
CS345H: Programming Languages

Lecture 7: Operational Semantics I

Thomas Dillig

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 1/36

Outline

I Next Topic: Semantics

I How to specify meaning of syntax

I Will look at one formalism for this today

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 2/36

What does a program mean?

I We have learned how to specify syntax.

I Example: let x = lambda lambda is not a valid L program

I But we have not yet talked about what the meaning of a
program is.

I First Question: What is the meaning of a program in L?

I Answer: The value the program evaluates to

I Example: let x = 3 in x Value: 3

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 3/36

How to specify meaning of programs

I Option 1: Don’t worry too much

I Developer of language has some informal concept of the
intended meaning, implement a compiler/interpreter that does
whatever the language designers believe to be reasonable.

I Then, declare the meaning to be whatever the compiler
produces

I A terrible idea

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 4/36

How to specify meaning of programs

I Why is this such a bad idea?
I This approach promotes bugs/inconsistencies to expected

behavior.

I Hides specification of language in many implementation details

I Makes it almost impossible to implement another compiler
that accepts the same language

I Unfortunately, this is (still) a very common approach

I Languages designed this way: C, C++ (to some extent), Perl,
PHP, JavaScript, ...

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 5/36

How to specify meaning of programs

I Option 2: Try to write out precisely the meaning of each
language construct in documentation, then follow this
description in implementation

I Example: Describe the meaning of !e in the L language:

I First attempt: “This evaluates to the head of e”

I What if e is not a list?

I Second attempt: “This evaluates to the head of e if e is a list,
and to e otherwise”

I What if e is Nil? . . .

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 6/36

1

How to specify meaning of programs: Option 2

I Written language is, by nature, ambiguous. It is very difficult
to fully specify the meaning of all language constructs this way

I Easy to miss cases

I Results in long, complicated and difficult to understand
specifications, but an improvement over no specification

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 7/36

Written specification in practice
I Let’s look at the ISO C++ standard: 879 pages, page 116:

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 8/36

Precisely Specifying Meaning

I Recall λ-calculus:

I To specify the meaning of expressions, we defined one single
operation: β reduction

I Specifically, we wrote λx .e1 e2 →β e1[e2/x]

I Can read this as follows: If you see an expression of the form
λx .e1 e2, you can compute its result as e1[e2/x].

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 9/36

Operational Semantics
I Let’s try the same in the language of arithmetic expression

with the grammar:

S → c | S1 + S2 | S1 ∗ S2

I What is the meaning of an integer constant? The value of
this integer

I More precisely: If we see an expression of the form c, its value
is c

I We will write:
` c : c

I Read as: “we can prove for any expression of the form c

I that the meaning of this expression is c”

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 10/36

Operational Semantics Cont.

I How about the expression S1 + S2?

I ` S1 + S2 :?

I Problem: To describe the meaning of S1 + S2, we need to
know the meaning (value) of S1 and S2

I Solution: Use hypotheses: We want to say “Assuming S1
evaluates to c1 and S2 evaluates to c2, the value of S1 + S2 is
c1 + c2”

I We write this as:

` S1 : c1
` S2 : c2

` S1 + S2 : c1 + c2

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 11/36

Inference Rules

I This notation is known as inference rule:

Hypothesis 1
. . .
Hypothesis N

` Conclusion

I This means “given hypothesis 1, . . . N, the conclusion is
provable”

I Example:
Miterm 1 grade >= 70
. . .
Final grade >= 140

` Final grade: A

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 12/36

2

Inference Rules cont.

I A hypothesis in an inference rule may use other rules

I Example:
` S1 : c1
` S2 : c2

` S1 + S2 : c1 + c2

I You can tell this by a ` in at least one of the hypotheses.

I Such rules are called inductive since they define the meaning
of an expression in terms of the meaning of subexpressions.

I Rules that to not have ` in any hypothesis are base cases

I A system with only inductive rules is nonsensical

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 13/36

Operational Semantics

I Back to the rule for +:

` S1 : c1
` S2 : c2

` S1 + S2 : c1 + c2

I Let’s focus on the first hypothesis ` S1 : c1.

I Question: Can you write S1 = c1?

I Answer: Yes, but now your first hypothesis is: “ Assuming S1
is the integer constant c1”⇒ this rule no longer applies if, for
example, S1 = 2 ∗ 3.

I Read ` as “is provable by using our set of inference rules”.

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 14/36

Operational Semantics and Order

I Important Point: This notation does not specify an order
between hypothesis.

I This means that
` S1 : c1
` S2 : c2

` S1 + S2 : c1 + c2

and
` S2 : c2
` S1 : c1

` S1 + S2 : c1 + c2

have exactly the same meaning

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 15/36

Full Operational Semantics

I Here are the full operational semantics of the language

S → c | S1 + S2 | S1 ∗ S2

` c : c

` S1 : c1 ` S2 : c2

` S1 + S2 : c1 + c2

` S1 : c1 ` S2 : c2

` S1 ∗ S2 : c1 ∗ c2

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 16/36

Using Operational Semantics

I Consider the expression (21 ∗ 2) + 6

I Here is how to derive the value of this expression with the
operational semantics:

` 21 : 21 ` 2 : 2

` 21 ∗ 2 : 42
` 6 : 6

` (21 ∗ 2) + 6 : 48

I This is a formal proof that the expression (21 ∗ 2) + 6
evaluates to 48 under the defined operational semantics

I Observe that these proofs have a tree structure: Each
subexpression forms a new branch in the tree

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 17/36

Operational Semantics of L

I Let’s try to give operational semantics to the L language:

I Start with integers:
Integer i

` i : i

I The i in the hypothesis and to the left of the colon is the
syntactic number in the source code of L

I The i after the colon is the value of the integer i .

I This sounds nitpicky, but is important to understand this
notation.

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 18/36

3

Operational Semantics of L
I Consider the (integer) plus expression in L:

` e1 : i1 (integer)
` e2 : i2 (integer)

` e1 + e2 : i1 + i2

I Side remark: The hypothesis can be written in separate lines
(but not when giving a derivation tree)

I Here, the hypotheses require that e1 and e2 evaluate to
integers.

I Question: What happens if e1 evaluates to a list?

I Answer: No rule applies and computation is “stuck”. This
means the L program does not evaluate to anything.

I In practice: This is a run-time error
Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 19/36

Operational Semantics of L

I Integer minus:
` e1 : i1 (integer)
` e2 : i2 (integer)

` e1 − e2 : i1 − i2

I Integer times:
` e1 : i1 (integer)
` e2 : i2 (integer)

` e1 ∗ e2 : i1 ∗ i2

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 20/36

Operational Semantics of L

I On to the key construct: λ

I Let’s write semantics for the simple application (e1 e2)

I Recall that this is only defined if e1 is a lambda expression.

I Hypothesis: ` e1 : lambda x . e ′1

I Now, how do we evaluate (e1 e2) ? ` e ′1[e2/x] : e

I Conclusion: ` (e1 e2) : e

I Final rule:
` e1 : lambda x . e ′1
` e ′1[e2/x] : e

` (e1 e2) : e

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 21/36

Order of Evaluation

I What would change if we write:

` e ′1[e2/x] : e
` e1 : lambda x . e ′1
` (e1 e2) : e

I Answer: Nothing. The written order of hypotheses is irrelevant

I Observe: This rule does specify an order between hypothesis:
` e1 : lambda x . e ′1 must be evaluated before ` e ′1[e2/x] : e.

I This is the case because ` e ′1[e2/x] : e uses e ′1 defined by
hypothesis ` e1 : lambda x . e ′1

I Important Point: Operational semantics can encode order, but
not through syntactic ordering

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 22/36

The Lambda Rule

I Question: What would change if we write the hypothesis as

e1 = lambda x . e ′1
` e ′1[e2/x] : e

` (e1 e2) : e

I Answer: This would still give semantics to (lambda x.x 3),
but no longer to let y=lambda x.x in (y 3)

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 23/36

The Lambda Rule cont.

` e1 : lambda x . e ′1
` e ′1[e2/x] : e

` (e1 e2) : e

I Observe that in this rule, we are not evaluating e2 before
substitution.

I Consider the following modified rule:

` e1 : lambda x . e ′1
` e2 : e

′
2

` e ′1[e
′
2/x] : e

` (e1 e2) : e

I This also is a well-formed rule, but it gives a different meaning
to the lambda expression

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 24/36

4

The Lambda Rule cont.

I Consider both rules:

` e1 : lambda x . e ′1
` e ′1[e2/x] : e

` (e1 e2) : e

` e1 : lambda x . e ′1
` e2 : e

′
2

` e ′1[e
′
2/x] : e

` (e1 e2) : e

I Consider the expression (lambda x.3 4+"duck"):
I Rule 1 evaluates this expression to ”3”

I Rule 2 “gets stuck” and returns no value since adding an
integer and string is undefined (we have not given a rule)

I Two reasonable ways of defining application, but different
semantics!

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 25/36

Call-by-name vs. Call-by-value

I Not evaluating the argument before substitution is known as
call-by name, evaluating the argument before substitution as
call-by-value.

I Languages with call-by-name: classic lambda calculus, ALGOL
60, L

I Languages with call-by-value: C, C++, Java, Python,
FORTRAN, . . .

I Advantage of call-by-name: If argument is not used, it will not
be evaluated

I Disadvantage: If argument is uses k times, it will be evaluated
k times!

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 26/36

Call-by-name vs. Call-by-value

I Consider the following expression in L syntax:
(lambda x.x+x+x (77*3-2))

I Under call-by-name semantics, we substitute (77*3-2) for x
and reduce the problem of evaluating (lambda x.x+x+x

(77*3-2)) to evaluating ((77*3-2)+(77*3-2)+(77*3-2))

I We compute the value of x three times

I Under call-by-value semantics, we first evaluate (77*3-2) to
229 and then evaluate 229+229+229

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 27/36

Semantics of the let-binding

I Let’s try to define the semantics of the let-binding in L:
let x = e1 in e2

I One possibility:

` e1 : e
′
1 ` e2[e

′
1/x] : e

` let x = e1 in e2 : e

I What about the following definition?

` e2[e1/x] : e

` let x = e1 in e2 : e

I Are these definitions equivalent?

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 28/36

Eager vs. Lazy Evaluation

I Evaluating e1 before we know that it is used is called eager
evaluation

I Waiting until we need it is lazy evaluation.

I These are analogous to call-by-name/call-by value in trade
offs.

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 29/36

Definition of let bindings

I But currently there is one problem common to both the eager
and lazy definition of the let binding.

I Consider the following valid L program:
let f =

lambda x. if x <= 0 then 1 else x*(f (x-1))

in (f 2)

I What happens if we use our definition of let on this
expression? For brevity, let’s use the lazy one here, but the
same problem exists with the eager one:

` (f 2)[(lambda x.if x <= 0 then 1 else x ∗ (f(x− 1))/f] :?

` let f = lambda x.if x <= 0 then 1 else x ∗ (f(x− 1)) in (f 2) :?

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 30/36

5

Let Binding

I We have already seen this problem when studying lambda
calculus.

I But this time, we want to solve it. After all, who wants to use
the Y-combinator for every recursive function!

I Solution: Add an environment to our rules that tracks
mappings between identifiers and values

I Specifically, write the let rule as follows:

E ` e1 : e
′
1

E [x ← e ′1] ` e2 : e

E ` let x = e1 in e2 : e

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 31/36

Environments

I You can think of the environment as storing information to be
used by other rules

I An environment maps keys to values

I Notation: E [x ← y] means new environment with all
mappings in E and the mapping x 7→ y added.

I If x was already mapped in E , the mapping is replaced

I Notation: E (x) = y means bind value of key x in E to y . If
no mapping x 7→ y exits in E , this “gets stuck”

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 32/36

Environments

I An environment adds extra information!

I In this rule:
E ` e1 : e

′
1

E [x ← e ′1] ` e2 : e

E ` let x = e1 in e2 : e

I Read the hypothesis E ` e1 : e
′
1 as: “Given environment E and

expression e1 and that it is provable that e2 evaluates to e”

I Read the conclusion as: “Given environment E and expression
let x = e1 in e2, this expression evaluates to e.

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 33/36

Environments

I Since we are no longer replacing the let-bound identifiers, we
also need a base case for identifiers

I This will now use the environment:

Identifier id
E (id) = e

E ` id : e

I Adding the environment allows us now to be able to give
(intuitive) meaning to recursive programs.

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 34/36

Environments Example

I Consider the L program let x = 3 in x

I Here is the proof that this program evaluates to 3:

E ` 3 : 3

Identifier x
E [x ← 3](x) = 3

E [x ← 3] ` x : 3

E ` let x = 3 in x : 3

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 35/36

Conclusion

I We have seen how to formally give meaning to programs

I The formalism we have studied is called large-step operational
semantics

I Next time: Semantics for more L constructs and another
alternative formalism for specifying meaning of programs

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics I 36/36

6

