CS345H: Programming Languages

Lecture 7: Operational Semantics |

Thomas Dillig

Outline

» Next Topic: Semantics
> How to specify meaning of syntax

> Will look at one formalism for this today

Thomas Dillg, CS345H: Programming Languages ~Lecture 7: Operational Semantics |

Thomas Dillg, CS345H: Programming Languages Lecture 7: Operational

What does a program mean?

» We have learned how to specify syntax.
» Example: let x = lambda lambda is not a valid L program

» But we have not yet talked about what the meaning of a
program is.

» First Question: What is the meaning of a program in L?
» Answer: The value the program evaluates to

» Example: let x = 3 in x Value: 3

How to specify meaning of programs

» Option 1: Don't worry too much
» Developer of language has some informal concept of the
intended meaning, implement a compiler/interpreter that does

whatever the language designers believe to be reasonable.

» Then, declare the meaning to be whatever the compiler
produces

> A terrible idea

Thomas Dillg, CS345H: Programming Languages ~Lecture 7: Operational Semantics |

Thomas Dillg, CS345H: Programming Languages ~Lecture 7: Operational Semantics | 4/36

How to specify meaning of programs

» Why is this such a bad idea?
> This approach promotes bugs/inconsistencies to expected
behavior.

» Hides specification of language in many implementation details

» Makes it almost impossible to implement another compiler
that accepts the same language

» Unfortunately, this is (still) a very common approach

» Languages designed this way: C, C++ (to some extent), Perl,
PHP, JavaScript, ...

How to specify meaning of programs

> Option 2: Try to write out precisely the meaning of each
language construct in documentation, then follow this
description in implementation

» Example: Describe the meaning of !e in the L language:

» First attempt: “This evaluates to the head of e”

» What if e is not a list?

» Second attempt: “This evaluates to the head of e if e is a list,
and to e otherwise”

» What if e is Nil? ...

Thomas Dillg, CS345H: Programming Languages ~Lecture 7: Operational Semantics |

5/36

Thomas Dillg, CS345H: Programming Languages Lecture 7: Operational Semantics | 6/36

How

to specify meaning of programs: Option 2

Written specification in practice

> Let's look at the ISO C++ standard: 879 pages, page 116:
5.16 Conditional operator [expr.cond]
P A—
1 Cond pright-to-lef. The first expr is implicitly converted to boo. (clause 4). It s evaluated
» Written language is, by nature, ambiguous. It is very difficult vcion. Al il ek o the it exrcson vt For deatcion o srporaies (133 bppen efr e ctond
. . . or third expression is evaluated. Only one of the second and third expressions is evaluated.
to fully specify the meaning of all language constructs this way 2 1Feither the sccond o the third operand hastype (possibly cv-qualified) vo1d,then the Ivalue-to-rvalue (6.1, aray-to-
pointer (4.2), and function-to-pointer (4.3) standard conversions are performed on the second and third operands, and
one of the following shall hold:
S Easy to miss Cases —:'ll:‘sse;::l:;;;:lemlrdnp:land (but not both) is a throw-expression (15.1); the result is of the type of the other
— Both the second and the third operands have type void the result is of type void and is an rvalue. [Note: this
includes the case where both operands are throw-expressions. — end note |
» Results in long, complicated and difficult to understand iemo s e e somet s of o oper 10 15 g of 1 o, T peoee for AAcITIEIng s A
s operand expression E1 of type T1 can be converted to match an operand expression E2 of type T2 is defined as follows:
specifications, but an improvement over no specification 52 a1 can e comerted ot 2 i 25 can b mplcly convered (sl 4 o e e
“reference to T2", subject to the constraint that in the conversion the reference must bind directly (8.5.3) to E1.
— If E2 is an rvalue, or if the conversion above cannot be done:
— if E1 and E2 have class type, and the underlying class types are the same or one is a base class of the other: E1
can be converted to match E2 if the class of T2 is the same type as, or a base class of, the class of T1, and the
qual of T2 is the same ev-qualifi as, or a greater cv-qualification than, the cv-qualifi
of T4 If the conversion is applicd, E1 is changed to an rvaluc of type T2 hatsiib-eors-io-she-original
copy-initalizing a temporary of type T2 from EX and using that temporary as the converted operand.
— Otherwise (i.c., if E1 or E2 has a nonclass type, or if they both have class types but the underlying classes are
not either the same or one a base class of the other): E1 can be converted to match E2 if E1 can be implicitly
e~ Coaitt Progamming Lrguages Lacure 7. Opestios Semants | s f—— o Progaming Lngunges Lacur . Opeation Semants | o
Precisely Specifying Meaning Operational Semantics
> Let's try the same in the language of arithmetic expression
with the grammar:
*
» Recall \-calculus: S—=c|Si+ 8| 5*5
- - .) - > What is the meaning of an integer constant? The value of
» To specify the meaning of expressions, we defined one single e
. . this integer
operation: 3 reduction
o » More precisely: If we see an expression of the form c, its value
» Specifically, we wrote \z.e; e =7 e)[ea/x] . P Y P '
is ¢
» Can read this as follows: If you see an expression of the form > We will writ
. e will write:
Az.e; ez, you can compute its result as e;[ez/z]. =
c:c
> Read as: “we can prove for any expression of the form c
» that the meaning of this expression is ¢"
—— Coaitt Progamming Lrgusges Lecure 7. Opestio Semantis | o Trams o Coaitt Progamning Lrgusges Lecure 7. Opestioe Semants | o
Operational Semantics Cont. Inference Rules
S i ?
How about the expression 51 + 5 » This notation is known as inference rule:
> 5+ 507 Hypothesis 1
» Problem: To describe the meaning of S; + S2, we need to Hypothesis N
know the meaning (value) of 5 and Sy £ Conclusion
» Solution: Use hypotheses: We want to say “Assuming S} » This means “given hypothesis 1, ... N, the conclusion is
evaluates to ¢; and Sy evaluates to ¢o, the value of S7 + S5 is provable”
c1+ "
» Example:
> We write this as: Miterm 1 grade >= 70
I Sl 1 Cl o
FSh: e Final grade >= 140
T a L a o - Final grade: A
FSi+S5:c+ e g
p—— St Progamring Lngusge Lecure 1. Opersine Semanies | /o E—— St Progamming Lrgusges Lecure 7. Opestios Semants | o7

Inference Rules cont.

> A hypothesis in an inference rule may use other rules

» Example:
S
[5’2 L C2
S+ 8:c1+ e

v

You can tell this by a - in at least one of the hypotheses.

v

Such rules are called inductive since they define the meaning
of an expression in terms of the meaning of subexpressions.

v

Rules that to not have I in any hypothesis are base cases

> A system with only inductive rules is nonsensical

Operational Semantics

» Back to the rule for +:
I Sl i C
= SZ 1 C
FS1+Sy:c1+ o

v

Let's focus on the first hypothesis - S5; : ¢;.

v

Question: Can you write 51 = 17

v

Answer: Yes, but now your first hypothesis is: " Assuming 51
is the integer constant ¢;” = this rule no longer applies if, for
example, S; = 2% 3.

v

Read F as “is provable by using our set of inference rules”.

Thomas Dillg,

CS345H: Programming Languages Lecture 7: Operational Semantics |

13/36

Thomas Dillg, CS345H: Programming Languages Lecture 7: Operational Semantics | 14/36

Operational Semantics and Order

» Important Point: This notation does not specify an order
between hypothesis.

» This means that
= Sl &)
I Sz L C
FSi+8S2:c+ ¢

and
I Sg L C
= Sl &)
FSi+S5:c+ e
have exactly the same meaning

Full Operational Semantics

> Here are the full operational semantics of the language

S—>C|51+SQ|51*SQ

Fec:c

S FSy:co
FS1+Sy:c1+ o

FSi:a FS:c
Fsl*SQ:Cl*CQ

Thomas Dillg,

CS345H: Programming Languages Lecture 7: Operational Semantics |

15/36

Thomas Dillg, CS345H: Programming Languages Lecture 7: Operational Semantics | 16/36

Using Operational Semantics

» Consider the expression (21 % 2) + 6

» Here is how to derive the value of this expression with the

operational semantics:

F21:21 F2:2

F21%2:42
F(21%2)+6:48

F6:6

» This is a formal proof that the expression (21 % 2) + 6

evaluates to 48 under the defined operational semantics

> Observe that these proofs have a tree structure: Each

subexpression forms a new branch in the tree

Operational Semantics of L

> Let's try to give operational semantics to the L language:

Integer i

» Start with integers: —
1:17

» The i in the hypothesis and to the left of the colon is the
syntactic number in the source code of L

> The 7 after the colon is the value of the integer 1.

» This sounds nitpicky, but is important to understand this
notation.

Thomas Dillg,

CS345H: Programming Languages Lecture 7: Operational Semantics |

17/36

Thomas Dillg, CS345H: Programming Languages ~Lecture 7: Operational Semantics | 18/36

Operational Semantics of L
» Consider the (integer) plus expression in L:

F e : i1 (integer)
F ez : 72 (integer)
Fel+e:ip+ i

» Side remark: The hypothesis can be written in separate lines
(but not when giving a derivation tree)

> Here, the hypotheses require that e; and ez evaluate to
integers.

» Question: What happens if e; evaluates to a list?

» Answer: No rule applies and computation is “stuck”. This

means the L program does not evaluate to anything.

» In practice: This is a run-time error

Operational Semantics of L

> Integer minus:
F e : i (integer)
F e : ig (integer)
= €] — €3 : ’il - 7/2
> Integer times:
F e : @ (integer)
F ey : g (integer)
I €1 x €9 : il * 1/2

Thomas Dillg, CS345H: Programming Languages Lecture 7: Operational Semantics | 10/36

Thomas Dillg, CS345H: Programming Languages Lecture 7: Operational Semantics | 20/36

Operational Semantics of L

» On to the key construct: A

> Let's write semantics for the simple application (el e2)

v

Recall that this is only defined if el is a lambda expression.
» Hypothesis: I ¢; : lambda . €]
> Now, how do we evaluate (el e2) ? + ef[ez/z] : €

» Conclusion: F (€1 e2) : e

v

Final rule:
Fe1 : lambda . e

Foejlea/z] s €
F (e e2):e

Order of Evaluation

v

What would change if we write:

Foeflea/z] s e
F e : lambda z. €]
Fee):e

v

Answer: Nothing. The written order of hypotheses is irrelevant

v

Observe: This rule does specify an order between hypothesis:
F e1 : lambda z. e] must be evaluated before - e{[ez/1] : e.

v

This is the case because I ¢f[e2/x] : e uses ¢f defined by
hypothesis I-) : lambda . €]

» Important Point: Operational semantics can encode order, but
not through syntactic ordering

Thomas Dillg, CS345H: Programming Languages Lecture 7: Operational Semantics | 21/36

Thomas Dillg, CS345H: Programming Languages Lecture 7: Operational Semantics | 22/36

The Lambda Rule

> Question: What would change if we write the hypothesis as

e1 = lambda z. €]
Foejlex/z] e
Fepe2):e

> Answer: This would still give semantics to (lambda x.x 3),
but no longer to let y=lambda x.x in (y 3)

The Lambda Rule cont.

F e : lambda . €]
Fellea/z] s €

Fee):e

» Observe that in this rule, we are not evaluating es before
substitution.

» Consider the following modified rule:

F e : lambda . €]

Fe:el
Feileh/x] e
Fepe):e

» This also is a well-formed rule, but it gives a different meaning
to the lambda expression

Thomas Dillg, CS345H: Programming Languages Lecture 7: Operational Semantics | 23/36

Thomas Dillg, CS345H: Programming Languages ~Lecture 7: Operational Semantics | 2436

The Lambda Rule cont.

» Consider both rules:

. /
e : lambda . €] e lambda 7. ¢

ey el
Feilez/a]: e I—e?[eé?x} e
Flere):e F e e2):e

» Consider the expression (lambda x.3 4+"duck"):
> Rule 1 evaluates this expression to "3"

> Rule 2 “gets stuck” and returns no value since adding an
integer and string is undefined (we have not given a rule)

» Two reasonable ways of defining application, but different
semantics!

Call-by-name vs. Call-by-value

> Not evaluating the argument before substitution is known as
call-by name, evaluating the argument before substitution as
call-by-value.

> Languages with call-by-name: classic lambda calculus, ALGOL
60, L

» Languages with call-by-value: C, C++, Java, Python,
FORTRAN, ...

» Advantage of call-by-name: If argument is not used, it will not
be evaluated

» Disadvantage: If argument is uses k times, it will be evaluated
k times!

Thomas Dillg, CS345H: Programming Languages Lecture 7: Operational Semantics |

25/36

Thomas Dillg, CS345H: Programming Languages Lecture 7: Operational Semantics | 26/36

Call-by-name vs. Call-by-value

> Consider the following expression in L syntax:
(lambda x.x+x+x (77*3-2))

» Under call-by-name semantics, we substitute (77*3-2) for x
and reduce the problem of evaluating (lambda x.x+x+x
(77%3-2)) to evaluating ((77%3-2)+(77%3-2)+(77x3-2))

» We compute the value of x three times

» Under call-by-value semantics, we first evaluate (77*3-2) to
229 and then evaluate 229+229+229

Semantics of the let-binding

> Let's try to define the semantics of the let-binding in L:
let x = el in e2

> One possibility:

Foeslel/xz] : e

Fletz=e ine:e

.ol
Fel:e

v

What about the following definition?

Feler/z] e
Fletz=e ine:e

v

Are these definitions equivalent?

Thomas Dillg, CS345H: Programming Languages Lecture 7: Operational Semantics |

27/36

Thomas Dillg, CS345H: Programming Languages Lecture 7: Operational Semantics | 28/36

Eager vs. Lazy Evaluation

» Evaluating e; before we know that it is used is called eager
evaluation

» Waiting until we need it is lazy evaluation.

» These are analogous to call-by-name/call-by value in trade
offs.

Definition of let bindings

» But currently there is one problem common to both the eager
and lazy definition of the let binding.

> Consider the following valid L program:
let £ =
lambda x.
in (f 2)

if x <= 0 then 1 else x*(f (x-1))

» What happens if we use our definition of let on this
expression? For brevity, let's use the lazy one here, but the
same problem exists with the eager one:

F (f2)[(lambdax.if x <= Othenlelsex* (f(x —1))/f]:?
Fletf = lambdax.if x <= Othenlelsexx (f(x — 1)) in(£f2):?

Thomas Dillg, CS345H: Programming Languages Lecture 7: Operational Semantics |

20/36

Thomas Dillg, CS345H: Programming Languages ~Lecture 7: Operational Semantics | 30/36

Let Binding

> We have already seen this problem when studying lambda
calculus.

» But this time, we want to solve it. After all, who wants to use
the Y-combinator for every recursive function!

» Solution: Add an environment to our rules that tracks
mappings between identifiers and values

» Specifically, write the let rule as follows:

Ete:e
Elz+ el e:e

Elletz=eine:e

Environments

» You can think of the environment as storing information to be
used by other rules

> An environment maps keys to values

» Notation: E[z < y] means new environment with all
mappings in £ and the mapping z — y added.

> If x was already mapped in E, the mapping is replaced

» Notation: E(z) = y means bind value of key z in E to y. If
no mapping = — y exits in E, this “gets stuck”

Thomas Dillg, CS345H: Programming Languages Lecture 7: Operational Semantics | 31/36

Thomas Dillg, CS345H: Programming Languages Lecture 7: Operational Semantics | 32/36

Environments

» An environment adds extra information!

> In this rule:
Ete e
Elz +¢eflte:e
EFrletz=e ine:e
> Read the hypothesis E |- ¢ : ¢f as: “Given environment E and

expression e and that it is provable that ey evaluates to e”

v

Read the conclusion as: “Given environment E and expression
let © = €; in e9, this expression evaluates to e.

Environments

» Since we are no longer replacing the let-bound identifiers, we
also need a base case for identifiers

» This will now use the environment:

Identifier id
E(d)=e
Erid:e
» Adding the environment allows us now to be able to give
(intuitive) meaning to recursive programs.

Thomas Dillg, CS345H: Programming Languages Lecture 7: Operational Semantics | 33/36

Thomas Dillg, CS345H: Program

nguages Lecture 7: Operational Semantics | 34/36

Environments Example

» Consider the L program let x = 3 in x

> Here is the proof that this program evaluates to 3:

Identifier x
EL3:3 Elz < 3](x) =3
' Elz +3]Fx:3

Erletz=3inz:3

Conclusion

> We have seen how to formally give meaning to programs

» The formalism we have studied is called large-step operational
semantics

> Next time: Semantics for more L constructs and another
alternative formalism for specifying meaning of programs

Thomas Dillg, CS345H: Programming Languages Lecture 7: Operational Semantics | 35/36

Thomas Dillg, CS345H: Programming Languages Lecture 7: Operational Semantics | 36/36

