Announcements

- PA2 out today
- WA3 due 10/7
- Midterm back after class

Outline

- Next Topic: Semantics
- How to specify meaning of syntax
- Will look at one formalism for this today

What does a program mean?

- We have learned how to specify syntax.
- Example: let x = lambda lambda is not a valid L program
- But we have not yet talked about what the meaning of a program is.
- First Question: What is the meaning of a program in L?
- Answer: The value the program evaluates to
- Example: let x = 3 in x Value: 3

How to specify meaning of programs

- Option 1: Don’t worry too much
 - Developer of language has some informal concept of the intended meaning, implement a compiler/interpreter that does whatever the language designers believe to be reasonable.
 - Then, declare the meaning to be whatever the compiler produces
 - A terrible idea

- Option 2: Specify language formally
 - This approach promotes bugs/inconsistencies to expected behavior.
 - Hides specification of language in many implementation details
 - Makes it almost impossible to implement another compiler that accepts the same language
 - Unfortunately, this is (still) a very common approach

- Languages designed this way: C, C++, (to some extent), Perl, PHP, JavaScript, ...
How to specify meaning of programs:

- Option 2: Try to write out precisely the meaning of each language construct in documentation, then follow this description in implementation.

- Example: Describe the meaning of $!e$ in the L language:
 - First attempt: “This evaluates to the head of e”
 - What if e is not a list?
 - Second attempt: “This evaluates to the head of e if e is a list, and to e otherwise”
 - What if e is Nil? . . .

Written specification in practice:

- Let’s look at the ISO C++ standard: 879 pages, page 116:

Precisely Specifying Meaning:

- Recall λ-calculus:
 - To specify the meaning of expressions, we defined one single operation: β reduction:
 - Can read as follows: If you see an expression of the form $\lambda x . e_1 e_2$, you can compute its result as $e_1[e_2/x]$.

Operational Semantics:

- Let’s try the same in the language of arithmetic expression with the grammar:
 - $S \rightarrow c \mid S_1 + S_2 \mid S_1 * S_2$
- What is the meaning of an integer constant? The value of this integer
- More precisely: If we see an expression of the form c, its value is c
- We will write:
 - $\vdash c : c$
- Read as: “we can prove for any expression of the form c that the meaning of this expression is c”.

Operational Semantics Cont.

- How about the expression $S_1 + S_2$?
 - $\vdash S_1 + S_2 : ?$
 - Problem: To describe the meaning of $S_1 + S_2$, we need to know the meaning (value) of S_1 and S_2
 - Solution: Use hypotheses: We want to say “Assuming S_1 evaluates to c_1 and S_2 evaluates to c_2, the value of $S_1 + S_2$ is $c_1 + c_2$.”
 - We write this as:
 $$\vdash S_1 : c_1 \quad \vdash S_2 : c_2$$
 $$\vdash S_1 + S_2 : c_1 + c_2$$
Inference Rules

- This notation is known as inference rule:

 Hypothesis 1

 \[\vdash S_1 : c_1 \]

 Hypothesis 2

 \[\vdash S_2 : c_2 \]

 \[\vdash S_1 + S_2 : c_1 + c_2 \]

 Conclusion

- This means “given hypothesis 1, 2, . . . , N, the conclusion is provable”

- Example:

 - Miterm 1 grade >= 70

 - Final grade >= 140

 \[\vdash \text{Final grade: A} \]

Inference Rules cont.

- A hypothesis in an inference rule may use other rules

- Example:

 \[\vdash S_1 : c_1 \]

 \[\vdash S_2 : c_2 \]

 \[\vdash S_1 + S_2 : c_1 + c_2 \]

- You can tell this by a \(\vdash \) in at least one of the hypotheses.

- Such rules are called inductive since they define the meaning of an expression in terms of the meaning of subexpressions.

- Rules that to not have \(\vdash \) in any hypothesis are base cases

- A system with only inductive rules is nonsensical

Operational Semantics

- Back to the rule for +:

 \[\vdash S_1 : c_1 \]

 \[\vdash S_2 : c_2 \]

 \[\vdash S_1 + S_2 : c_1 + c_2 \]

- Let’s focus on the first hypothesis \(\vdash S_1 : c_1 \).

- Question: Can you write \(S_1 = c_1 \)?

- Answer: Yes, but now your first hypothesis is: “Assuming \(S_1 \) is the integer constant \(c_1 \)” ⇒ this rule no longer applies if, for example, \(S_1 = 2 \times 3 \).

- Read \(\vdash \) as “is provable by using our set of inference rules”.

Operational Semantics and Order

- Important Point: This notation does not specify an order between hypothesis.

- This means that

 \[\vdash S_1 : c_1 \]

 \[\vdash S_2 : c_2 \]

 \[\vdash S_1 + S_2 : c_1 + c_2 \]

 and

 \[\vdash S_2 : c_2 \]

 \[\vdash S_1 : c_1 \]

 \[\vdash S_1 + S_2 : c_1 + c_2 \]

- Have exactly the same meaning

Full Operational Semantics

- Here are the full operational semantics of the language

 \[S \to c \mid S_1 + S_2 \mid S_1 \ast S_2 \]

 \[\vdash c : c \]

 \[\vdash S_1 : c_1 \]

 \[\vdash S_2 : c_2 \]

 \[\vdash S_1 + S_2 : c_1 + c_2 \]

 \[\vdash S_1 : c_1 \]

 \[\vdash S_2 : c_2 \]

 \[\vdash S_1 \ast S_2 : c_1 \ast c_2 \]

Using Operational Semantics

- Consider the expression \((21 \ast 2) + 6\)

- Here is how to derive the value of this expression with the operational semantics:

 \[\vdash 21 : 21 \]

 \[\vdash 2 : 2 \]

 \[\vdash 21 \ast 2 : 42 \]

 \[\vdash (21 \ast 2) + 6 : 48 \]

- This is a formal proof that the expression \((21 \ast 2) + 6\) evaluates to 48 under the defined operational semantics

- Observe that these proofs have a tree structure: Each subexpression forms a new branch in the tree
Order of Evaluation

- What would change if we write:
 \[\vdash e_1' \frac{x_2}{x} : e \]
 \[\vdash e_1 : \lambda x. e_1' \]
 \[\vdash (e_1 e_2) : e \]
 \[\vdash (e_1 \frac{x_2}{x}) : e \]

- Answer: Nothing. The written order of hypotheses is irrelevant.

- Observe: This rule does specify an order between hypothesis.
 \[\vdash e_1 : \lambda x. e_1' \] must be evaluated before \(\vdash e_1' \frac{x_2}{x} : e \).

- This is the case because \(\vdash e_1' \frac{x_2}{x} : e \) uses \(e_1' \) defined by hypothesis \(\vdash e_1 : \lambda x. e_1' \).

- Important Point: Operational semantics can encode order, but not through syntactic ordering.

The Lambda Rule

- Question: What would change if we write the hypothesis as
 \[e_1 = \lambda x. e_1' \]
 \[\vdash e_1' \frac{x_2}{x} : e \]
 \[\vdash (e_1 e_2) : e \]

- Answer: This would still give semantics to \(\lambda x. x \) in \(y = \lambda x. x \) in \((y 3) \)
The Lambda Rule cont.

\[\vdash e_1 : \lambda x. e_1' \]
\[\vdash e_1'[x/x] : e \]
\[\vdash (e_1 e_2) : e \]

Consider both rules:

\[\vdash e_1 : \lambda x. e_1' \]
\[\vdash e_2 : e_2' \]
\[\vdash e_1'[e_2/x] : e \]
\[\vdash (e_1 e_2) : e \]

Consider the expression \(\lambda x \cdot a+x+x \) (77*3-2):

- Rule 1 evaluates this expression to "3"
- Rule 2 "gets stuck" and returns no value since adding an integer and string is undefined (we have not given a rule)
- Two reasonable ways of defining application, but different semantics!

Call-by-name vs. Call-by-value

- Not evaluating the argument before substitution is known as call-by-name, evaluating the argument before substitution as call-by-value.
- Languages with call-by-name: classic lambda calculus, ALGOL 60, L
- Languages with call-by-value: C, C++, Java, Python, FORTRAN, ...
- Advantage of call-by-name: If argument is not used, it will not be evaluated
- Disadvantage: If argument is used \(k \) times, it will be evaluated \(k \) times!

Semantics of the let-binding

- Let’s try to define the semantics of the let-binding in L:

 \[\text{let } x = e_1 \text{ in } e_2 \]

 - One possibility:

 \[\vdash e_1 : e_1' \]
 \[\vdash e_2[e_1'/x] : e \]
 \[\vdash \text{let } x = e_1 \text{ in } e_2 : e \]

 - What about the following definition?

 \[\vdash e_2[e_1/x] : e \]
 \[\vdash \text{let } x = e_1 \text{ in } e_2 : e \]

 - Are these definitions equivalent?

Eager vs. Lazy Evaluation

- Evaluating \(e_1 \) before we know that it is used is called eager evaluation
- Waiting until we need it is lazy evaluation.
- These are analogous to call-by-name/call-by-value in trade-offs.

Call-by-value semantics:

- Under call-by-value semantics, we first evaluate \(\lambda x \cdot x+x+x \) (77*3-2) to evaluating \(((77*3-2) + (77*3-2) + (77*3-2)) \)
- We compute the value of \(x \) three times
- Under call-by-value semantics, we first evaluate \((77*3-2) \) to \(229 \) and then evaluate \(229+229+229 \)

This also is a well-formed rule, but it gives a different meaning to the lambda expression.

Disadvantage: If argument is used \(k \) times, it will be evaluated \(k \) times!
Definition of let bindings

- But currently there is one problem common to both the eager and lazy definition of the let binding.

- Consider the following valid L program:
 \[\text{let } f = \lambda x. \text{ if } x <= 0 \text{ then } 1 \text{ else } x*(f(x-1)) \\text{ in } (f 2) \]

- What happens if we use our definition of let on this expression? For brevity, let’s use the lazy one here, but the same problem exists with the eager one:

 \[
 \begin{align*}
 \vdash (f 2)(\lambda x. \text{ if } x <= 0 \text{ then } 1 \text{ else } x*(f(x-1))):? \\
 \vdash \text{let } f = \lambda x. \text{ if } x <= 0 \text{ then } 1 \text{ else } x*(f(x-1)) \text{ in } (f 2):?
 \end{align*}
 \]

Environments

- You can think of the environment as storing information to be used by other rules
- An environment maps keys to values
- Notation: \(E[x \leftarrow y] \) means new environment with all mappings in \(E \) and the mapping \(x \mapsto y \) added.
- If \(x \) was already mapped in \(E \), the mapping is replaced
- Notation: \(E(x) = y \) means bind value of key \(x \) in \(E \) to \(y \). If no mapping \(x \mapsto y \) exits in \(E \), this "gets stuck"

Environments Example

- Consider the L program \(\text{let } x = 3 \text{ in } x \)
- Here is the proof that this program evaluates to 3:

\[
\begin{align*}
E \vdash x : 3 \\
E[x \leftarrow 3] :? \\
E[x \leftarrow 3] \vdash x : 3 \\
E \vdash \text{let } x = 3 \text{ in } x : 3
\end{align*}
\]

Let Binding

- We have already seen this problem when studying lambda calculus.
- But this time, we want to solve it. After all, who wants to use the Y-combinator for every recursive function!
- Solution: Add an environment to our rules that tracks mappings between identifiers and values
- Specifically, write the let rule as follows:

\[
\begin{align*}
E \vdash e_1 : e'_1 \\
E[x \leftarrow e'_1] \vdash e_2 : e \\
E \vdash \text{let } x = e_1 \text{ in } e_2 : e
\end{align*}
\]

Environments

- An environment adds extra information!
- In this rule:

\[
\begin{align*}
E \vdash e_1 : e'_1 \\
E[x \leftarrow e'_1] \vdash e_2 : e \\
E \vdash \text{let } x = e_1 \text{ in } e_2 : e
\end{align*}
\]
- Read the hypothesis \(E \vdash e_1 : e'_1 \) as: "Given environment \(E \) and expression \(e_1 \) and that it is provable that \(e_2 \) evaluates to \(e' \"
- Read the conclusion as: "Given environment \(E \) and expression \(\text{let } x = e_1 \text{ in } e_2 \), this expression evaluates to \(e \)."
Conclusion

- We have seen how to formally give meaning to programs
- The formalism we have studied is called large-step operational semantics
- Next time: Semantics for more L constructs and another alternative formalism for specifying meaning of programs