CS345H: Programming Languages

Lecture 6: Parsing Algorithms

Thomas Dillig

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 1/21

Outline

» Extend CFGs to build parse trees

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 2/27

Outline

» Extend CFGs to build parse trees

» We will build a parser that recognizes a CFG

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms. 2/27

Outline

» Extend CFGs to build parse trees
» We will build a parser that recognizes a CFG

» We will look at syntactic grammar restrictions that allows our
algorithm to always succeed

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 2/27

Outline

v

Extend CFGs to build parse trees

v

We will build a parser that recognizes a CFG

v

We will look at syntactic grammar restrictions that allows our
algorithm to always succeed

v

Error recovery

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 2/27

Extending CFGs for program parsing

» CFGs describe the structure of a program.

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 3/27

Extending CFGs for program parsing

» CFGs describe the structure of a program.

» But we also need this structure in form of a tree, not just a
yes/no answer

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 3/27

Extending CFGs for program parsing

» CFGs describe the structure of a program.

» But we also need this structure in form of a tree, not just a
yes/no answer

» Insight: We do not need all program structure, only the
relevant part

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms

3/21

Extending CFGs for program parsing

v

CFGs describe the structure of a program.

v

But we also need this structure in form of a tree, not just a
yes/no answer

v

Insight: We do not need all program structure, only the
relevant part

v

We call this an abstract syntax tree

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 3/27

ASTs

» Consider the grammar: E —int | (E) | E4+ E

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 4/27

ASTs

» Consider the grammar: £ —int | (E) | E4+ E

» And the string 5 + (2 + 3)

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 4/27

ASTs

» Consider the grammar: £ —int | (E) | E4+ E
» And the string 5 + (2 + 3)

» After lexical analysis as string of tokens:
INT(5) >+’ 2 (’> INT(2) ’+’ INT(3) °’)’

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 4/27

ASTs

v

Consider the grammar: E —int | (E) | E4+ E

v

And the string 5 + (2 + 3)

v

After lexical analysis as string of tokens:
INT(5) >+’ 2 (’> INT(2) ’+’ INT(3) °’)’

v

During parsing, we built a parse tree:

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 4/27

Example of Parse Tree
E
N
E + E
| |
INT(5) E
RN
(||5)
e NE

INT(2) INT(3)

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms

5/27

Example of Parse Tree
E
N
E + E
| |
INT(5) E
RN
(||5)
E/+\E

INT(2) INT(3)

» Captures the nesting structure

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorith

ms

5/27

Example of Parse Tree
E
N

E + E

| |

INT(5) E
RN
(||5)
e e

INT(2) INT(3)

» Captures the nesting structure

» But too much information!

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorith

ms

5/27

Example of Parse Tree
E
N

E + E

| |

INT(5) E
RN
(IIE)
e e

INT(2) INT(3)

» Captures the nesting structure
» But too much information!

» Example: We do not care about the parentheses

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms

5/27

Example of Abstract Syntax Tree

/J PLUS

PLUS

7

2 3

Thomas Dillig,

CS345H: Programming Languages Lecture 6: Parsing Algorithms.

6/27

Example of Abstract Syntax Tree

/J PLUS

PLUS

7

2

3

» Also captures the nesting structure

Thomas Dillig,

CS345H: Programming Languages Lecture 6: Parsing Algorithms.

6/27

Example of Abstract Syntax Tree

PLUS
PLUS
4
2 3

» Also captures the nesting structure

» But abstracts from the concrete syntax

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 6/27

Example of Abstract Syntax Tree

PLUS
PLUS
4
2 3

» Also captures the nesting structure
» But abstracts from the concrete syntax

» More compact and easier to use

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorith

ms

6/27

Semantic Actions to built the AST

» Each grammar symbol has one attribute

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 7/21

Semantic Actions to built the AST

» Each grammar symbol has one attribute

» For terminals (lexer tokens), the attribute is just the token

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 7/21

Semantic Actions to built the AST

» Each grammar symbol has one attribute
» For terminals (lexer tokens), the attribute is just the token

» Each production has a action computing its resulting attribute

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 7/21

Semantic Actions to built the AST

» Each grammar symbol has one attribute

» For terminals (lexer tokens), the attribute is just the token

» Each production has a action computing its resulting attribute
» Written as: X — Y7... Y, {action}

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 7/21

Semantic Actions: An Example

» Consider again the grammar: £ —int | (E) | E4+ E

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 8/27

Semantic Actions: An Example

» Consider again the grammar: £ —int | (E) | E4+ E

» For each non-terminal on left-hand side, define its value in
terms of symbols on right-hand side

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 8/27

Semantic Actions: An Example

» Consider again the grammar: £ —int | (E) | E4+ E

» For each non-terminal on left-hand side, define its value in
terms of symbols on right-hand side

» Recall: The value of each terminal is just its token

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 8/27

Semantic Actions: An Example

» Consider again the grammar: £ —int | (E) | E4+ E

» For each non-terminal on left-hand side, define its value in
terms of symbols on right-hand side

» Recall: The value of each terminal is just its token

> Assume value of symbol S is given by S.val

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 8/27

Semantic Actions: An Example

» Consider again the grammar: E —int | (E) | E4+ E

v

For each non-terminal on left-hand side, define its value in
terms of symbols on right-hand side

v

Recall: The value of each terminal is just its token

v

Assume value of symbol § is given by S.val

» Grammar annotated with actions to compute the AST:

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms

Semantic Actions: An Example

» Consider again the grammar: E —int | (E) | E4+ E

v

For each non-terminal on left-hand side, define its value in
terms of symbols on right-hand side

v

Recall: The value of each terminal is just its token

v

Assume value of symbol § is given by S.val

» Grammar annotated with actions to compute the AST:

E — int {E.val = int.val}

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms

Semantic Actions: An Example

» Consider again the grammar: E —int | (E) | E4+ E

v

For each non-terminal on left-hand side, define its value in
terms of symbols on right-hand side

v

Recall: The value of each terminal is just its token

v

Assume value of symbol § is given by S.val

» Grammar annotated with actions to compute the AST:

E — int {E.val = int.val}
EF — E + E

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms

Semantic Actions: An Example

» Consider again the grammar: E —int | (E) | E4+ E

v

For each non-terminal on left-hand side, define its value in
terms of symbols on right-hand side

v

Recall: The value of each terminal is just its token

v

Assume value of symbol § is given by S.val

» Grammar annotated with actions to compute the AST:

E — int {E.val = int.val}
E — E;+ E; {E.val = makeAstPlus(E;.val,Ey.val)}

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms

Semantic Actions: An Example

» Consider again the grammar: E —int | (E) | E4+ E

v

For each non-terminal on left-hand side, define its value in
terms of symbols on right-hand side

v

Recall: The value of each terminal is just its token

v

Assume value of symbol § is given by S.val

» Grammar annotated with actions to compute the AST:

E — int {E.val = int.val}
E — E;+ E; {E.val = makeAstPlus(E;.val,Ey.val)}
E — (£

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms

Semantic Actions: An Example

» Consider again the grammar: E —int | (E) | E4+ E

v

For each non-terminal on left-hand side, define its value in
terms of symbols on right-hand side

v

Recall: The value of each terminal is just its token

v

Assume value of symbol § is given by S.val

» Grammar annotated with actions to compute the AST:

E — int {E.val = int.val}
E — E;+ E; {E.val = makeAstPlus(E;.val,Ey.val)}
E — (E') {Eval =FE.val}

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms

Semantic Actions to built the AST

» You can think of semantic actions as defining a system of
equations that describe the values of the let-hand sides in
terms of values on the right-hand side

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 9/27

Semantic Actions to built the AST

» You can think of semantic actions as defining a system of
equations that describe the values of the let-hand sides in
terms of values on the right-hand side

» Recall again

E — int {E.val = int.val}

E — E+ E, {E.val =makeAstPlus(E;.val,Ep.val)}
E — (E') {Eval =E.val}

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms

Semantic Actions to built the AST

» You can think of semantic actions as defining a system of
equations that describe the values of the let-hand sides in
terms of values on the right-hand side

» Recall again

E — int {E.val = int.val}
E — E+ E, {E.val =makeAstPlus(E;.val,Ep.val)}
E — (E') {Eval =E.val}

» Question: What order do we need to evaluate these equations
to compute a solution?

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms

Semantic Actions to built the AST

Thomas Dilig,

You can think of semantic actions as defining a system of
equations that describe the values of the let-hand sides in
terms of values on the right-hand side

Recall again

E — int {E.val = int.val}
E — E+ E, {E.val =makeAstPlus(E;.val,Ep.val)}
E — (E') {Eval =E.val}

Question: What order do we need to evaluate these equations
to compute a solution?

Answer: Bottom-up

CS345H: Programming Languages Lecture 6: Parsing Algorithms

Semantic Actions: An Example cont.
E
I
E + E
INT(5) /E\
(||5)

+

INT(2) INT(3)

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms

Semantic Actions: An Example cont.
E
I
E + E

INT(5) /E\

(||5)

+

2] |
INT(2) INT(3)

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms

Semantic Actions: An Example cont.
E
I
E + E
INT(5) /Ili\
(E)

|

+
2 | | 3
INT(2) INT(3)

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms

Semantic Actions: An Example cont.

E
1 ™~
E ¥ E

| |
INT(5) /E
N\
(||5)
E/+\E

INT(2) INT(3)

PLUS

w

Thomas Dilig, CS345H: Programming Languages Lecture 6

Parsing Algorithms

Semantic Actions: An Example cont.

/IIE\

= + E

IN'I|'(5) ||5 PLUS
RN P
CE [z -
E/+\E
| |

INT(2) INT(3)

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms

Semantic Actions: An Example cont.

/IIE\

E= + E

IN'I|'(5) ||5 PLUS

5 /l\ /\
CE R -
E/+\E
| |

INT(2) INT(3)

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms

Semantic Actions: An Example cont.

E
T/’lf \T PLUS
INT(5) E //
/ | \ PLUS
(IIE 5
|E/+\T

INT(2) INT(3)

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms

Semantic Actions

» We have seen how we can use semantic actions to build the
AST

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 11/27

Semantic Actions

» We have seen how we can use semantic actions to build the
AST

» Next: How to build the parser that will allow us to execute
these semantic actions

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 11/27

Parsing

» Consider the non-ambiguous grammar for simple arithmetic
expressions:
S - E|E+S
E — int|intxE | (S5)

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 12/27

Parsing

» Consider the non-ambiguous grammar for simple arithmetic
expressions:
S - E|E+S
E — int|intxE | (S5)

» Assume token stream is (INT5)

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 12/27

Parsing

» Consider the non-ambiguous grammar for simple arithmetic
expressions:
S - E|E+S
E — int|intxE | (S5)

» Assume token stream is (INT5)

> ldea: Start with start symbol S and try rules for S in order,
backtrack if we made the wrong choice

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 12/27

Parsing

S — E|E+S
E — int]|intxFE | (9)

S

(INT5)

}

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms. 13/27

Parsing

S — E|E+S
E — int]|intxFE | (9)

S

(INT5)

}

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms. 13/27

Parsing

S — E|E+S
E — int]intxFE | (9)

S
|
E

INTS

(INT5)

}

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 13/27

Parsing

S — E|E+S
E — int]intxFE | (9)

S
|
E

INTS

Mismatch! (is not INT
(INT5) Backtrack...

}

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 13/27

Parsing

S — E|E+S
E — int]|intxFE | (9)

S

(INT5)

}

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms. 13/27

Parsing

S — E|E+S
E — int|intxE | (9)

S

E

1N

INTS * E

(INT5)

}

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 13/27

Parsing

S — E|E+S
E — int|intxE | (9)

S

E

1N

INTS * E

Mismatch: (is not INT

(‘lNT5) Backtrack again...
Thomas Dillig, (CS345H: Programming Languages Lecture 6: Parsing Algorithms 13/27

Parsing

S — E|E+S
E — int]|intxFE | (9)

S

(INT5)

}

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms. 13/27

Parsing

S — E|E+S
E — int]intxFE | (9)

|
AN

(INT5)

}

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 13/27

Parsing

S — E|E+S
E — int|intxE | (9)

|
AN

(INT5) Match! Advance input

}

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 13/27

Parsing

S — E|E+S
E — int|intxE | (9)

|
AN

(INT5) Match! Advance input

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 13/27

Parsing

S — E|E+S
E — int]|intxFE | (9)

|
AN
|

E
(INT5)

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 13/27

Parsing

S — E|E+S
E — int]intxFE | (9)

|
AN
|

E

|
('NIS) INT5

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms

13/27

Parsing

S — E|E+S
E — int]|intxFE | (9)

|
AN
|

Match!
| Advance input
(INTS)
‘ INTS
Thomas Dillig, (CS345H: Programming Languages Lecture 6: Parsing Algorithms 13/27

Parsing

S — E|E+S
E — int]|intxFE | (9)

|
AN
|

E

|
(INTS f) INT5

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms

13/27

Parsing

S —- E|E+S
E — int]intxE | (9)

S
|
E

ya

(S
|
E Match!

(INT5) | Advance input
f INT5
Thomas Dillig, C5345H: Programming Languages Lecture 6: Parsing Algorithms s

Parsing

S — E|E+S
E — int]|intxFE | (9)

|
AN
|

E

|
(INTS)f INT5

Successful parse

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 13/27

Recursive Descent Parsing

» This parsing strategy is called recursive-descent parsing

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 14/27

Recursive Descent Parsing

» This parsing strategy is called recursive-descent parsing

> It is easy to automate this strategy: For this assume:

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 14/27

Recursive Descent Parsing

» This parsing strategy is called recursive-descent parsing

> It is easy to automate this strategy: For this assume:
» TOKEN is the type of tokens

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 14/27

Recursive Descent Parsing

» This parsing strategy is called recursive-descent parsing

> It is easy to automate this strategy: For this assume:
» TOKEN is the type of tokens

» next is global pointer to array of TOKEN's

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 14/27

Recursive Descent Parsing 1

» Define boolean functions that check token stream for match
and advance the next pointer

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 15/27

Recursive Descent Parsing 1

» Define boolean functions that check token stream for match
and advance the next pointer
» Generic function for each terminal:
bool term(TOKEN tok) { return token == *next++;}

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 15/27

Recursive Descent Parsing 1

» Define boolean functions that check token stream for match
and advance the next pointer

» Generic function for each terminal:
bool term(TOKEN tok) { return token == *next++;}

» For the n'th production of a non-terminal S, we will define
bool S n() { ... %}

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 15/27

Recursive Descent Parsing 1

» Define boolean functions that check token stream for match
and advance the next pointer
» Generic function for each terminal:
bool term(TOKEN tok) { return token == *next++;}

» For the n'th production of a non-terminal S, we will define
bool S_n() { ... }

» To try all productions of a non-terminal S, we will define
bool SO { ... }

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 15/27

Recursive Descent Parsing 2

» For production § — F
bool S_1() { return E(Q); }

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 16/27

Recursive Descent Parsing 2

» For production § — F
bool S_1() { return E(Q); }

» For production S — F + S
bool S_2() { return E() && term(PLUS) && S(O; }

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 16/27

Recursive Descent Parsing 2

» For production § — F
bool S_1() { return E(); %}

» For production S -+ E + S

bool S_2() { return E() && term(PLUS) && S(); }

» For all production S (with backtracking)

bool SO {
TOKEN* save = next;

if(S_1() == true) return true;

next = save;
return S_2(0); }

Thomas Dilig,

CS345H: Programming Languages Lecture 6: Parsing Algoriths

ms

16/27

Recursive Descent Parsing 2

» For production § — F
bool S_1() { return E(); %}

» For production S -+ E + S

bool S_2() { return E() && term(PLUS) && S(); }

» For all production S (with backtracking)

bool SO {
TOKEN* save = next;

if(S_1() == true) return true;

next = save;
return S_2Q0); }

» Or, equivalently written as
bool SO {

return ((next = save, S_1())
|l ((next = save, S_2()) }

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms

16/27

Recursive Descent Parsing 3

» Now, the functions E — int | intx E | (S):

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 17/27

Recursive Descent Parsing 3

» Now, the functions E — int | intx E | (S):

bool E_1() { return TERM(INT); }

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 17/27

Recursive Descent Parsing 3
» Now, the functions E — int | intx E | (S):
bool E_1() { return TERM(INT); }

bool E_2() { return TERM(INT) &&
term(TIMES) && T(); }

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 17/27

Recursive Descent Parsing 3

» Now, the functions E — int | intx E | (S):

bool E_1() { return TERM(INT); }
bool E_2() { return TERM(INT) &&

term(TIMES) && T(); }
bool E_3() { return TERM(LPAREN) && S() &&

TERM(RPAREN) }

17/27

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms

Recursive Descent Parsing 3

» Now, the functions E — int | intx £ | (S)

bool E_1() { return TERM(INT); }

bool E_2() { return TERM(INT) &&
term(TIMES) && T();

bool E_3() { return TERM(LPAREN) && S() &&
TERM(RPAREN) }

» For all productions in E, again with backtracking:
bool E() {
TOKEN* save = next;
return (next = save, E_1(0)) ||
(next = save, E_20)) ||
(next = save, E_3())

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 17/27

Complete Parser

bool term(TOKEN tok) { return token == *next++;}

bool S_1() { return EQ; }
bool S_2() { return E() && term(PLUS) && S(O); }
bool S() { return ((next = save, S_1(0))

[l ((next = save, S_20)) }

bool E_1() { return TERM(INT); }
bool E_2() { return TERM(INT) &&
term(TIMES) && T(); }
bool E_3() { return TERM(LPAREN) && S() &&
TERM(RPAREN) 1}
bool E() {
TOKEN* save = next;
return (next = save, E_1()) ||
(next = save, E_20)) ||
(next = save, E_3())
}

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 18/27

Recursive Descent Parsing 4

» To start this parser, initialize next to the first token and call

SO

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 19/27

Recursive Descent Parsing 4

» To start this parser, initialize next to the first token and call

SO

» This simulates the example parse and is easy to implement by
hand

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 19/27

Are we done?

» Consider a production of the form

S — Sa

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms. 20/27

Are we done?

» Consider a production of the form

S — Sa

» We will generate the following functions using our scheme:
bool S_1() { return SO && term(a); }
bool S() { return S_1; }

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 20/27

Are we done?

» Consider a production of the form

S — Sa
» We will generate the following functions using our scheme:
bool S_1() { return SO && term(a); }
bool S() { return S_1; }

» Here, S() goes into an infinite loop

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 20/27

Are we done?

v

Consider a production of the form

S — Sa

v

We will generate the following functions using our scheme:
bool S_1() { return S() && term(a); }
bool S() { return S_1; }

v

Here, S() goes into an infinite loop

v

General Problem: If for some non-terminal S, it is possible to
derive S —* Sq, recursive descent does not work

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 20/27

Are we done?

» Consider a production of the form

S — Sa
» We will generate the following functions using our scheme:
bool S_1() { return S() && term(a); }
bool S() { return S_1; }

» Here, S() goes into an infinite loop

» General Problem: If for some non-terminal S, it is possible to
derive S —* Sq, recursive descent does not work

» Such grammars are called left-recursive

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 20/27

Eliminating Left-Recursion

» Fortunately, it is always possible to eliminate left-recursion
from grammars

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 21/27

Eliminating Left-Recursion

» Fortunately, it is always possible to eliminate left-recursion
from grammars

» Example: Consider the grammar:

S — Sa| B

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 21/27

Eliminating Left-Recursion

» Fortunately, it is always possible to eliminate left-recursion
from grammars

» Example: Consider the grammar:

S — Sa| B

» This grammar generates all strings starting with one 3 and
followed by one or more as

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms

21/27

Eliminating Left-Recursion

v

Fortunately, it is always possible to eliminate left-recursion
from grammars

v

Example: Consider the grammar:

S — Sa| B

v

This grammar generates all strings starting with one 5 and
followed by one or more as

» Can rewrite using right-recursion:

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 21/27

Eliminating Left-Recursion

v

Fortunately, it is always possible to eliminate left-recursion
from grammars

v

Example: Consider the grammar:

S — Sa| B

v

This grammar generates all strings starting with one 5 and
followed by one or more as

» Can rewrite using right-recursion:

S = BY
S = a8 e

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 21/27

Eliminating Left-Recursion cont.
> In general:

S Sar| ... | San|Bi| | Bm

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 22/27

Eliminating Left-Recursion cont.
> In general:

S 8ar| ... | San|Bi| .| Bm

> Insight: All strings derived from § start with one of

B1, ..., Bm and continue with several instances of ag, ...

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms

22/27

Eliminating Left-Recursion cont.
> In general:

S 8ar| ... | San|Bi| .| Bm

> Insight: All strings derived from § start with one of

B1, ..., Bm and continue with several instances of ag, ...

» Rewrite as:

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms

22/27

Eliminating Left-Recursion cont.
> In general:

S 8ar| ... | San|Bi| .| Bm

> Insight: All strings derived from § start with one of

B1, ..., Bm and continue with several instances of ag, ...

» Rewrite as:

S = /S| BnS
S = S| eS| e

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms

22/27

Eliminating Left-Recursion cont.
> In general:

S 8ar| ... | San|Bi| .| Bm

> Insight: All strings derived from § start with one of

B1, ..., Bm and continue with several instances of ag, ...

» Rewrite as:

S = /S| BnS
S = S| eS| e

» Easy to generalize this procedure slightly for non-direct
left-recursion, such as

S — A«
A — Sple

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms

22/27

Recursive Descent Parsing

> Result: Recursive Descent parsing can parse any
non-ambiguous grammar

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 23/27

Recursive Descent Parsing

> Result: Recursive Descent parsing can parse any
non-ambiguous grammar

» Downside: Potentially expensive to backtrack

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 23/27

Recursive Descent Parsing

> Result: Recursive Descent parsing can parse any
non-ambiguous grammar

» Downside: Potentially expensive to backtrack

» Left-recursion must be eliminated for recursive descent parsing
to work, but this can be done automatically

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 23/27

Recursive Descent Parsing

Thomas Dilig,

Result: Recursive Descent parsing can parse any
non-ambiguous grammar

Downside: Potentially expensive to backtrack

Left-recursion must be eliminated for recursive descent parsing
to work, but this can be done automatically

In practice, you can often eliminate much backtracking by
restricting the grammar

CS345H: Programming Languages Lecture 6: Parsing Algorithms

23/27

Other Parsing Algorithms

> Researchers works for 20 years to develop efficient paring
algorithms, known as LL(1), LR(1), etc

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 24/27

Other Parsing Algorithms

> Researchers works for 20 years to develop efficient paring
algorithms, known as LL(1), LR(1), etc

» All these algorithms avoid branching by some (bounded) token
lookahead and only work on some grammars.

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms

24/27

Other Parsing Algorithms

> Researchers works for 20 years to develop efficient paring
algorithms, known as LL(1), LR(1), etc

» All these algorithms avoid branching by some (bounded) token
lookahead and only work on some grammars.

» However: With computers getting faster every year, recursive
descent parsing is very popular

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms

24/27

Other Parsing Algorithms

> Researchers works for 20 years to develop efficient paring
algorithms, known as LL(1), LR(1), etc

» All these algorithms avoid branching by some (bounded) token
lookahead and only work on some grammars.

» However: With computers getting faster every year, recursive
descent parsing is very popular

» Example: GCC and G4+ both use a hand-written recursive
descent parser

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms

24/27

Other

Thomas Dilig,

Parsing Algorithms

Researchers works for 20 years to develop efficient paring
algorithms, known as LL(1), LR(1), etc

All these algorithms avoid branching by some (bounded) token
lookahead and only work on some grammars.

However: With computers getting faster every year, recursive
descent parsing is very popular

Example: GCC and G4+ both use a hand-written recursive
descent parser

However, you will use the parser-generator bison for your

homework which has some restrictions on your grammar.
Read the posted manual!

CS345H: Programming Languages Lecture 6: Parsing Algorithms

24/27

Dealing with Errors

» Reality: Not every string of tokens can be parsed

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 25/27

Dealing with Errors

» Reality: Not every string of tokens can be parsed

» Example: let let lambda x .

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 25/27

Dealing with Errors

» Reality: Not every string of tokens can be parsed
» Example: let let lambda x

» Option 1: Abort with an error message

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 25/27

Dealing with Errors

» Reality: Not every string of tokens can be parsed
» Example: let let lambda x .
» Option 1: Abort with an error message

> This is what you will do in PA2

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 25/27

Dealing with Errors

» Reality: Not every string of tokens can be parsed

v

Example: let let lambda x .

v

Option 1: Abort with an error message

v

This is what you will do in PA2

v

Often a reasonable choice

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 25/27

Dealing with Errors

» Reality: Not every string of tokens can be parsed

v

Example: let let lambda x .

v

Option 1: Abort with an error message

v

This is what you will do in PA2

v

Often a reasonable choice

v

Option 2: Try to continue parsing after some tokens to report
more errors

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 25/27

Dealing with Errors

» Reality: Not every string of tokens can be parsed
» Example: let let lambda x .

» Option 1: Abort with an error message

> This is what you will do in PA2

» Often a reasonable choice

» Option 2: Try to continue parsing after some tokens to report
more errors

» Often results in garbage error reports

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 25/27

Dealing with Errors cont.

» Option 3: Try to find "nearby” program that parses

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 26/27

Dealing with Errors cont.

» Option 3: Try to find "nearby” program that parses

» Typically, try inserting and deleting tokens until program
compiles

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 26/27

Dealing with Errors cont.

» Option 3: Try to find "nearby” program that parses

» Typically, try inserting and deleting tokens until program
compiles

» Drawbacks:

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 26/27

Dealing with Errors cont.

» Option 3: Try to find "nearby” program that parses

» Typically, try inserting and deleting tokens until program
compiles

» Drawbacks:
» Hard to implement

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 26/27

Dealing with Errors cont.

» Option 3: Try to find "nearby” program that parses

» Typically, try inserting and deleting tokens until program
compiles

» Drawbacks:
» Hard to implement

» Can be very slow

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 26/27

Dealing with Errors cont.

» Option 3: Try to find "nearby” program that parses

» Typically, try inserting and deleting tokens until program
compiles

» Drawbacks:
» Hard to implement

» Can be very slow

> "Nearby"” program is often not intended program

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 26/27

Dealing with Errors cont.

» Option 3: Try to find "nearby” program that parses

» Typically, try inserting and deleting tokens until program
compiles

» Drawbacks:
» Hard to implement

» Can be very slow
> "Nearby"” program is often not intended program

» This used to be a big research area, but today nobody cares

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 26/27

Dealing with Errors cont.

» Option 3: Try to find "nearby” program that parses

» Typically, try inserting and deleting tokens until program
compiles
» Drawbacks:
» Hard to implement
» Can be very slow
> "Nearby"” program is often not intended program
» This used to be a big research area, but today nobody cares
» Question: Why is this the case?

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 26/27

Real Example

> Cornell developed a programming language called CUPL that
parsed every program

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 27/21

Real Example

> Cornell developed a programming language called CUPL that
parsed every program

> If you feed to following to the CUPL compiler:
“To be, or not to be, that is the question:
Whether 'tis Nobler in the mind to suffer
The Slings and Arrows of outrageous Fortune,
Or to take Arms against a Sea of troubles,

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 27/21

Real Example

> Cornell developed a programming language called CUPL that
parsed every program

> If you feed to following to the CUPL compiler:
“To be, or not to be, that is the question:
Whether 'tis Nobler in the mind to suffer
The Slings and Arrows of outrageous Fortune,
Or to take Arms against a Sea of troubles,

» Unknown construct "To be", did you mean BEGIN?

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 27/21

Real Example

> Cornell developed a programming language called CUPL that
parsed every program

> If you feed to following to the CUPL compiler:
“To be, or not to be, that is the question:
Whether 'tis Nobler in the mind to suffer
The Slings and Arrows of outrageous Fortune,
Or to take Arms against a Sea of troubles,

» Unknown construct "To be", did you mean BEGIN?

» Unknown construct ", or", did you mean "VAR or" 7

Thomas Dilig, CS345H: Programming Languages Lecture 6: Parsing Algorithms 27/21

Real Example

>

Cornell developed a programming language called CUPL that
parsed every program

If you feed to following to the CUPL compiler:
“To be, or not to be, that is the question:
Whether 'tis Nobler in the mind to suffer

The Slings and Arrows of outrageous Fortune,
Or to take Arms against a Sea of troubles,

Unknown construct "To be", did you mean BEGIN?

Unknown construct ", or", did you mean "VAR or" 7

Thomas Dillig,

CS345H: Programming Languages Lecture 6: Parsing Algorithms 27/21

Real Example

>

Cornell developed a programming language called CUPL that
parsed every program

If you feed to following to the CUPL compiler:
“To be, or not to be, that is the question:
Whether 'tis Nobler in the mind to suffer

The Slings and Arrows of outrageous Fortune,
Or to take Arms against a Sea of troubles,

Unknown construct "To be", did you mean BEGIN?

Unknown construct ", or", did you mean "VAR or" 7

Final output:

Thomas Dillig,

CS345H: Programming Languages Lecture 6: Parsing Algorithms 27/21

Real Example

>

Cornell developed a programming language called CUPL that
parsed every program

If you feed to following to the CUPL compiler:
“To be, or not to be, that is the question:
Whether 'tis Nobler in the mind to suffer

The Slings and Arrows of outrageous Fortune,
Or to take Arms against a Sea of troubles,

Unknown construct "To be", did you mean BEGIN?

Unknown construct ", or", did you mean "VAR or" 7

Final output: BEGIN END

Thomas Dillig,

CS345H: Programming Languages Lecture 6: Parsing Algorithms 27/21

