CS345H: Programming Languages

Lecture 8: Operational Semantics II

Thomas Dillig

Outline

 We will discuss semantics of remining (interesting) L expressions

Outline

- We will discuss semantics of remining (interesting) L expressions
- Will look at one more formalism for specifying meaning today

 We are still missing semantics for key constructs in the L programming language

- We are still missing semantics for key constructs in the L programming language
- ▶ Let's start with the if expression: if e1 then e2 else e3.

- We are still missing semantics for key constructs in the L programming language
- ▶ Let's start with the if expression: if e1 then e2 else e3.
- ► Recall meaning: If e1 evaluates to a non-zero integer, the meaning of the expression is e2, otherwise e3

- We are still missing semantics for key constructs in the L programming language
- ▶ Let's start with the if expression: if e1 then e2 else e3.
- ► Recall meaning: If e1 evaluates to a non-zero integer, the meaning of the expression is e2, otherwise e3
- Any ideas on how to write this as an operational semantics rule?

Difficulty: What happens depends on whether e1 evaluates to 0 or not.

- Difficulty: What happens depends on whether e1 evaluates to 0 or not.
- ➤ Solution: Write two rules, one for the case where e1 evaluates to 0 and one for the case whenre e1 evaluates to a non-zero integer.

- Difficulty: What happens depends on whether e1 evaluates to 0 or not.
- Solution: Write two rules, one for the case where e1 evaluates to 0 and one for the case whenre e1 evaluates to a non-zero integer.
- What if e1 evaluates to 0?

- Difficulty: What happens depends on whether e1 evaluates to 0 or not.
- Solution: Write two rules, one for the case where e1 evaluates to 0 and one for the case whenre e1 evaluates to a non-zero integer.
- What if e1 evaluates to 0?

$$\frac{E \vdash e_1 : 0}{E \vdash e_3 : e'}$$

$$\overline{E \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : e'}$$

▶ What if e1 evaluates to a non-zero integer?

▶ What if e1 evaluates to a non-zero integer?

$$E \vdash e_1$$
: non-zero integer $E \vdash e_2 : e'$ $E \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : e'$

▶ What if e1 evaluates to a non-zero integer?

$$\begin{array}{c} E \vdash e_1 : \mathsf{non\text{-}zero\ integer} \\ E \vdash e_2 : e' \\ \hline E \vdash \mathsf{if}\ e_1\ \mathsf{then}\ e_2\ \mathsf{else}\ e_3 : e' \end{array}$$

 Upshot: Can encode choice by giving multiple rules for same construct

What if e1 evaluates to a non-zero integer?

$$\begin{array}{c} E \vdash e_1 : \mathsf{non\text{-}zero\ integer} \\ E \vdash e_2 : e' \\ \hline E \vdash \mathsf{if}\ e_1\ \mathsf{then}\ e_2\ \mathsf{else}\ e_3 : e' \end{array}$$

- Upshot: Can encode choice by giving multiple rules for same construct
- But need to make sure at most one rule can apply at any point for deterministic semantics

▶ What if e1 evaluates to a non-zero integer?

$$\begin{array}{c} E \vdash e_1 : \mathsf{non\text{-}zero\ integer} \\ E \vdash e_2 : e' \\ \hline E \vdash \mathsf{if\ } e_1 \mathsf{\ then\ } e_2 \mathsf{\ else\ } e_3 : e' \end{array}$$

- Upshot: Can encode choice by giving multiple rules for same construct
- But need to make sure at most one rule can apply at any point for deterministic semantics
- Deterministic Semantics: Every program evaluates to at most one value

► Recall: In L, function definitions of the form fun f with x1,...,xn=e in... are equivalent to let f = lambda x1...lambda xn.e in ...

- ► Recall: In L, function definitions of the form fun f with x1,...,xn=e in... are equivalent to let f = lambda x1...lambda xn.e in ...
- ➤ To define the meaning of a function definition, we can either repeat the lambda and let binding rules in one rule or rewrite the function definition into let and lambda's and invoke the existing rules

- Recall: In L, function definitions of the form fun f with x1,...,xn=e in... are equivalent to let f = lambda x1...lambda xn.e in ...
- ➤ To define the meaning of a function definition, we can either repeat the lambda and let binding rules in one rule or rewrite the function definition into let and lambda's and invoke the existing rules
- We will do the latter:

$$\frac{E \vdash \text{ let } f = \text{ lambda } x_1.... \text{ lambda } x_n.e_1 \text{ in } e_2:e}{E \vdash \text{ fun } f \text{ with } x_1,...,x_n=e_1 \text{ in } e_2:e}$$

- ► Recall: In L, function definitions of the form fun f with x1,...,xn=e in... are equivalent to let f = lambda x1...lambda xn.e in ...
- ➤ To define the meaning of a function definition, we can either repeat the lambda and let binding rules in one rule or rewrite the function definition into let and lambda's and invoke the existing rules
- We will do the latter:

$$\dfrac{E \vdash \ \mathsf{let} \ f = \ \mathsf{lambda} \ x_1 \dots \ \mathsf{lambda} \ x_n.e_1 \ \mathsf{in} \ e_2 : e}{E \vdash \ \mathsf{fun} \ f \ \mathsf{with} \ x_1, \dots, x_n = e_1 \ \mathsf{in} \ e_2 : e}$$

This only works if there are no circular reductions!

► The trick we just used to give meaning to function definitions is also useful for giving meaning to variable-length expressions.

- ► The trick we just used to give meaning to function definitions is also useful for giving meaning to variable-length expressions.
- ► Consider the following grammar for a list of integers:

$$\begin{array}{ccc} S & \rightarrow & [E] \\ E & \rightarrow & \mathrm{int} \ E \mid \mathrm{int} \end{array}$$

- ► The trick we just used to give meaning to function definitions is also useful for giving meaning to variable-length expressions.
- ► Consider the following grammar for a list of integers:

$$\begin{array}{ccc} S & \rightarrow & [E] \\ E & \rightarrow & \operatorname{int} E \mid \operatorname{int} \end{array}$$

► Example strings in L(S): [3], [2 3 4], [1 3],...

- ► The trick we just used to give meaning to function definitions is also useful for giving meaning to variable-length expressions.
- ► Consider the following grammar for a list of integers:

$$\begin{array}{ccc} S & \rightarrow & [E] \\ E & \rightarrow & \operatorname{int} E \mid \operatorname{int} \end{array}$$

- ► Example strings in L(S): [3], [2 3 4], [1 3],...
- Suppose we want to define the meaning of a list of integers as their sum: How can we write operational semantics for this mini-language?

▶ Observation: Difficulty caused by unknown length of list

- Observation: Difficulty caused by unknown length of list
- ▶ Let's write operational semantics for a list of length 2:

- Observation: Difficulty caused by unknown length of list
- Let's write operational semantics for a list of length 2:

$$\vdash [i_1 \ i_2] : i_1 + i_2$$

- Observation: Difficulty caused by unknown length of list
- ▶ Let's write operational semantics for a list of length 2:

$$\frac{}{\vdash [i_1 \ i_2] : i_1 + i_2}$$

► Solution: Think recursively! The sum of a list of k integers can be obtained by removing the first integer, computing the sum of the remainder and adding the two values

- Observation: Difficulty caused by unknown length of list
- ▶ Let's write operational semantics for a list of length 2:

$$\vdash [i_1 \ i_2] : i_1 + i_2$$

- Solution: Think recursively! The sum of a list of k integers can be obtained by removing the first integer, computing the sum of the remainder and adding the two values
- ▶ This translates into two rules: Base case and inductive case

▶ Base case: List with one integer

▶ Base case: List with one integer

▶ Base case: List with one integer

$$\vdash [i]:i$$

▶ Inductive Case: List with at least two integers

▶ Base case: List with one integer

$$\overline{\vdash [i]:i}$$

▶ Inductive Case: List with at least two integers

$$\frac{\vdash [R] : i_2}{\vdash [i_1, R] : i_1 + i_2}$$

▶ Base case: List with one integer

$$\overline{\vdash [i]:i}$$

▶ Inductive Case: List with at least two integers

$$\frac{\vdash [R] : i_2}{\vdash [i_1, R] : i_1 + i_2}$$

▶ Upshot: To give semantics to variable-length expression, decompose recursively into inductive case(s) and base case(s)

▶ Base case: List with one integer

$$\overline{\vdash [i]:i}$$

▶ Inductive Case: List with at least two integers

$$\frac{\vdash [R] : i_2}{\vdash [i_1, R] : i_1 + i_2}$$

- Upshot: To give semantics to variable-length expression, decompose recursively into inductive case(s) and base case(s)
- Observe that it is possible to encode computation in this formalism, we will (briefly) see this again towards the end of the class

Alternative Semantics

We can also define the meaning of a list program as follows: Base case:

$$\overline{\ \vdash i:i}$$

Inductive case:

$$\frac{\vdash e_1 : i_1 \quad \vdash : e_2 : i_2}{\vdash e_1 + e_2 : i_1 + i_2}$$

Removing the brackets:

$$\frac{\vdash e:i}{\vdash [e]:i}$$

Alternative Semantics

▶ We can also define the meaning of a list program as follows: Base case:

$$\overline{\ \vdash i:i}$$

Inductive case:

$$\frac{\vdash e_1 : i_1 \quad \vdash : e_2 : i_2}{\vdash e_1 + e_2 : i_1 + i_2}$$

Removing the brackets:

$$\frac{\vdash e:i}{\vdash [e]:i}$$

Are these two semantics equivalent?

▶ Last time we only gave operational semantics for the application base case: Two expressions:

$$E \vdash e_1 : lambda \ x. \ e'_1$$
$$E \vdash e'_1[e_2/x] : e$$
$$E \vdash (e_1 \ e_2) : e$$

▶ Last time we only gave operational semantics for the application base case: Two expressions:

$$E \vdash e_1 : lambda \ x. \ e'_1$$

$$E \vdash e'_1[e_2/x] : e$$

$$E \vdash (e_1 \ e_2) : e$$

But the application can have any number of expressions in L. Example: (x y z) is a valid L expression with meaning ((x y) z)

► Last time we only gave operational semantics for the application base case: Two expressions:

$$E \vdash e_1 : lambda \ x. \ e'_1$$

$$E \vdash e'_1[e_2/x] : e$$

$$E \vdash (e_1 \ e_2) : e$$

- But the application can have any number of expressions in L. Example: (x y z) is a valid L expression with meaning ((x y) z)
- ► Solution: Write inductive case for more than two expressions!

▶ Last time we only gave operational semantics for the application base case: Two expressions:

$$E \vdash e_1 : lambda \ x. \ e'_1$$

$$E \vdash e'_1[e_2/x] : e$$

$$E \vdash (e_1 \ e_2) : e$$

- But the application can have any number of expressions in L. Example: (x y z) is a valid L expression with meaning ((x y) z)
- ► Solution: Write inductive case for more than two expressions!

$$E \vdash e_1 : \texttt{lambda} \ x.e_1'$$

$$E \vdash e_1'[e_2/x] : e$$

$$E \vdash (e \ R) : e'$$

$$E \vdash (e_1 \ e_2 \ R) : e'$$

▶ What about an application with one expression, such as (x)?

- ▶ What about an application with one expression, such as (x)?
- This is not an application

- ▶ What about an application with one expression, such as (x)?
- This is not an application
- Observe: L syntax allows this to indicate associativity and precedence

- ▶ What about an application with one expression, such as (x)?
- This is not an application
- Observe: L syntax allows this to indicate associativity and precedence
- Question: What is the meaning (operational semantics rule) for (x)?

- ▶ What about an application with one expression, such as (x)?
- ► This is not an application
- Observe: L syntax allows this to indicate associativity and precedence
- Question: What is the meaning (operational semantics rule) for (x)?
- Answer:

$$\frac{E \vdash e : e'}{E \vdash (e) : e'}$$

► Let's also take a brief look at semantics for some list operations:

- ▶ Let's also take a brief look at semantics for some list operations:
- Consider !e, which evaluated to the head of the list if e is a list and to e otherwise

- ▶ Let's also take a brief look at semantics for some list operations:
- Consider !e, which evaluated to the head of the list if e is a list and to e otherwise
- e is a list:

- Let's also take a brief look at semantics for some list operations:
- Consider !e, which evaluated to the head of the list if e is a list and to e otherwise
- e is a list:

$$\frac{E \vdash e : [e_1, e_2]}{E \vdash !e : e_1}$$

- Let's also take a brief look at semantics for some list operations:
- Consider !e, which evaluated to the head of the list if e is a list and to e otherwise
- e is a list:

$$\frac{E \vdash e : [e_1, e_2]}{E \vdash !e : e_1}$$

▶ e is not a list:

- Let's also take a brief look at semantics for some list operations:
- Consider !e, which evaluated to the head of the list if e is a list and to e otherwise
- e is a list:

$$\frac{E \vdash e : [e_1, e_2]}{E \vdash !e : e_1}$$

e is not a list:

$$\frac{E \vdash e : e_1 \ (e_1 \ \mathsf{not} \ \mathsf{a} \ \mathsf{list})}{E \vdash !e : e_1}$$

▶ What about e1@e2, which evaluated to the list [e1, e2]?

▶ What about e1@e2, which evaluated to the list [e1, e2]?

$$\frac{E \vdash e_1 : e_1'}{E \vdash e_2 : e_2'(e_2' \text{ not Nil})}$$
$$\frac{E \vdash e_1 @ e_2 : [e_1', e_2']}{E \vdash e_1 @ e_2 : [e_1', e_2']}$$

▶ What about e1@e2, which evaluated to the list [e1, e2]?

$$E \vdash e_1 : e'_1 E \vdash e_2 : e'_2(e'_2 \text{ not Nil}) E \vdash e_1@e_2 : [e'_1, e'_2]$$

e2 evaluates to Nil:

▶ What about e1@e2, which evaluated to the list [e1, e2]?

$$E \vdash e_1 : e'_1 E \vdash e_2 : e'_2(e'_2 \text{ not Nil}) E \vdash e_1@e_2 : [e'_1, e'_2]$$

e2 evaluates to Nil:

$$\frac{E \vdash e_1 : e_1'}{E \vdash e_2 : Nil}$$
$$\frac{E \vdash e_1 @ e_2 : e_1'}{E \vdash e_1 @ e_2 : e_1'}$$

Congratulations!

▶ You can now understand every page in the L reference manual.

Congratulations!

- ▶ You can now understand every page in the L reference manual.
- For PA3, you will need to refer to the operational semantics of L in the manual to implement your interpreter.

Congratulations!

- ▶ You can now understand every page in the L reference manual.
- ► For PA3, you will need to refer to the operational semantics of L in the manual to implement your interpreter.
- ► The manual is the official source for the semantics of L, not the reference interpreter!

► The rules we have written are known as large-step operational semantics

- ► The rules we have written are known as large-step operational semantics
- ► They are called large step because each rule completely evaluates an expression, taking as many steps as necessary.

- ► The rules we have written are known as large-step operational semantics
- They are called large step because each rule completely evaluates an expression, taking as many steps as necessary.
- Example: The plus rule

$$E \vdash e_1 : i_1 \text{ (integer)}$$

 $E \vdash e_2 : i_2 \text{ (integer)}$
 $E \vdash e_1 + e_2 : i_1 + i_2$

- ► The rules we have written are known as large-step operational semantics
- ► They are called large step because each rule completely evaluates an expression, taking as many steps as necessary.
- Example: The plus rule

$$E \vdash e_1 : i_1 \text{ (integer)}$$

 $E \vdash e_2 : i_2 \text{ (integer)}$
 $E \vdash e_1 + e_2 : i_1 + i_2$

▶ Here, we evaluate both e_1 and e_2 to compute the final value in one (big) step

- ► The rules we have written are known as large-step operational semantics
- ► They are called large step because each rule completely evaluates an expression, taking as many steps as necessary.
- Example: The plus rule

$$E \vdash e_1 : i_1 \text{ (integer)}$$

 $E \vdash e_2 : i_2 \text{ (integer)}$
 $E \vdash e_1 + e_2 : i_1 + i_2$

- ▶ Here, we evaluate both e_1 and e_2 to compute the final value in one (big) step
- ► Alternate formalism for giving semantics: small-step operational semantics

 Small-step operational semantics perform only one step of computation per rule invocation

- Small-step operational semantics perform only one step of computation per rule invocation
- You can think of SSOS as "decomposing" all operations that happen in one rule in LSOS into individual steps

- Small-step operational semantics perform only one step of computation per rule invocation
- You can think of SSOS as "decomposing" all operations that happen in one rule in LSOS into individual steps
- ▶ This means: Each rule in SSOS has at most one precondition

► SSOS are easiest understood by an example. Consider the integer plus in L written in SSOS:

- SSOS are easiest understood by an example. Consider the integer plus in L written in SSOS:
- ▶ Rule 1: Adding two integers

$$\overline{\langle c_1 + c_2, E \rangle \to \langle c_1 + c_2, E \rangle}$$

- SSOS are easiest understood by an example. Consider the integer plus in L written in SSOS:
- ▶ Rule 1: Adding two integers

$$\overline{\langle c_1 + c_2, E \rangle \to \langle c_1 + c_2, E \rangle}$$

Rule 2: Reducing first expression to an integer

$$\frac{\langle e_1, E \rangle \to \langle c, E' \rangle}{\langle e_1 + e_2, E \rangle \to \langle c + e_2, E' \rangle}$$

- SSOS are easiest understood by an example. Consider the integer plus in L written in SSOS:
- ▶ Rule 1: Adding two integers

$$\overline{\langle c_1 + c_2, E \rangle \to \langle c_1 + c_2, E \rangle}$$

Rule 2: Reducing first expression to an integer

$$\frac{\langle e_1, E \rangle \to \langle c, E' \rangle}{\langle e_1 + e_2, E \rangle \to \langle c + e_2, E' \rangle}$$

▶ Rule 3: Reducing second expression to an integer

$$\frac{\langle e, E \rangle \to \langle c_2, E' \rangle}{\langle c_1 + e, E \rangle \to \langle c_1 + c_2, E' \rangle}$$

SSOS in Action

Let's use these rules to prove what the value of (2+4)+6 is:

SSOS in Action

- \blacktriangleright Let's use these rules to prove what the value of (2+4)+6 is:
- $\qquad \qquad \langle (2+4)+6,_\rangle \rightarrow \langle 6+6,_\rangle \rightarrow \langle 12,_\rangle$

lackbox You can tell small-step operational semantics by the $\langle
angle
ightarrow$ notation

- lackbox You can tell small-step operational semantics by the $\langle
 angle
 ightarrow$ notation
- ▶ In contrast, LSOS have the ⊢: notation (at least in this class)

- lackbox You can tell small-step operational semantics by the $\langle
 angle
 ightarrow$ notation
- ▶ In contrast, LSOS have the ⊢: notation (at least in this class)
- SSOS are really (conditional) rewrite rules

- lacktriangle You can tell small-step operational semantics by the $\langle
 angle
 ightarrow$ notation
- ▶ In contrast, LSOS have the ⊢: notation (at least in this class)
- SSOS are really (conditional) rewrite rules
- lacktriangle The eta reduction of λ -calculus is a small-step semantics rule

Recall the large-step operational semantics:

$$E \vdash e_1 : lambda \ x. \ e'_1$$

$$E \vdash e'_1[e_2/x] : e$$

$$E \vdash (e_1 \ e_2) : e$$

▶ Recall the large-step operational semantics:

$$E \vdash e_1 : lambda \ x. \ e'_1$$

$$E \vdash e'_1[e_2/x] : e$$

$$E \vdash (e_1 \ e_2) : e$$

What are equivalent SSOS?

Recall the large-step operational semantics:

$$E \vdash e_1 : lambda \ x. \ e'_1$$

$$E \vdash e'_1[e_2/x] : e$$

$$E \vdash (e_1 \ e_2) : e$$

What are equivalent SSOS?

$$\frac{\langle e_1'[e_2/x], E \rangle \rightarrow \langle e_3, E' \rangle}{\langle (\mathsf{lambda}\ x.e_1'\ e_2), E \rangle \rightarrow \langle e_3, E' \rangle}$$

ightharpoonup Recall the large-step operational semantics, evaluating e_1 made a difference:

$$E \vdash e_1 : lambda \ x. \ e'_1$$

$$E \vdash e'_1[e_2/x] : e$$

$$E \vdash (e_1 \ e_2) : e$$

ightharpoonup Recall the large-step operational semantics, evaluating e_1 made a difference:

$$E \vdash e_1 : lambda \ x. \ e'_1$$

$$E \vdash e'_1[e_2/x] : e$$

$$E \vdash (e_1 \ e_2) : e$$

What about in SSOS?

ightharpoonup Recall the large-step operational semantics, evaluating e_1 made a difference:

$$E \vdash e_1 : lambda \ x. \ e'_1$$

$$E \vdash e'_1[e_2/x] : e$$

$$E \vdash (e_1 \ e_2) : e$$

- What about in SSOS?
- ▶ For SSOS, other rules will rewrite the expression until it matches the form $lambda \ x. \ e'_1$

First try:

$$\frac{\langle e_2, E[x \leftarrow e_1] \rangle \to \langle e_3, _\rangle}{\langle let \ x = e_1 \ in \ e_2, E \rangle \to \langle e_3, E \rangle}$$

First try:

$$\frac{\langle e_2, E[x \leftarrow e_1] \rangle \rightarrow \langle e_3, _\rangle}{\langle let \ x = e_1 \ in \ e_2, E \rangle \rightarrow \langle e_3, E \rangle}$$

▶ But we want eager semantics: We want to evaluate e_1 before adding to the environment.

First try:

$$\frac{\langle e_2, E[x \leftarrow e_1] \rangle \to \langle e_3, _\rangle}{\langle let \ x = e_1 \ in \ e_2, E \rangle \to \langle e_3, E \rangle}$$

- ▶ But we want eager semantics: We want to evaluate e_1 before adding to the environment.
- ▶ We want a rule that evaluates e_1 as much as possible and only then applies the let rule:

First try:

$$\frac{\langle e_2, E[x \leftarrow e_1] \rangle \to \langle e_3, _\rangle}{\langle let \ x = e_1 \ in \ e_2, E \rangle \to \langle e_3, E \rangle}$$

- ▶ But we want eager semantics: We want to evaluate e_1 before adding to the environment.
- ▶ We want a rule that evaluates e_1 as much as possible and only then applies the let rule:
- Notation: We will write \hat{e} to indicate that expression e has been evaluated as much as possible.

SSOS of let cont.

▶ Here are the two rules for eager let in SSOS:

SSOS of let cont.

▶ Here are the two rules for eager let in SSOS:

$$\frac{\langle e_2, E[x \leftarrow \widehat{e}_1] \rangle \to \langle e_2, _\rangle}{\langle let \ x = \widehat{e}_1 \ in \ e_2, E \rangle \to \langle e_3, E \rangle}$$
$$\frac{\langle e_1, E \rangle \to \langle \widehat{e}_1, E' \rangle}{\langle let \ x = e_1 \ in \ e_2, E \rangle \to \langle let \ x = \widehat{e}_1 \ in \ e_2, E' \rangle}$$

In big-step semantics, any rule may invoke any number of other rules in the hypothesis

- In big-step semantics, any rule may invoke any number of other rules in the hypothesis
- ► This means any derivation is a tree.

- In big-step semantics, any rule may invoke any number of other rules in the hypothesis
- This means any derivation is a tree.
- In small-step semantics, each rule only performs one step of computation

- In big-step semantics, any rule may invoke any number of other rules in the hypothesis
- This means any derivation is a tree.
- In small-step semantics, each rule only performs one step of computation
- This means any derivation is a line

Advantages of SSOS

 The main advantage of SSOS is that it allows us to distinguish between non-terminating computation and undefined computation

Advantages of SSOS

- The main advantage of SSOS is that it allows us to distinguish between non-terminating computation and undefined computation
- ► Recall: In BSOS, encountering an undefined expression, such as 3+"duck" got us "stuck", i.e., we could never satisfy the hypothesis to reach a conclusion

Advantages of SSOS

- The main advantage of SSOS is that it allows us to distinguish between non-terminating computation and undefined computation
- Recall: In BSOS, encountering an undefined expression, such as 3+"duck" got us "stuck", i.e., we could never satisfy the hypothesis to reach a conclusion
- In SSOS, undefined expressions also get stuck,i.e. no rule applies

▶ But, consider the following program: fun f with x = (f x) in (f 1).

- But, consider the following program: fun f with x = (f x) in (f 1).
 - ▶ In BSOS, we will "get stuck", i.e. we will never satisfy all hypothesis of the function invocation

- But, consider the following program: fun f with x = (f x) in (f 1).
 - ▶ In BSOS, we will "get stuck", i.e. we will never satisfy all hypothesis of the function invocation
 - In SSOS, we will have an infinite derivation line

- But, consider the following program: fun f with x = (f x) in (f 1).
 - ▶ In BSOS, we will "get stuck", i.e. we will never satisfy all hypothesis of the function invocation
 - In SSOS, we will have an infinite derivation line
- Upshot: SSOS allow us to distinguish non-termination from errors

► The other big difference is that we can quantify the cost of a computation with the number of steps in a small-step derivation

- ► The other big difference is that we can quantify the cost of a computation with the number of steps in a small-step derivation
- This allows us to talk about (some) notions of complexity when analyzing small-step semantics

- ► The other big difference is that we can quantify the cost of a computation with the number of steps in a small-step derivation
- ► This allows us to talk about (some) notions of complexity when analyzing small-step semantics
- Main disadvantage of small step semantics is that they are less intuitive and and usually harder to write

- ► The other big difference is that we can quantify the cost of a computation with the number of steps in a small-step derivation
- ► This allows us to talk about (some) notions of complexity when analyzing small-step semantics
- Main disadvantage of small step semantics is that they are less intuitive and and usually harder to write
- ► SSOS also always force one order, even if we would like to leave an order undefined

We have seen two formalisms for specifying meaning of programs

- We have seen two formalisms for specifying meaning of programs
- ► There are at least two more in common use: Denotational Semantics and Axiomatic Semantics

- We have seen two formalisms for specifying meaning of programs
- There are at least two more in common use: Denotational Semantics and Axiomatic Semantics
- However, operational semantics seem to be winning the "semantics wars"

- We have seen two formalisms for specifying meaning of programs
- There are at least two more in common use: Denotational Semantics and Axiomatic Semantics
- However, operational semantics seem to be winning the "semantics wars"
- Why: Easier to understand and easier to prove (most) properties with them