» Each production has a action computing its resulting attribute
» Written as: X — Y7... Y, {action}
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Semantic Actions: An Example

» Consider again the grammar: £ —int | (E) | E4+ E
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Semantic Actions: An Example

» Consider again the grammar: £ —int | (E) | E4+ E

» For each non-terminal on left-hand side, define its value in
terms of symbols on right-hand side

» Recall: The value of each terminal is just its token

> Assume value of symbol S is given by S.val
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Semantic Actions: An Example

» Consider again the grammar: E —int | (E) | E4+ E

v

For each non-terminal on left-hand side, define its value in
terms of symbols on right-hand side

v

Recall: The value of each terminal is just its token

v

Assume value of symbol § is given by S.val

» Grammar annotated with actions to compute the AST:
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Semantic Actions: An Example

» Consider again the grammar: E —int | (E) | E4+ E

v

For each non-terminal on left-hand side, define its value in
terms of symbols on right-hand side

v

Recall: The value of each terminal is just its token

v

Assume value of symbol § is given by S.val

» Grammar annotated with actions to compute the AST:

E — int {E.val = int.val}
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Semantic Actions: An Example

» Consider again the grammar: E —int | (E) | E4+ E

v

For each non-terminal on left-hand side, define its value in
terms of symbols on right-hand side

v

Recall: The value of each terminal is just its token

v

Assume value of symbol § is given by S.val

» Grammar annotated with actions to compute the AST:

E — int {E.val = int.val}
EF — E + E
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Semantic Actions: An Example

» Consider again the grammar: E —int | (E) | E4+ E

v

For each non-terminal on left-hand side, define its value in
terms of symbols on right-hand side

v

Recall: The value of each terminal is just its token

v

Assume value of symbol § is given by S.val

» Grammar annotated with actions to compute the AST:

E — int {E.val = int.val}
E — E;+ E; {E.val = makeAstPlus(E;.val,Ey.val)}
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Semantic Actions: An Example

» Consider again the grammar: E —int | (E) | E4+ E

v

For each non-terminal on left-hand side, define its value in
terms of symbols on right-hand side

v

Recall: The value of each terminal is just its token

v

Assume value of symbol § is given by S.val

» Grammar annotated with actions to compute the AST:

E — int {E.val = int.val}
E — E;+ E; {E.val = makeAstPlus(E;.val,Ey.val)}
E — (£
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Semantic Actions: An Example

» Consider again the grammar: E —int | (E) | E4+ E

v

For each non-terminal on left-hand side, define its value in
terms of symbols on right-hand side

v

Recall: The value of each terminal is just its token

v

Assume value of symbol § is given by S.val

» Grammar annotated with actions to compute the AST:

E — int {E.val = int.val}
E — E;+ E; {E.val = makeAstPlus(E;.val,Ey.val)}
E — (E') {Eval =FE.val}
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Semantic Actions to built the AST

» You can think of semantic actions as defining a system of
equations that describe the values of the let-hand sides in
terms of values on the right-hand side
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Semantic Actions to built the AST

» You can think of semantic actions as defining a system of
equations that describe the values of the let-hand sides in
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Semantic Actions to built the AST

» You can think of semantic actions as defining a system of
equations that describe the values of the let-hand sides in
terms of values on the right-hand side

» Recall again

E — int {E.val = int.val}
E — E+ E, {E.val =makeAstPlus(E;.val,Ep.val)}
E — (E') {Eval =E.val}

» Question: What order do we need to evaluate these equations
to compute a solution?
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Semantic Actions to built the AST

Thomas Dilig,

You can think of semantic actions as defining a system of
equations that describe the values of the let-hand sides in
terms of values on the right-hand side

Recall again

E — int {E.val = int.val}
E — E+ E, {E.val =makeAstPlus(E;.val,Ep.val)}
E — (E') {Eval =E.val}

Question: What order do we need to evaluate these equations
to compute a solution?

Answer: Bottom-up
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Semantic Actions: An Example cont.
E
I
E + E
INT(5) /E\
( ||5 )

+

INT(2) INT(3)

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms



Semantic Actions: An Example cont.
E
I
E + E

INT(5) /E\

( ||5 )

+

2] |
INT(2) INT(3)
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Semantic Actions: An Example cont.
E
I
E + E
INT(5) /Ili\
( E )

|

+
2 | | 3
INT(2) INT(3)
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Semantic Actions: An Example cont.

E
1 ™~
E ¥ E

| |
INT(5) /E
N\
( ||5 )
E/+\E

INT(2) INT(3)

PLUS

w
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Semantic Actions: An Example cont.

/IIE\

= + E

IN'I|'(5) ||5 PLUS
RN P
CE [z -
E/+\E
| |

INT(2) INT(3)
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Semantic Actions: An Example cont.

/IIE\

E=  + E

IN'I|'(5) ||5 PLUS

5 /l\ /\
CE R -
E/+\E
| |

INT(2) INT(3)
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Semantic Actions: An Example cont.

E
T/’lf \T PLUS
INT(5) E //
/ | \ PLUS
( IIE 5
|E/+\T

INT(2) INT(3)
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Semantic Actions

» We have seen how we can use semantic actions to build the
AST
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Semantic Actions

» We have seen how we can use semantic actions to build the
AST

» Next: How to build the parser that will allow us to execute
these semantic actions
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Parsing

» Consider the non-ambiguous grammar for simple arithmetic
expressions:
S - E|E+S
E — int|intxE | (S5)
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Parsing
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Parsing

» Consider the non-ambiguous grammar for simple arithmetic
expressions:
S - E|E+S
E — int|intxE | (S5)

» Assume token stream is ( INT5 )

> ldea: Start with start symbol S and try rules for S in order,
backtrack if we made the wrong choice
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Parsing

S — E|E+S
E — int]|intxFE | (9)

S

(INT5)

}
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Parsing
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S
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}
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Parsing

S — E|E+S
E — int]intxFE | (9)

S
|
E

INTS

(INT5)

}
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Parsing

S — E|E+S
E — int]intxFE | (9)

S
|
E

INTS

Mismatch! ( is not INT
(INT5) Backtrack...

}

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 13/27



Parsing

S — E|E+S
E — int]|intxFE | (9)

S

(INT5)

}
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Parsing

S — E|E+S
E — int|intxE | (9)

S

E

1N

INTS * E

(INT5)

}
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Parsing

S — E|E+S
E — int|intxE | (9)

S

E

1N

INTS * E

Mismatch: (is not INT

(‘lNT5 ) Backtrack again...
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Parsing

S — E|E+S
E — int]|intxFE | (9)

S

(INT5)

}
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Parsing

S — E|E+S
E — int]intxFE | (9)

|
AN

(INT5)

}
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Parsing

S — E|E+S
E — int|intxE | (9)

|
AN

(INT5) Match! Advance input

}
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Parsing

S — E|E+S
E — int|intxE | (9)

|
AN

(INT5) Match! Advance input
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Parsing

S — E|E+S
E — int]|intxFE | (9)

|
AN
|

E
(INT5)
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Parsing

S — E|E+S
E — int]intxFE | (9)

|
AN
|

E

|
( 'NIS ) INT5
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Parsing

S — E|E+S
E — int]|intxFE | (9)

|
AN
|

Match!
| Advance input
(INTS)
‘ INTS
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Parsing

S — E|E+S
E — int]|intxFE | (9)

|
AN
|

E

|
(INTS f) INT5
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Parsing

S —- E|E+S
E — int]intxE | (9)

S
|
E

ya

( S
|
E Match!

(INT5) | Advance input
f INT5
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Parsing

S — E|E+S
E — int]|intxFE | (9)

|
AN
|

E

|
(INTS )f INT5

Successful parse

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 13/27



Recursive Descent Parsing

» This parsing strategy is called recursive-descent parsing
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> It is easy to automate this strategy: For this assume:
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Recursive Descent Parsing

» This parsing strategy is called recursive-descent parsing

> It is easy to automate this strategy: For this assume:
» TOKEN is the type of tokens

» next is global pointer to array of TOKEN's
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Recursive Descent Parsing 1

» Define boolean functions that check token stream for match
and advance the next pointer
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Recursive Descent Parsing 1

» Define boolean functions that check token stream for match
and advance the next pointer
» Generic function for each terminal:
bool term(TOKEN tok) { return token == *next++;}
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Recursive Descent Parsing 1

» Define boolean functions that check token stream for match
and advance the next pointer

» Generic function for each terminal:
bool term(TOKEN tok) { return token == *next++;}

» For the n'th production of a non-terminal S, we will define
bool S n() { ... %}
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Recursive Descent Parsing 1

» Define boolean functions that check token stream for match
and advance the next pointer
» Generic function for each terminal:
bool term(TOKEN tok) { return token == *next++;}

» For the n'th production of a non-terminal S, we will define
bool S_n() { ... }

» To try all productions of a non-terminal S, we will define
bool SO { ... }
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Recursive Descent Parsing 2

» For production § — F
bool S_1() { return E(Q); }
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Recursive Descent Parsing 2

» For production § — F
bool S_1() { return E(Q); }

» For production S — F + S
bool S_2() { return E() && term(PLUS) && S(O; }
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Recursive Descent Parsing 2

» For production § — F
bool S_1() { return E(); %}

» For production S -+ E + S

bool S_2() { return E() && term(PLUS) && S(); }

» For all production S (with backtracking)

bool SO {
TOKEN* save = next;

if(S_1() == true) return true;

next = save;
return S_2(0); }
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Recursive Descent Parsing 2

» For production § — F
bool S_1() { return E(); %}

» For production S -+ E + S

bool S_2() { return E() && term(PLUS) && S(); }

» For all production S (with backtracking)

bool SO {
TOKEN* save = next;

if(S_1() == true) return true;

next = save;
return S_2Q0); }

» Or, equivalently written as
bool SO {

return ((next = save, S_1())
|l ((next = save, S_2()) }
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Recursive Descent Parsing 3

» Now, the functions E — int | intx E | (S):
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Recursive Descent Parsing 3

» Now, the functions E — int | intx E | (S):

bool E_1() { return TERM(INT); }
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Recursive Descent Parsing 3
» Now, the functions E — int | intx E | (S):
bool E_1() { return TERM(INT); }

bool E_2() { return TERM(INT) &&
term(TIMES) && T(); }
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Recursive Descent Parsing 3

» Now, the functions E — int | intx E | (S):

bool E_1() { return TERM(INT); }
bool E_2() { return TERM(INT) &&

term(TIMES) && T(); }
bool E_3() { return TERM(LPAREN) && S() &&

TERM(RPAREN) }

17/27
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Recursive Descent Parsing 3

» Now, the functions E — int | intx £ | (S)

bool E_1() { return TERM(INT); }

bool E_2() { return TERM(INT) &&
term(TIMES) && T();

bool E_3() { return TERM(LPAREN) && S() &&
TERM(RPAREN) }

» For all productions in E, again with backtracking:
bool E() {
TOKEN* save = next;
return (next = save, E_1(0)) ||
(next = save, E_20)) ||
(next = save, E_3())
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Complete Parser

bool term(TOKEN tok) { return token == *next++;}

bool S_1() { return EQ; }
bool S_2() { return E() && term(PLUS) && S(O); }
bool S() { return ((next = save, S_1(0))

[l ((next = save, S_20)) }

bool E_1() { return TERM(INT); }
bool E_2() { return TERM(INT) &&
term(TIMES) && T(); }
bool E_3() { return TERM(LPAREN) && S() &&
TERM(RPAREN) 1}
bool E() {
TOKEN* save = next;
return (next = save, E_1()) ||
(next = save, E_20)) ||
(next = save, E_3())
}
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Recursive Descent Parsing 4

» To start this parser, initialize next to the first token and call

SO
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Recursive Descent Parsing 4

» To start this parser, initialize next to the first token and call

SO

» This simulates the example parse and is easy to implement by
hand
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Are we done?

» Consider a production of the form

S — Sa
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Are we done?

» Consider a production of the form

S — Sa

» We will generate the following functions using our scheme:
bool S_1() { return SO && term(a); }
bool S() { return S_1; }
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Are we done?

» Consider a production of the form

S — Sa
» We will generate the following functions using our scheme:
bool S_1() { return SO && term(a); }
bool S() { return S_1; }

» Here, S() goes into an infinite loop
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Are we done?

v

Consider a production of the form

S — Sa

v

We will generate the following functions using our scheme:
bool S_1() { return S() && term(a); }
bool S() { return S_1; }

v

Here, S() goes into an infinite loop

v

General Problem: If for some non-terminal S, it is possible to
derive S —* Sq, recursive descent does not work
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Are we done?

» Consider a production of the form

S — Sa
» We will generate the following functions using our scheme:
bool S_1() { return S() && term(a); }
bool S() { return S_1; }

» Here, S() goes into an infinite loop

» General Problem: If for some non-terminal S, it is possible to
derive S —* Sq, recursive descent does not work

» Such grammars are called left-recursive
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Eliminating Left-Recursion

» Fortunately, it is always possible to eliminate left-recursion
from grammars

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 21/27
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» Fortunately, it is always possible to eliminate left-recursion
from grammars

» Example: Consider the grammar:
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Eliminating Left-Recursion

v

Fortunately, it is always possible to eliminate left-recursion
from grammars

v

Example: Consider the grammar:

S — Sa| B

v

This grammar generates all strings starting with one 5 and
followed by one or more as

» Can rewrite using right-recursion:

S = BY
S = a8 e
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Eliminating Left-Recursion cont.
> In general:

S Sar| ... | San|Bi| | Bm
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Eliminating Left-Recursion cont.
> In general:

S 8ar| ... | San|Bi| .| Bm

> Insight: All strings derived from § start with one of

B1, ..., Bm and continue with several instances of ag, ...

» Rewrite as:

S = /S| BnS
S = S| eS| e

» Easy to generalize this procedure slightly for non-direct
left-recursion, such as

S — A«
A — Sple
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Recursive Descent Parsing

> Result: Recursive Descent parsing can parse any
non-ambiguous grammar
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Recursive Descent Parsing

Thomas Dilig,

Result: Recursive Descent parsing can parse any
non-ambiguous grammar

Downside: Potentially expensive to backtrack

Left-recursion must be eliminated for recursive descent parsing
to work, but this can be done automatically

In practice, you can often eliminate much backtracking by
restricting the grammar
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Other Parsing Algorithms

> Researchers works for 20 years to develop efficient paring
algorithms, known as LL(1), LR(1), etc
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Other

Thomas Dilig,

Parsing Algorithms

Researchers works for 20 years to develop efficient paring
algorithms, known as LL(1), LR(1), etc

All these algorithms avoid branching by some (bounded) token
lookahead and only work on some grammars.

However: With computers getting faster every year, recursive
descent parsing is very popular

Example: GCC and G4+ both use a hand-written recursive
descent parser

However, you will use the parser-generator bison for your

homework which has some restrictions on your grammar.
Read the posted manual!
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Dealing with Errors

» Reality: Not every string of tokens can be parsed
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Dealing with Errors

» Reality: Not every string of tokens can be parsed
» Example: let let lambda x .

» Option 1: Abort with an error message

> This is what you will do in PA2

» Often a reasonable choice

» Option 2: Try to continue parsing after some tokens to report
more errors

» Often results in garbage error reports
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Dealing with Errors cont.

» Option 3: Try to find "nearby” program that parses
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Dealing with Errors cont.

» Option 3: Try to find "nearby” program that parses

» Typically, try inserting and deleting tokens until program
compiles
» Drawbacks:
» Hard to implement
» Can be very slow
> "Nearby"” program is often not intended program
» This used to be a big research area, but today nobody cares
» Question: Why is this the case?
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Real Example

> Cornell developed a programming language called CUPL that
parsed every program
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Real Example

>

Cornell developed a programming language called CUPL that
parsed every program

If you feed to following to the CUPL compiler:
“To be, or not to be, that is the question:
Whether 'tis Nobler in the mind to suffer

The Slings and Arrows of outrageous Fortune,
Or to take Arms against a Sea of troubles,

Unknown construct "To be", did you mean BEGIN?

Unknown construct ", or", did you mean "VAR or" 7

Final output: BEGIN END
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