CS345H: Programming Languages

Lecture 7: Operational Semantics |

Thomas Dillig

Thomas Dillig, CS345H: ing Langu: Lecture 7: O i Semantics | 1/36

Outline

» Next Topic: Semantics

Thomas Dillig, CS345H: ing Langu: Lecture 7: O i Semantics | 2/36

Outline

» Next Topic: Semantics

» How to specify meaning of syntax

Thomas Dillig, CS345H: ing Langu: Lecture 7: Of i Semantics | 2/36

Outline

» Next Topic: Semantics
» How to specify meaning of syntax

» Will look at one formalism for this today

Thomas Dillig, CS345H: ing Langu: Lecture 7: Of Semantics | 2/36

What does a program mean?

» We have learned how to specify syntax.

Thomas Dillig, CS345H: ing Langu: Lecture 7: O i Semantics | 3/36

What does a program mean?

» We have learned how to specify syntax.

» Example: let x = lambda lambda is not a valid L program

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 3/36

What does a program mean?

» We have learned how to specify syntax.
» Example: let x = lambda lambda is not a valid L program

> But we have not yet talked about what the meaning of a
program is.

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 3/36

What does a program mean?

v

We have learned how to specify syntax.

v

Example: let x = lambda lambda is not a valid L program

v

But we have not yet talked about what the meaning of a
program is.

v

First Question: What is the meaning of a program in L?

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 3/36

What does a program mean?

» We have learned how to specify syntax.

» Example: let x = lambda lambda is not a valid L program

> But we have not yet talked about what the meaning of a
program is.

» First Question: What is the meaning of a program in L?

> Answer: The value the program evaluates to

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 3/36

What does a program mean?

v

We have learned how to specify syntax.

v

Example: let x = lambda lambda is not a valid L program

v

But we have not yet talked about what the meaning of a
program is.

v

First Question: What is the meaning of a program in L?

v

Answer: The value the program evaluates to

v

Example: let x = 3 in x

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 3/36

What does a program mean?

v

We have learned how to specify syntax.

v

Example: let x = lambda lambda is not a valid L program

v

But we have not yet talked about what the meaning of a
program is.

v

First Question: What is the meaning of a program in L?

v

Answer: The value the program evaluates to

v

Example: 1let x = 3 in x Value: 3

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 3/36

How to specify meaning of programs

» Option 1: Don’t worry too much

Thomas Dillig, CS345H: ing Langu: Lecture 7: O i Semantics | 4/36

How to specify meaning of programs

» Option 1: Don’t worry too much

» Developer of language has some informal concept of the
intended meaning, implement a compiler/interpreter that does
whatever the language designers believe to be reasonable.

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 4/36

How to specify meaning of programs

» Option 1: Don't worry too much
» Developer of language has some informal concept of the
intended meaning, implement a compiler/interpreter that does

whatever the language designers believe to be reasonable.

» Then, declare the meaning to be whatever the compiler
produces

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics |

How to specify meaning of programs

Thomas Dilig,

v

Option 1: Don't worry too much
Developer of language has some informal concept of the
intended meaning, implement a compiler/interpreter that does

whatever the language designers believe to be reasonable.

Then, declare the meaning to be whatever the compiler
produces

A terrible idea

CS345H: Programming Languages Lecture 7: Operational Semantics |

How to specify meaning of programs

» Why is this such a bad idea?

Thomas Dillig, CS345H: ing Langu: Lecture 7: O i Semantics | 5/36

How to specify meaning of programs

» Why is this such a bad idea?

» This approach promotes bugs/inconsistencies to expected
behavior.

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 5/36

How to specify meaning of programs

» Why is this such a bad idea?

» This approach promotes bugs/inconsistencies to expected
behavior.

» Hides specification of language in many implementation details

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 5/36

How to specify meaning of programs

» Why is this such a bad idea?

» This approach promotes bugs/inconsistencies to expected
behavior.

» Hides specification of language in many implementation details

» Makes it almost impossible to implement another compiler
that accepts the same language

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 5/36

How to specify meaning of programs

» Why is this such a bad idea?
» This approach promotes bugs/inconsistencies to expected
behavior.

» Hides specification of language in many implementation details

» Makes it almost impossible to implement another compiler
that accepts the same language

» Unfortunately, this is (still) a very common approach

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics |

How to specify meaning of programs

» Why is this such a bad idea?
» This approach promotes bugs/inconsistencies to expected
behavior.

» Hides specification of language in many implementation details

» Makes it almost impossible to implement another compiler
that accepts the same language

» Unfortunately, this is (still) a very common approach

» Languages designed this way: C, C++ (to some extent), Perl,
PHP, JavaScript, ...

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics |

How to specify meaning of programs

» Option 2: Try to write out precisely the meaning of each
language construct in documentation, then follow this
description in implementation

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 6/36

How to specify meaning of programs

» Option 2: Try to write out precisely the meaning of each
language construct in documentation, then follow this
description in implementation

» Example: Describe the meaning of 'e in the L language:

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 6/36

How to specify meaning of programs

» Option 2: Try to write out precisely the meaning of each
language construct in documentation, then follow this
description in implementation

» Example: Describe the meaning of 'e in the L language:

> First attempt: “This evaluates to the head of e”

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 6/36

How to specify meaning of programs

v

Option 2: Try to write out precisely the meaning of each
language construct in documentation, then follow this
description in implementation

v

Example: Describe the meaning of 'e in the L language:

v

First attempt: “This evaluates to the head of e"

v

What if e is not a list?

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 6/36

How to specify meaning of programs

» Option 2: Try to write out precisely the meaning of each
language construct in documentation, then follow this
description in implementation

» Example: Describe the meaning of !e in the L language:

» First attempt: “This evaluates to the head of &”

» What if e is not a list?

» Second attempt: “This evaluates to the head of e if e is a list,
and to e otherwise”

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics |

How to specify meaning of programs

» Option 2: Try to write out precisely the meaning of each
language construct in documentation, then follow this
description in implementation

» Example: Describe the meaning of !e in the L language:

» First attempt: “This evaluates to the head of &”

» What if e is not a list?

» Second attempt: “This evaluates to the head of e if e is a list,
and to e otherwise”

» What if e is Nil? ...

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics |

How to specify meaning of programs: Option 2

» Written language is, by nature, ambiguous. It is very difficult
to fully specify the meaning of all language constructs this way

Thomas Dilig, €S345H: Programming Languages Lecture 7: Operational Semantics | 7/36

How to specify meaning of programs: Option 2

» Written language is, by nature, ambiguous. It is very difficult
to fully specify the meaning of all language constructs this way

> Easy to miss cases

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 7/36

How to specify meaning of programs: Option 2

» Written language is, by nature, ambiguous. It is very difficult
to fully specify the meaning of all language constructs this way

» Easy to miss cases

» Results in long, complicated and difficult to understand
specifications, but an improvement over no specification

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics |

Written specification in practice
> Let's look at the ISO C+4+ standard: 879 pages, page 116:

Thomas Dillig, CS345H: ing Langu: Lecture 7: O Semantics | 8/36

Written specification in practice

> Let's look at the ISO C+4+ standard: 879 pages, page 116:

5.16 Conditional operator [expr.cond]

conditional-expression:
logical-or-expression
P

Apression 7 expression :

I Conditional ions group right-to-left. The first is implicitly ¢ dto bool (clause 4). Ttis evaluated
and if it is true, the result of the conditional expression is the value of the second expression, otherwise that of the third
expression. All side effects of the first expression except for destruction of temporaries (12.2) happen before the second
or third expression is evaluated. Only one of the second and third expressions is evaluated.

If cither the second o the third operand has type (possibly cv-qualified) void, then the lval value (4.1), array-to-
pointer (4.2), and function-to-pointer (4.3) standard conversions are performed on the second and third operands, and
one of the following shall hold:

— The second or the third operand (but not both) is a throw-expression (15.1); the result is of the type of the other
and is an rvalue.

— Both the second and the third operands have type void the result is of type void and is an rvalue. [Note: this
includes the case where both operands are throw-expressions. — end note |

Otherwise, if the second and third operand have different types, and either has (possibly cv-qualified) class type. an
attempt is made to convert each of those operands to the type of the other. The process for determining whether an
operand expression E1 of type T1 can be converted to match an operand expression E2 of type T2 is defined as follows:

— IfE2 is an Ivalue: E1 can be converted to match E2 if E1 can be implicitly converted (clause 4) to the type
“reference to T2”, subject to the constraint that in the conversion the reference must bind directly (8.5.3) to E1.

— If E2 is an rvalue, or if the conversion above cannot be done:

— ifE1 and E2 have class type, and the underlying class types arc the same or onc is a base class of the other: E1
can be converted to match E2 if the elass of T2 s the same type as, or a base class of.the class of T1. and the
cv-qualification of T2 is the same cv-qualification as, or a greater ification than, the
of T1. If the conversion is applied, E1 is changed to an rvalue of type T2 &mmmm%w
sourcs-class object (ot subobject thereof[-Mote: that is. b

copy-initializing a temporary of type T2 from E1 and using that temporary as the converted operand.

— Otherwise (i.e., if E1 or E2 has a nonclass type, or if they both have class types but the underlying cl
not either the same or one a base class of the other): E1 can be converted to match E2 if E1 can be implicitly

ses are

Thomas Dilig, €S345H: Programming Languages Lecture 7: Operational Semantics |

8/36

Precisely Specifying Meaning

» Recall \-calculus:

Thomas Dillig, CS345H: ing Langu: Lecture 7: O i Semantics | 9/36

Precisely Specifying Meaning

» Recall \-calculus:

» To specify the meaning of expressions, we defined one single
operation: S reduction

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 9/36

Precisely Specifying Meaning

» Recall \-calculus:

» To specify the meaning of expressions, we defined one single
operation: S reduction

» Specifically, we wrote \z.e; ey —7 eilez2/x]

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 9/36

Precisely Specifying Meaning

Recall \-calculus:

v

v

To specify the meaning of expressions, we defined one single
operation: S reduction

Specifically, we wrote \z.e; ey —7 eilez2/x]

v

v

Can read this as follows: If you see an expression of the form
Az.ey ez, you can compute its result as ej[ez/z].

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 9/36

Operational Semantics

> Let's try the same in the language of arithmetic expression
with the grammar:

S —c| S+ S| 5SS

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 10/36

Operational Semantics

> Let's try the same in the language of arithmetic expression
with the grammar:

S —c| S+ S| 5SS

» What is the meaning of an integer constant? The value of
this integer

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 10/36

Operational Semantics

> Let's try the same in the language of arithmetic expression
with the grammar:

S —c| S+ S| 5SS

» What is the meaning of an integer constant? The value of
this integer

» More precisely: If we see an expression of the form c, its value
is ¢

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 10/36

Operational Semantics

Thomas Dilig,

>

Let's try the same in the language of arithmetic expression
with the grammar:

S—>C’51+52’SI*SQ

What is the meaning of an integer constant? The value of
this integer

More precisely: If we see an expression of the form c, its value
is ¢

We will write:

CS345H: Programming Languages Lecture 7: Operational Semantics |

10/36

Operational Semantics

>

Let's try the same in the language of arithmetic expression
with the grammar:

S —c| S+ S| 5SS

What is the meaning of an integer constant? The value of
this integer

More precisely: If we see an expression of the form c, its value
is ¢

We will write:
Fc:c

Read as: “we can prove for any expression of the form c

Thomas Dillig,

CS345H: Programming Languages Lecture 7: Operational Semantics |

10/36

Operational Semantics

> Let's try the same in the language of arithmetic expression
with the grammar:

S —c| S+ S| 5SS

» What is the meaning of an integer constant? The value of
this integer

» More precisely: If we see an expression of the form c, its value
is ¢

» We will write:
Fc:c

» Read as: “we can prove for any expression of the form c

» that the meaning of this expression is ¢”

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 10/36

Operational Semantics Cont.

» How about the expression S; + S57

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 11/36

Operational Semantics Cont.

» How about the expression S; + S57

» 51+ 57

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 11/36

Operational Semantics Cont.

» How about the expression S; + S57
» 51+ 57

» Problem: To describe the meaning of S; + S2, we need to
know the meaning (value) of S; and Sy

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 11/36

Operational Semantics Cont.

» How about the expression S; + S57
» 51+ 57

» Problem: To describe the meaning of S; + S2, we need to
know the meaning (value) of S; and Sy

» Solution: Use hypotheses: We want to say “Assuming S
evaluates to ¢; and 59 evaluates to cg, the value of S7 + 53 is
Cl + C2”

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 11/36

Operational Semantics Cont.

>

v

How about the expression S7 + 527
ST+ 57

Problem: To describe the meaning of 5] + S2, we need to
know the meaning (value) of S; and Sy

Solution: Use hypotheses: We want to say “"Assuming Sy
evaluates to ¢; and 59 evaluates to cg, the value of S7 + 53 is
Cl + C2”

We write this as:
|— Sl i
F Sy :co
ST+ 8¢+ e

Thomas Dillig,

CS345H: Programming Languages Lecture 7: Operational Semantics | 11/36

Inference Rules
» This notation is known as inference rule:

Hypothesis 1

Hypothesis N
F Conclusion

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 12/36

Inference Rules
» This notation is known as inference rule:
Hypothesis 1
Hypothesis N
F Conclusion

» This means “given hypothesis 1, ... N, the conclusion is
provable”

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 12/36

Inference Rules

» This notation is known as inference rule:

Hypothesis 1
Hypothesis N
F Conclusion

» This means “given hypothesis 1, ... N, the conclusion is
provable”

» Example:

Miterm 1 grade >= 70

Final grade >= 140
F Final grade: A

Thomas Dillig,

CS345H: Programming Languages Lecture 7: Operational Semantics |

12/36

Inference Rules cont.

» A hypothesis in an inference rule may use other rules

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 13/36

Inference Rules cont.

» A hypothesis in an inference rule may use other rules

> Example:
H Sl i
F Sy :co
|—Sl+52201+62

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 13/36

Inference Rules cont.

» A hypothesis in an inference rule may use other rules

> Example:
H Sl i
F Sy :co
|—Sl+52201+02

» You can tell this by a - in at least one of the hypotheses.

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 13/36

Inference Rules cont.
» A hypothesis in an inference rule may use other rules

> Example:
FSi:ca
F 52 L C

FS1+S:¢c1+ ¢

» You can tell this by a |- in at least one of the hypotheses.

» Such rules are called inductive since they define the meaning
of an expression in terms of the meaning of subexpressions.

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics |

13/36

Inference Rules cont.

» A hypothesis in an inference rule may use other rules

> Example:

FSi:ca

F 52 L C

FS1+S:¢c1+ ¢
» You can tell this by a |- in at least one of the hypotheses.
» Such rules are called inductive since they define the meaning
of an expression in terms of the meaning of subexpressions.

> Rules that to not have I~ in any hypothesis are base cases

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics |

13/36

Inference Rules cont.

» A hypothesis in an inference rule may use other rules

> Example:

FSi:ca

F 52 L C

FS+S 0+t
» You can tell this by a |- in at least one of the hypotheses.
» Such rules are called inductive since they define the meaning
of an expression in terms of the meaning of subexpressions.

> Rules that to not have I~ in any hypothesis are base cases

» A system with only inductive rules is nonsensical

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 13/36

Operational Semantics

» Back to the rule for +:
FSi:a
F 52)
FS1+S5:c1+ ¢

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 14/36

Operational Semantics

» Back to the rule for +:
FSi:a
F 52)
FSi+8:c+ e

> Let’s focus on the first hypothesis - 57 : ¢;.

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 14/36

Operational Semantics

» Back to the rule for +:
FSi:a
F 52)
FSi+8:c+ e

> Let’s focus on the first hypothesis - 57 : ¢;.

» Question: Can you write S1 = ¢1?

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 14/36

Operational Semantics

» Back to the rule for +:
FSi:a
F 52)
S +8 e+ e

> Let’s focus on the first hypothesis - 57 : ¢;.
» Question: Can you write S1 = ¢1?
» Answer: Yes, but now your first hypothesis is: * Assuming S}

is the integer constant ¢;” = this rule no longer applies if, for
example, S = 2% 3.

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics |

14/36

Operational Semantics

Thomas Dilig,

v

Back to the rule for +:

|—51Z01
I_SQICQ
FSi+S:c1+ ¢

Let's focus on the first hypothesis - S : ¢1.

Question: Can you write S7 = ¢;?

Answer: Yes, but now your first hypothesis is: “ Assuming 51
is the integer constant ¢;" = this rule no longer applies if, for

example, S = 2% 3.

Read - as “is provable by using our set of inference rules".

CS345H: Programming Languages Lecture 7: Operational Semantics |

14/36

Operational Semantics and Order

» Important Point: This notation does not specify an order
between hypothesis.

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 15/36

Operational Semantics and Order

» Important Point: This notation does not specify an order
between hypothesis.

» This means that
F Sl i1
F Sy :co

FSi+S:ca+c

and
FSy:co
|—51161
FSi+S:a+c

have exactly the same meaning

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 15/36

Full Operational Semantics

» Here are the full operational semantics of the language

S—c| S+ 85| 51 *S

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 16/36

Full Operational Semantics

» Here are the full operational semantics of the language

S—c| S+ 85| 51 *S

Fe:c

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 16/36

Full Operational Semantics

» Here are the full operational semantics of the language

S—c| S+ 85| 51 *S

Fe:c

|—51301 l_SQZCQ
FS1+8:c+ e

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 16/36

Full Operational Semantics

» Here are the full operational semantics of the language

S—c| S+ 85| 51 *S

Fe:c

|—51301 l_SQZCQ
FS1+8:c+ e

FSi:ic F Sy :co
F Sy %S9:¢1%co

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 16/36

Using Operational Semantics

» Consider the expression (21 % 2) + 6

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 17/36

Using Operational Semantics

» Consider the expression (21 % 2) + 6

> Here is how to derive the value of this expression with the
operational semantics:

F21:21 F2:2

F21%2:42
F(21%2)+6:48

F6:6

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 17/36

Using Operational Semantics

» Consider the expression (21 % 2) + 6

> Here is how to derive the value of this expression with the
operational semantics:

F21:21 F2:2

F21%2:42
F(21%2)+6:48

F6:6

» This is a formal proof that the expression (21 x 2) + 6
evaluates to 48 under the defined operational semantics

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics |

17/36

Using Operational Semantics

» Consider the expression (21 % 2) + 6

> Here is how to derive the value of this expression with the
operational semantics:

F21:21 F2:2

F21%2:42
F(21%2) + 6 : 48

F6:6

» This is a formal proof that the expression (21 x 2) + 6
evaluates to 48 under the defined operational semantics

» Observe that these proofs have a tree structure: Each
subexpression forms a new branch in the tree

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 17/36

Operational Semantics of L

> Let's try to give operational semantics to the L language:

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 18/36

Operational Semantics of L

> Let's try to give operational semantics to the L language:

o Integer i
» Start with integers: L
ig

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 18/36

Operational Semantics of L

> Let's try to give operational semantics to the L language:

. Integer i

» Start with integers: L

1:12

» The i in the hypothesis and to the left of the colon is the
syntactic number in the source code of L

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 18/36

Operational Semantics of L

v

Let's try to give operational semantics to the L language:

Integer i

v

Start with integers: —
i

v

The i in the hypothesis and to the left of the colon is the
syntactic number in the source code of L

v

The i after the colon is the value of the integer 7.

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 18/36

Operational Semantics of L

Thomas Dilig,

Let's try to give operational semantics to the L language:

. Integer i
Start with integers: L
1:72

The 1 in the hypothesis and to the left of the colon is the
syntactic number in the source code of L

The ¢ after the colon is the value of the integer 7.

This sounds nitpicky, but is important to understand this
notation.

CS345H: Programming Languages Lecture 7: Operational Semantics |

18/36

Operational Semantics of L
» Consider the (integer) plus expression in L:

F e : 4 (integer)
F ey @ iy (integer)
ey + e+ i

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 19/36

Operational Semantics of L
» Consider the (integer) plus expression in L:

F e : 4 (integer)
F ey @ iy (integer)
ey + e+ i

» Side remark: The hypothesis can be written in separate lines
(but not when giving a derivation tree)

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 19/36

Operational Semantics of L
» Consider the (integer) plus expression in L:

F e : 4 (integer)
F ey @ iy (integer)
ey + e+ i

» Side remark: The hypothesis can be written in separate lines
(but not when giving a derivation tree)

» Here, the hypotheses require that e; and e evaluate to
integers.

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 19/36

Operational Semantics of L
» Consider the (integer) plus expression in L:

F e : 4 (integer)
F eg : ig (integer)
ey + e+ i

» Side remark: The hypothesis can be written in separate lines
(but not when giving a derivation tree)

» Here, the hypotheses require that e; and e evaluate to
integers.

» Question: What happens if e; evaluates to a list?

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 19/36

Operational Semantics of L
» Consider the (integer) plus expression in L:

F e : 4 (integer)
F eg : ig (integer)
ey + e+ i

» Side remark: The hypothesis can be written in separate lines
(but not when giving a derivation tree)

» Here, the hypotheses require that e; and e evaluate to
integers.

» Question: What happens if e; evaluates to a list?
» Answer: No rule applies and computation is “stuck”. This

means the L program does not evaluate to anything.

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 19/36

Operational Semantics of L

Thomas Dilig,

>

>

Consider the (integer) plus expression in L:
F e : 4 (integer)
F eg : ig (integer)
ey + e+ i

Side remark: The hypothesis can be written in separate lines
(but not when giving a derivation tree)

Here, the hypotheses require that e; and ey evaluate to
integers.

Question: What happens if e; evaluates to a list?

Answer: No rule applies and computation is “stuck”. This
means the L program does not evaluate to anything.

In practice: This is a run-time error

CS345H: Programming Languages Lecture 7: Operational Semantics |

19/36

Operational Semantics of L

> Integer minus:
F e @4 (integer)
F eq : iy (integer)

|—€1—€21’i1—i2

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 20/36

Operational Semantics of L

> Integer minus:
F e @4 (integer)
F eq : iy (integer)

|‘€1—€21i1—i2

> Integer times:
F e @4 (integer)
F eq : iy (integer)

Fepxeg:ig*iy

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 20/36

Operational Semantics of L

» On to the key construct: A

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 21/36

Operational Semantics of L

» On to the key construct: A

> Let's write semantics for the simple application (el e2)

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 21/36

Operational Semantics of L

» On to the key construct: A
> Let's write semantics for the simple application (el e2)

» Recall that this is only defined if el is a lambda expression.

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 21/36

Operational Semantics of L

» On to the key construct: A
> Let's write semantics for the simple application (el e2)
» Recall that this is only defined if el is a lambda expression.

» Hypothesis: - e; : lambda z. €]

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 21/36

Operational Semantics of L

» On to the key construct: A

>

v

v

v

Let's write semantics for the simple application (el e2)
Recall that this is only defined if el is a lambda expression.
Hypothesis: - e; : lambda z. €]

Now, how do we evaluate (el €2) ?

Thomas Dillig,

CS345H: Programming Languages Lecture 7: Operational Semantics |

21/36

Operational Semantics of L

» On to the key construct: A

>

v

v

v

Let's write semantics for the simple application (el e2)
Recall that this is only defined if el is a lambda expression.
Hypothesis: - e; : lambda z. €]

Now, how do we evaluate (el €2) ? F ef[e2/2] : e

Thomas Dillig,

CS345H: Programming Languages Lecture 7: Operational Semantics |

21/36

Operational Semantics of L

>

>

v

v

v

v

On to the key construct: A

Let's write semantics for the simple application (el e2)
Recall that this is only defined if el is a lambda expression.
Hypothesis: - e; : lambda z. €]

Now, how do we evaluate (el €2) ? F ef[e2/2] : e

Conclusion: F (€1 e2) : e

Thomas Dillig,

CS345H: Programming Languages Lecture 7: Operational Semantics |

21/36

Operational Semantics of L

» On to the key construct: A

>

v

v

v

v

v

Let's write semantics for the simple application (el e2)

Recall that this is only defined if el is a lambda expression.

Hypothesis: - e; : lambda z. €]

Now, how do we evaluate (el €2) ? F ef[e2/2] : e

Conclusion: F (€1 e2) : e

Final rule:

F e : lambda z. €]
Foeflea/x] : e
F(el e):e

Thomas Dillig,

CS345H: Programming Languages Lecture 7: Operational Semantics |

21/36

Order of Evaluation
» What would change if we write:

Foeflea/z] i e
b ey : lambda z. €]
F (e e2): e

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 22/36

Order of Evaluation
» What would change if we write:

Foeflea/x] : e
b ey : lambda z. €]
F(er e):e

» Answer: Nothing. The written order of hypotheses is irrelevant

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 22/36

Order of Evaluation
» What would change if we write:

Foeflea/x] : e
b ey : lambda z. €]
F(er e):e

» Answer: Nothing. The written order of hypotheses is irrelevant

» Observe: This rule does specify an order between hypothesis:
F ey : lambda . €] must be evaluated before I ef[ea/z] : e.

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 22/36

Order of Evaluation
» What would change if we write:

Foeflea/x] : e
b ey : lambda z. €]
F(er e):e

» Answer: Nothing. The written order of hypotheses is irrelevant

» Observe: This rule does specify an order between hypothesis:
F ey : lambda . €] must be evaluated before I ef[ea/z] : e.

» This is the case because - €f[ea/x] : e uses e] defined by
hypothesis + ¢ : lambda z. €]

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 22/36

Order of Evaluation
» What would change if we write:

Foeflea/x] : e
b ey : lambda z. €]
F(er e):e

» Answer: Nothing. The written order of hypotheses is irrelevant

» Observe: This rule does specify an order between hypothesis:
F ey : lambda . €] must be evaluated before I ef[ea/z] : e.

» This is the case because - €f[ea/x] : e uses e] defined by
hypothesis + ¢ : lambda z. €]

» Important Point: Operational semantics can encode order, but
not through syntactic ordering

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 22/36

The Lambda Rule

» Question: What would change if we write the hypothesis as

e1 = lambda x. €]
Foeflea/x] : e
F (e e2): e

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 23/36

The Lambda Rule

» Question: What would change if we write the hypothesis as

e1 = lambda x. €]
Foeflea/x] : e
F (e e2): e

» Answer: This would still give semantics to (lambda x.x 3),
but no longer to let y=lambda x.x in (y 3)

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 23/36

The Lambda Rule cont.

F e : lambda z. €]
Foejlea/z] : e
F (e e2): e

» Observe that in this rule, we are not evaluating ey before
substitution.

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics |

24/36

The Lambda Rule cont.

F e : lambda z. €]
Foejlea/z] : e
F (e e2): e

» Observe that in this rule, we are not evaluating ey before
substitution.

» Consider the following modified rule:

Fer : lambda z. e}

Foeo: €l
Foefles/z] e
F (e e2): e

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics |

24/36

The Lambda Rule cont.

F e : lambda z. €]
Foejlea/z] : e
F (e e2): e

» Observe that in this rule, we are not evaluating ey before
substitution.

» Consider the following modified rule:

Fer : lambda z. e}

Foeo: €l
Foefles/z] e
F (e e2): e

» This also is a well-formed rule, but it gives a different meaning

to the lambda expression

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics |

24/36

The Lambda Rule cont.

» Consider both rules:

. /
- o1 : lambda . | Fep : lambda x. €]

Foey: el
" afe/s]: e - e?[ejﬂ te
F(ere2) e F (e e):e

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 25/36

The Lambda Rule cont.

» Consider both rules:

. /
- o1 : lambda . | Fep : lambda x. €]

Foey: el
" afe/s]: e - e?[ejﬂ te
F(ere2) e F (e e):e

» Consider the expression (lambda x.3 4+"duck"):

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics | 25/36

The Lambda Rule cont.

» Consider both rules:

. /
F e : lambda z. €] e lambda z. g

Foey: el
" afe/s]: e - e?[ejﬂ te
F(ere2) e F (e e):e

» Consider the expression (lambda x.3 4+"duck"):
» Rule 1 evaluates this expression to "3"

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics | 25/36

The Lambda Rule cont.

» Consider both rules:

. /
F e : lambda z. €] o lambda 2.

Foey: el
" efe/d]: e - e?[eé?z] te
F(ere2) e F (e e):e

» Consider the expression (lambda x.3 4+"duck"):
» Rule 1 evaluates this expression to "3"

» Rule 2 “gets stuck” and returns no value since adding an
integer and string is undefined (we have not given a rule)

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 25/36

The Lambda Rule cont.

» Consider both rules:

. /
F e : lambda z. €] e s lambda . ¢

Fes: el
" eifex/] : € l-e?[eé?:v]:e
(el e2): e (o1 e2) ¢

» Consider the expression (lambda x.3 4+"duck"):
» Rule 1 evaluates this expression to "3"

» Rule 2 “gets stuck” and returns no value since adding an
integer and string is undefined (we have not given a rule)

» Two reasonable ways of defining application, but different
semantics!

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 25/36

Call-by-name vs. Call-by-value

» Not evaluating the argument before substitution is known as
call-by name, evaluating the argument before substitution as
call-by-value.

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 26/36

Call-by-name vs. Call-by-value

» Not evaluating the argument before substitution is known as

call-by name, evaluating the argument before substitution as
call-by-value.

» Languages with call-by-name: classic lambda calculus, ALGOL
60, L

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 26/36

Call-by-name vs. Call-by-value

» Not evaluating the argument before substitution is known as
call-by name, evaluating the argument before substitution as
call-by-value.

» Languages with call-by-name: classic lambda calculus, ALGOL
60, L

» Languages with call-by-value: C, C++, Java, Python,
FORTRAN, ...

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 26/36

Call-by-name vs. Call-by-value
» Not evaluating the argument before substitution is known as
call-by name, evaluating the argument before substitution as

call-by-value.

» Languages with call-by-name: classic lambda calculus, ALGOL
60, L

» Languages with call-by-value: C, C++, Java, Python,
FORTRAN, ...

» Advantage of call-by-name: If argument is not used, it will not
be evaluated

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 26/36

Call-by-name vs. Call-by-value

Thomas Dilig,

Not evaluating the argument before substitution is known as
call-by name, evaluating the argument before substitution as
call-by-value.

Languages with call-by-name: classic lambda calculus, ALGOL
60, L

Languages with call-by-value: C, C++, Java, Python,
FORTRAN, ...

Advantage of call-by-name: If argument is not used, it will not
be evaluated

Disadvantage: If argument is uses k times, it will be evaluated
k times!

CS345H: Programming Languages Lecture 7: Operational Semantics |

26/36

Call-by-name vs. Call-by-value

» Consider the following expression in L syntax:
(lambda x.x+x+x (77%3-2))

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 27/36

Call-by-name vs. Call-by-value

» Consider the following expression in L syntax:
(lambda x.x+x+x (77%3-2))

» Under call-by-name semantics, we substitute (77+3-2) for x
and reduce the problem of evaluating (lambda x.x+x+x
(77%3-2)) to evaluating ((77*3-2)+(77%3-2)+(77*3-2))

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 27/36

Call-by-name vs. Call-by-value

» Consider the following expression in L syntax:
(lambda x.x+x+x (77*3-2))

» Under call-by-name semantics, we substitute (77+3-2) for x
and reduce the problem of evaluating (lambda x.x+x+x
(77%3-2)) to evaluating ((77*3-2)+(77%3-2)+(77*3-2))

» We compute the value of x three times

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 27/36

Call-by-name vs. Call-by-value

Thomas Dilig,

Consider the following expression in L syntax:
(lambda x.x+x+x (77*3-2))

Under call-by-name semantics, we substitute (77*3-2) for x
and reduce the problem of evaluating (lambda x.x+x+x
(77%3-2)) to evaluating ((77*3-2)+(77%3-2)+(77*3-2))

We compute the value of x three times

Under call-by-value semantics, we first evaluate (77*3-2) to
229 and then evaluate 229+229+229

CS345H: Programming Languages Lecture 7: Operational Semantics |

27/36

Semantics of the let-binding

> Let's try to define the semantics of the let-binding in L:
let x = el in e2

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 28/36

Semantics of the let-binding

> Let's try to define the semantics of the let-binding in L:
let x = el in e2

» One possibility:

Foep:ef Foesler/z] : e

Fletz=e1iney:e

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 28/36

Semantics of the let-binding

> Let's try to define the semantics of the let-binding in L:
let x = el in e2

» One possibility:

Foep:ef Foesler/z] : e

Fletz=e1iney:e
» What about the following definition?

Foexler/z] s e
Fletxz =e1ine:e

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 28/36

Semantics of the let-binding

v

Let's try to define the semantics of the let-binding in L:
let x = el in e2

v

One possibility:

Foep:ef Foesler/z] : e
Fletz=e1iney:e

v

What about the following definition?

Foexler/z] s e
Fletxz =e1ine:e

v

Are these definitions equivalent?

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 28/36

Eager vs. Lazy Evaluation

» Evaluating e; before we know that it is used is called eager
evaluation

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 29/36

Eager vs. Lazy Evaluation

» Evaluating e; before we know that it is used is called eager
evaluation

» Waiting until we need it is lazy evaluation.

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 29/36

Eager vs. Lazy Evaluation

» Evaluating e; before we know that it is used is called eager
evaluation

» Waiting until we need it is lazy evaluation.

» These are analogous to call-by-name/call-by value in trade
offs.

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 29/36

Definition of let bindings

» But currently there is one problem common to both the eager
and lazy definition of the let binding.

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 30/36

Definition of let bindings

» But currently there is one problem common to both the eager
and lazy definition of the let binding.

» Consider the following valid L program:
let £ =
lambda x. if x <= O then 1 else x*(f (x-1))
in (f 2)

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics |

30/36

Definition of let bindings

» But currently there is one problem common to both the eager
and lazy definition of the let binding.

» Consider the following valid L program:
let £ =
lambda x. if x <= 0 then 1 else x*(f (x-1))
in (£ 2)

» What happens if we use our definition of let on this

expression? For brevity, let's use the lazy one here, but the
same problem exists with the eager one:

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 30/36

Definition of let bindings

» But currently there is one problem common to both the eager
and lazy definition of the let binding.

» Consider the following valid L program:
let £ =
lambda x. if x <= 0 then 1 else x*(f (x-1))
in (£ 2)

» What happens if we use our definition of let on this

expression? For brevity, let's use the lazy one here, but the
same problem exists with the eager one:

F (f 2)[(lambdax.if x <= Othenlelsexx (f(x —1))/f] :?

Flet f = lambdax.if x <= Othenlelsex* (f(x —1))in(£2):7

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics |

30/36

Let Binding

> We have already seen this problem when studying lambda
calculus.

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 31/36

Let Binding

> We have already seen this problem when studying lambda
calculus.

» But this time, we want to solve it. After all, who wants to use
the Y-combinator for every recursive function!

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 31/36

Let Binding

> We have already seen this problem when studying lambda
calculus.

» But this time, we want to solve it. After all, who wants to use
the Y-combinator for every recursive function!

» Solution: Add an environment to our rules that tracks
mappings between identifiers and values

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 31/36

Let Binding

> We have already seen this problem when studying lambda
calculus.

» But this time, we want to solve it. After all, who wants to use
the Y-combinator for every recursive function!

» Solution: Add an environment to our rules that tracks
mappings between identifiers and values

» Specifically, write the let rule as follows:

Et e :e]
Elz+ ¢ej]Fex:e

Erletz=e1iney:e

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 31/36

Environments

» You can think of the environment as storing information to be
used by other rules

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 32/36

Environments

> You can think of the environment as storing information to be
used by other rules

» An environment maps keys to values

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 32/36

Environments

> You can think of the environment as storing information to be
used by other rules

> An environment maps keys to values

» Notation: E[z < y| means new environment with all
mappings in £ and the mapping = — y added.

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 32/36

Environments

» You can think of the environment as storing information to be
used by other rules

» An environment maps keys to values

» Notation: E[z < y| means new environment with all
mappings in £ and the mapping = — y added.

» If z was already mapped in E, the mapping is replaced

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 32/36

Environments

v

You can think of the environment as storing information to be
used by other rules

» An environment maps keys to values

» Notation: E[z < y| means new environment with all
mappings in £ and the mapping = — y added.

» If z was already mapped in E, the mapping is replaced

» Notation: E(z) = y means bind value of key z in F to y. If
no mapping x — y exits in E, this “gets stuck”

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 32/36

Environments

» An environment adds extra information!

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 33/36

Environments

» An environment adds extra information!

> In this rule:
Ete:ef
FElz+ ef]Fex:e

Erletz=eine:e

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 33/36

Environments

» An environment adds extra information!

> In this rule:
Ete:ef
FElz+ ef]Fex:e

Erletz=eine:e

» Read the hypothesis E ¢ : ¢f as: “Given environment E and
expression e; and that it is provable that ey evaluates to e”

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 33/36

Environments

Thomas Dilig,

v

v

v

An environment adds extra information!

In this rule:
Ete:ef
FElz+ ef]Fex:e

EFrletz=einey:e

Read the hypothesis E | ¢ : e] as: “Given environment E and
expression e; and that it is provable that ey evaluates to e”

Read the conclusion as: “Given environment E and expression
let x = e; in ey, this expression evaluates to e.

CS345H: Programming Languages Lecture 7: Operational Semantics |

33/36

Environments

» Since we are no longer replacing the let-bound identifiers, we
also need a base case for identifiers

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 34/36

Environments

» Since we are no longer replacing the let-bound identifiers, we
also need a base case for identifiers

» This will now use the environment:

Identifier id
E(d)=e
Erid:e

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 34/36

Environments

» Since we are no longer replacing the let-bound identifiers, we
also need a base case for identifiers

» This will now use the environment:

Identifier id
E(d)=e
Erid:e

» Adding the environment allows us now to be able to give
(intuitive) meaning to recursive programs.

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 34/36

Environments Example

» Consider the L program let x = 3 in x

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 35/36

Environments Example

» Consider the L program let x = 3 in x

> Here is the proof that this program evaluates to 3:

Identifier x

Elz < 3](x) =3
Elz +3]Fx:3
Erletz=3inxz:3

E+3:3

Thomas Dillig, CS345H: Programming Languages Lecture 7: Operational Semantics | 35/36

Conclusion

» We have seen how to formally give meaning to programs

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 36/36

Conclusion

» We have seen how to formally give meaning to programs

» The formalism we have studied is called large-step operational
semantics

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics | 36/36

Conclusion

» We have seen how to formally give meaning to programs

» The formalism we have studied is called large-step operational
semantics

> Next time: Semantics for more L constructs and another
alternative formalism for specifying meaning of programs

Thomas Dilig, CS345H: Programming Languages Lecture 7: Operational Semantics |

36/36

