CS345H: Programming Languages

Lecture 8: Operational Semantics II

Thomas Dillig
We will discuss semantics of remining (interesting) L expressions
We will discuss semantics of remining (interesting) L expressions

Will look at one more formalism for specifying meaning today
We are still missing semantics for key constructs in the L programming language
We are still missing semantics for key constructs in the L programming language

Let’s start with the if expression: if e_1 then e_2 else e_3.
Back to Operational Semantics

- We are still missing semantics for key constructs in the L programming language.

- Let’s start with the *if expression*: if e1 then e2 else e3.

- Recall meaning: If e1 evaluates to a non-zero integer, the meaning of the expression is e2, otherwise e3.
We are still missing semantics for key constructs in the L programming language

Let’s start with the if expression: if e1 then e2 else e3.

Recall meaning: If e1 evaluates to a non-zero integer, the meaning of the expression is e2, otherwise e3

Any ideas on how to write this as an operational semantics rule?
Operational Semantics of Conditionals

- **Difficulty:** What happens depends on whether e_1 evaluates to 0 or not.
Operational Semantics of Conditionals

- **Difficulty:** What happens depends on whether e1 evaluates to 0 or not.

- **Solution:** Write two rules, one for the case where e1 evaluates to 0 and one for the case where e1 evaluates to a non-zero integer.
Operational Semantics of Conditionals

- **Difficulty**: What happens depends on whether e_1 evaluates to 0 or not.

- **Solution**: Write two rules, one for the case where e_1 evaluates to 0 and one for the case where e_1 evaluates to a non-zero integer.

- What if e_1 evaluates to 0?
Operational Semantics of Conditionals

- **Difficulty:** What happens depends on whether \(e_1 \) evaluates to 0 or not.

- **Solution:** Write two rules, one for the case where \(e_1 \) evaluates to 0 and one for the case where \(e_1 \) evaluates to a non-zero integer.

- **What if \(e_1 \) evaluates to 0?**

 \[
 \begin{align*}
 E & \vdash e_1 : 0 \\
 E & \vdash e_3 : e' \\
 E & \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : e'
 \end{align*}
 \]
Operational Semantics of Conditionals Cont.

- What if e_1 evaluates to a non-zero integer?
Operational Semantics of Conditionals Cont.

- What if e_1 evaluates to a non-zero integer?

$$
\begin{align*}
E & \vdash e_1 : \text{non-zero integer} \\
E & \vdash e_2 : e' \\
E & \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : e'
\end{align*}
$$

Upshot: Can encode choice by giving multiple rules for same construct.

But need to make sure at most one rule can apply at any point for deterministic semantics.

Deterministic Semantics: Every program evaluates to at most one value.
Operational Semantics of Conditionals Cont.

- What if e_1 evaluates to a non-zero integer?

\[
\begin{align*}
E & \vdash e_1 : \text{non-zero integer} \\
E & \vdash e_2 : e' \\
E & \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : e'
\end{align*}
\]

- **Upshot:** Can encode choice by giving multiple rules for same construct
What if e_1 evaluates to a non-zero integer?

\[
\begin{align*}
E & \vdash e_1 : \text{non-zero integer} \\
E & \vdash e_2 : e' \\
E & \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : e'
\end{align*}
\]

Upshot: Can encode choice by giving multiple rules for same construct

But need to make sure at most one rule can apply at any point for deterministic semantics
Operational Semantics of Conditionals Cont.

▶ What if e_1 evaluates to a non-zero integer?

\[
\begin{align*}
E & \vdash e_1 : \text{non-zero integer} \\
E & \vdash e_2 : e' \\
\hline
E & \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : e'
\end{align*}
\]

▶ **Upshot**: Can encode choice by giving multiple rules for same construct

▶ But need to make sure at most one rule can apply at any point for deterministic semantics

▶ **Deterministic Semantics**: Every program evaluates to at most one value
Operational Semantics of Function Definitions

► **Recall:** In L, function definitions of the form
 \[\text{fun } f \text{ with } x_1, \ldots, x_n = e \text{ in } \ldots \] are equivalent to
 \[\text{let } f = \lambda x_1 \ldots \lambda x_n. e \text{ in } \ldots \]
Operational Semantics of Function Definitions

- **Recall:** In L, function definitions of the form

 `fun f with x1,...,xn=e in...`

 are equivalent to

 `let f = lambda x1...lambda xn.e in ...`

- To define the meaning of a function definition, we can either repeat the lambda and let binding rules in one rule or rewrite the function definition into let and lambda’s and invoke the existing rules.

This only works if there are no circular reductions!
Operational Semantics of Function Definitions

- **Recall**: In L, function definitions of the form
 \[\text{fun } f \text{ with } x_1, \ldots, x_n = e \text{ in } \ldots \]
 are equivalent to
 \[\text{let } f = \text{lambda } x_1 \ldots \text{lambda } x_n . e \text{ in } \ldots \]

- To define the meaning of a function definition, we can either repeat the lambda and let binding rules in one rule or rewrite the function definition into let and lambda’s and invoke the existing rules.

- We will do the latter:
 \[
 \frac{E \vdash \text{let } f = \text{lambda } x_1 \ldots \text{lambda } x_n . e_1 \text{ in } e_2 : e}{E \vdash \text{fun } f \text{ with } x_1, \ldots, x_n = e_1 \text{ in } e_2 : e}
 \]
Operational Semantics of Function Definitions

- **Recall:** In L, function definitions of the form
 \[
 \text{fun } f \text{ with } x_1, \ldots, x_n = e \text{ in ... are equivalent to}
 \]
 \[
 \text{let } f = \text{lambda } x_1 \ldots \text{lambda } x_n . e \text{ in ...}
 \]

- To define the meaning of a function definition, we can either repeat the lambda and let binding rules in one rule or **rewrite** the function definition into let and lambda’s and invoke the existing rules.

- We will do the latter:
 \[
 \frac{E \vdash \text{let } f = \text{lambda } x_1 \ldots \text{lambda } x_n . e_1 \text{ in } e_2 : e}{E \vdash \text{fun } f \text{ with } x_1, \ldots, x_n = e_1 \text{ in } e_2 : e}
 \]

- This only works if there are no **circular** reductions!
The trick we just used to give meaning to function definitions is also useful for giving meaning to variable-length expressions.
The trick we just used to give meaning to function definitions is also useful for giving meaning to variable-length expressions.

Consider the following grammar for a list of integers:

\[
S \rightarrow [E] \\
E \rightarrow \text{int } E | \text{int}
\]
Operational Semantics of Variable-Length Expressions

- The trick we just used to give meaning to function definitions is also useful for giving meaning to variable-length expressions.

- Consider the following grammar for a list of integers:

 \[
 S \rightarrow [E] \\
 E \rightarrow \text{int } E \mid \text{int}
 \]

- Example strings in L(S): [3], [2 3 4], [1 3], …
Operational Semantics of Variable-Length Expressions

- The trick we just used to give meaning to function definitions is also useful for giving meaning to variable-length expressions.

- Consider the following grammar for a list of integers:

\[
S \rightarrow [E] \\
E \rightarrow \text{int } E \mid \text{int}
\]

- Example strings in $L(S)$: $[3], [2 \ 3 \ 4], [1 \ 3], \ldots$

- Suppose we want to define the meaning of a list of integers as their sum: How can we write operational semantics for this mini-language?
Observation: Difficulty caused by unknown length of list

Solution: Think recursively! The sum of a list of k integers can be obtained by removing the first integer, computing the sum of the remainder and adding the two values.

This translates into two rules: Base case and inductive case.
Observation: Difficulty caused by unknown length of list

Let’s write operational semantics for a list of length 2:
Operational Semantics of Variable-Length Expressions

- **Observation**: Difficulty caused by unknown length of list

- Let’s write operational semantics for a list of length 2:

\[\vdash [i_1 \; i_2] : i_1 + i_2 \]
Operational Semantics of Variable-Length Expressions

- **Observation:** Difficulty caused by unknown length of list

- **Let’s write operational semantics for a list of length 2:**

 \[\vdash [i_1 \ i_2] : i_1 + i_2 \]

- **Solution:** Think recursively! The sum of a list of k integers can be obtained by removing the first integer, computing the sum of the remainder and adding the two values.
Operational Semantics of Variable-Length Expressions

- **Observation:** Difficulty caused by unknown length of list

- Let’s write operational semantics for a list of length 2:

 \[\vdash [i_1 \ i_2] : i_1 + i_2 \]

- **Solution:** Think recursively! The sum of a list of \(k \) integers can be obtained by removing the first integer, computing the sum of the remainder and adding the two values

- This translates into two rules: Base case and inductive case
Operational Semantics of Variable-Length Expressions

- Base case: List with one integer
Operational Semantics of Variable-Length Expressions

- Base case: List with one integer

\[\vdash [i] : i \]
Operational Semantics of Variable-Length Expressions

- Base case: List with one integer
 \[\vdash [i] : i \]

- Inductive Case: List with at least two integers
Operational Semantics of Variable-Length Expressions

- **Base case:** List with one integer

\[\vdash [i] : i \]

- **Inductive Case:** List with at least two integers

\[\vdash [R] : i_2 \]
\[\vdash [i_1, R] : i_1 + i_2 \]

Upshot: To give semantics to variable-length expression, decompose recursively into inductive case(s) and base case(s).

Observe that it is possible to encode computation in this formalism, we will (briefly) see this again towards the end of the class.
Operational Semantics of Variable-Length Expressions

- **Base case:** List with one integer

 \[\vdash [i] : i \]

- **Inductive Case:** List with at least two integers

 \[\vdash [R] : i_2 \]

 \[\vdash [i_1, R] : i_1 + i_2 \]

- **Upshot:** To give semantics to variable-length expression, decompose recursively into inductive case(s) and base case(s)
Operational Semantics of Variable-Length Expressions

▸ Base case: List with one integer

\[
\vdash [i] : i
\]

▸ Inductive Case: List with at least two integers

\[
\vdash [R] : i_2
\]

\[
\vdash [i_1, R] : i_1 + i_2
\]

▸ Upshot: To give semantics to variable-length expression, decompose recursively into inductive case(s) and base case(s)

▸ Observe that it is possible to encode computation in this formalism, we will (briefly) see this again towards the end of the class
Alternative Semantics

- We can also define the meaning of a list program as follows:

 Base case:

 \[\vdash i : i \]

 Inductive case:

 \[\vdash e_1 : i_1 \quad \vdash e_2 : i_2 \]

 \[\vdash e_1 + e_2 : i_1 + i_2 \]

 Removing the brackets:

 \[\vdash e : i \]

 \[\vdash [e] : i \]
Alternative Semantics

We can also define the meaning of a list program as follows:

Base case:

\[
\vdash i : i
\]

Inductive case:

\[
\begin{align*}
\vdash e_1 : i_1 & \quad \vdash e_2 : i_2 \\
\vdash e_1 + e_2 : i_1 + i_2
\end{align*}
\]

Removing the brackets:

\[
\begin{align*}
\vdash e : i \\
\vdash [e] : i
\end{align*}
\]

Are these two semantics equivalent?
Operational Semantics of Application in L

- Last time we only gave operational semantics for the application base case: Two expressions:

\[
\begin{align*}
E \vdash e_1 : \text{lambda } x. \ e' \\
E \vdash e'_1[e_2/x] : e \\
\hline
E \vdash (e_1 \ e_2) : e
\end{align*}
\]

But the application can have any number of expressions in L. Example: \((x \ y \ z)\) is a valid L expression with meaning \(((x \ y) \ z)\).

Solution: Write inductive case for more than two expressions!
Operational Semantics of Application in L

- Last time we only gave operational semantics for the application base case: Two expressions:

\[
\begin{align*}
E \vdash e_1 : \text{lambda } x \cdot e'_1 \\
E \vdash e'_1[e_2/x] : e \\
\hline
E \vdash (e_1 e_2) : e
\end{align*}
\]

- But the application can have any number of expressions in L. Example: \((x \ y \ z)\) is a valid L expression with meaning \(((x \ y) \ z)\)
Operational Semantics of Application in L

- Last time we only gave operational semantics for the application base case: Two expressions:

$$
E \vdash e_1 : \text{lambda } x. \ e'_1 \\
E \vdash e'_1[e_2 / x] : e \\
\hline
E \vdash (e_1 e_2) : e
$$

- But the application can have any number of expressions in L. Example: $(x \ y \ z)$ is a valid L expression with meaning $((x \ y) \ z)$

- Solution: Write inductive case for more than two expressions!
Operational Semantics of Application in L

- Last time we only gave operational semantics for the application base case: Two expressions:

\[E \vdash e_1 : \text{lambda } x. e'_1 \]
\[E \vdash e'_1[e_2/x] : e \]
\[\frac{E \vdash (e_1 \ e_2) : e}{E \vdash (e_1 \ e_2) : e} \]

- But the application can have any number of expressions in L. Example: \((x \ y \ z)\) is a valid L expression with meaning \(((x \ y) \ z) \)

- Solution: Write inductive case for more than two expressions!

\[E \vdash e_1 : \text{lambda } x. e'_1 \]
\[E \vdash e'_1[e_2/x] : e \]
\[E \vdash (e \ R) : e' \]
\[\frac{E \vdash (e_1 \ e_2 \ R) : e'}{E \vdash (e_1 \ e_2 \ R) : e'} \]
Operational Semantics of Application in L

- What about an application with one expression, such as\((x)\)?
Operational Semantics of Application in L

- What about an application with one expression, such as \((x)\)?

- This is not an application
What about an application with one expression, such as \((x)\)?

This is not an application

Observe: L syntax allows this to indicate associativity and precedence
What about an application with one expression, such as \((x)\)?

This is not an application

Observe: L syntax allows this to indicate associativity and precedence

Question: What is the meaning (operational semantics rule) for \((x)\)?
Operational Semantics of Application in L

- What about an application with one expression, such as \((x)\)?
- This is not an application
- Observe: L syntax allows this to indicate associativity and precedence

- Question: What is the meaning (operational semantics rule) for \((x)\)?
- Answer:

\[
E \vdash e : e' \\
\frac{}{E \vdash (e) : e'}
\]
List Operations

- Let’s also take a brief look at semantics for some list operations:
List Operations

- Let’s also take a brief look at semantics for some list operations:

- Consider \(! e\), which evaluated to the head of the list if \(e \) is a list and to \(e \) otherwise
List Operations

- Let’s also take a brief look at semantics for some list operations:

- Consider `!e`, which evaluated to the head of the list if `e` is a list and to `e` otherwise

- `e` is a list:
List Operations

- Let’s also take a brief look at semantics for some list operations:

- Consider !e, which evaluated to the head of the list if e is a list and to e otherwise

- e is a list:

\[
\begin{align*}
E \vdash e : [e_1, e_2] \\
E \vdash \!e : e_1
\end{align*}
\]
Let’s also take a brief look at semantics for some list operations:

Consider \(!e\), which evaluated to the head of the list if \(e\) is a list and to \(e\) otherwise.

- \(e\) is a list:
 \[
 \frac{E \vdash e : [e_1, e_2]}{E \vdash !e : e_1}
 \]

- \(e\) is **not** a list:
List Operations

▶ Let’s also take a brief look at semantics for some list operations:

▶ Consider \(\mathtt{!e} \), which evaluated to the head of the list if \(e \) is a list and to \(e \) otherwise

▶ \(e \) is a list:

\[
\frac{E \vdash e : [e_1, e_2]}{E \vdash \mathtt{!e} : e_1}
\]

▶ \(e \) is not a list:

\[
\frac{E \vdash e : e_1 \ (e_1 \text{ not a list})}{E \vdash \mathtt{!e} : e_1}
\]
List Operations

- What about $e_1@e_2$, which evaluated to the list $[e_1, e_2]$?
List Operations

- What about \(e_1 @ e_2 \), which evaluated to the list \([e_1, e_2]\)?

\[
\begin{align*}
E & \vdash e_1 : e'_1 \\
E & \vdash e_2 : e'_2 \text{(} e'_2 \text{ not Nil)} \\
\hline
E & \vdash e_1 @ e_2 : [e'_1, e'_2]
\end{align*}
\]
List Operations

- What about $e_1@e_2$, which evaluated to the list $[e_1, e_2]$?

$$
\begin{align*}
E & \vdash e_1 : e'_1 \\
E & \vdash e_2 : e'_2 (e'_2 \text{ not } \text{Nil}) \\
E & \vdash e_1@e_2 : [e'_1, e'_2]
\end{align*}
$$

- e_2 evaluates to Nil:
List Operations

▶ What about $e_1@e_2$, which evaluated to the list $[e_1, e_2]$?

\[
E \vdash e_1 : e_1' \\
E \vdash e_2 : e_2' (e_2' \text{ not Nil}) \\
\hline
E \vdash e_1@e_2 : [e_1', e_2']
\]

▶ e_2 evaluates to Nil:

\[
E \vdash e_1 : e_1' \\
E \vdash e_2 : Nil \\
\hline
E \vdash e_1@e_2 : e_1'
\]
Congratulations!

- You can now understand every page in the L reference manual.
Congratulations!

- You can now understand every page in the L reference manual.
- For PA3, you will need to refer to the operational semantics of L in the manual to implement your interpreter.
Congratulations!

- You can now understand every page in the L reference manual.
- For PA3, you will need to refer to the operational semantics of L in the manual to implement your interpreter.
- The manual is the official source for the semantics of L, not the reference interpreter!
Operational Semantics

- The rules we have written are known as large-step operational semantics.
Operational Semantics

- The rules we have written are known as large-step operational semantics

- They are called large step because each rule completely evaluates an expression, taking as many steps as necessary.
Operational Semantics

- The rules we have written are known as **large-step operational semantics**

- They are called **large step** because each rule completely evaluates an expression, taking as many steps as necessary.

- Example: The plus rule

\[
\begin{align*}
E &\vdash e_1 : i_1 \text{ (integer)} \\
E &\vdash e_2 : i_2 \text{ (integer)} \\
E &\vdash e_1 + e_2 : i_1 + i_2
\end{align*}
\]
Operational Semantics

- The rules we have written are known as large-step operational semantics.

- They are called large step because each rule completely evaluates an expression, taking as many steps as necessary.

- Example: The plus rule

\[
\begin{align*}
E \vdash e_1 : i_1 \text{ (integer)} \\
E \vdash e_2 : i_2 \text{ (integer)} \\
\hline
E \vdash e_1 + e_2 : i_1 + i_2
\end{align*}
\]

- Here, we evaluate both \(e_1\) and \(e_2\) to compute the final value in one (big) step.
Operational Semantics

- The rules we have written are known as large-step operational semantics.

- They are called large step because each rule completely evaluates an expression, taking as many steps as necessary.

- Example: The plus rule

\[
\begin{align*}
E \vdash e_1 : i_1 \text{ (integer)} \\
E \vdash e_2 : i_2 \text{ (integer)} \\
\hline
E \vdash e_1 + e_2 : i_1 + i_2
\end{align*}
\]

- Here, we evaluate both \(e_1\) and \(e_2\) to compute the final value in one (big) step.

- Alternate formalism for giving semantics: small-step operational semantics.
Small-Step Operational Semantics

- Small-step operational semantics perform only one step of computation per rule invocation.
Small Step Operational Semantics

- Small-step operational semantics perform only one step of computation per rule invocation

- You can think of SSOS as “decomposing” all operations that happen in one rule in LSOS into individual steps
Small Step Operational Semantics

- Small-step operational semantics perform only one step of computation per rule invocation.

- You can think of SSOS as “decomposing” all operations that happen in one rule in LSOS into individual steps.

- This means: Each rule in SSOS has at most one precondition.
SSOS are easiest understood by an example. Consider the integer plus in L written in SSOS:
Small-step Operational Semantics

- SSOS are easiest understood by an example. Consider the integer plus in L written in SSOS:

- Rule 1: Adding two integers

\[
\langle c_1 + c_2, E \rangle \rightarrow \langle c_1 + c_2, E \rangle
\]
Small-step Operational Semantics

- SSOS are easiest understood by an example. Consider the integer plus in L written in SSOS:

- Rule 1: Adding two integers

\[
\langle c_1 + c_2, E \rangle \rightarrow \langle c_1 + c_2, E \rangle
\]

- Rule 2: Reducing first expression to an integer

\[
\langle e_1, E \rangle \rightarrow \langle c, E' \rangle
\]

\[
\langle e_1 + e_2, E \rangle \rightarrow \langle c + e_2, E' \rangle
\]
SSOS are easiest understood by an example. Consider the integer plus in L written in SSOS:

- **Rule 1: Adding two integers**

 \[
 \langle c_1 + c_2, E \rangle \rightarrow \langle c_1 + c_2, E \rangle
 \]

- **Rule 2: Reducing first expression to an integer**

 \[
 \langle e_1, E \rangle \rightarrow \langle c, E' \rangle
 \]

 \[
 \langle e_1 + e_2, E \rangle \rightarrow \langle c + e_2, E' \rangle
 \]

- **Rule 3: Reducing second expression to an integer**

 \[
 \langle e, E \rangle \rightarrow \langle c_2, E' \rangle
 \]

 \[
 \langle c_1 + e, E \rangle \rightarrow \langle c_1 + c_2, E' \rangle
 \]
SSOS in Action

Let’s use these rules to prove what the value of \((2 + 4) + 6\) is:
Let’s use these rules to prove what the value of $(2 + 4) + 6$ is:

\[
\langle (2 + 4) + 6, _ \rangle \rightarrow \langle 6 + 6, _ \rangle \rightarrow \langle 12, _ \rangle
\]
SSOS

- You can tell small-step operational semantics by the $\langle \rangle \rightarrow$ notation
SSOS

- You can tell small-step operational semantics by the $\langle \rangle \rightarrow$ notation

- In contrast, LSOS have the \vdash notation (at least in this class)
SSOS

- You can tell small-step operational semantics by the $\langle \rangle \rightarrow$ notation

- In contrast, LSOS have the \vdash notation (at least in this class)

- SSOS are really (conditional) rewrite rules
SSOS

- You can tell small-step operational semantics by the $\langle \rangle \rightarrow$ notation
- In contrast, LSOS have the \vdash notation (at least in this class)
- SSOS are really (conditional) rewrite rules
- The β reduction of λ-calculus is a small-step semantics rule
Recall the large-step operational semantics:

\[
\begin{align*}
E & \vdash e_1 : \text{lambda } x. \ e'_1 \\
E & \vdash e'_1[e_2/x] : e \\
\hline
E & \vdash (e_1 \ e_2) : e
\end{align*}
\]
SSOS of the Application

- Recall the large-step operational semantics:

\[
\begin{align*}
E &\vdash e_1 : \lambda x. e'_1 \\
E &\vdash e'_1[e_2/x] : e \\
\hline
E &\vdash (e_1 e_2) : e
\end{align*}
\]

- What are equivalent SSOS?
SSOS of the Application

- Recall the large-step operational semantics:

\[
\begin{align*}
E \vdash e_1 : \text{lambda } x. e'_1 \\
E \vdash e'_1[e_2/x] : e \\
\hline
E \vdash (e_1 e_2) : e
\end{align*}
\]

- What are equivalent SSOS?

\[
\begin{align*}
\langle e'_1[e_2/x], E \rangle & \rightarrow \langle e_3, E' \rangle \\
\langle (\text{lambda } x.e'_1 e_2), E \rangle & \rightarrow \langle e_3, E' \rangle
\end{align*}
\]
Recall the large-step operational semantics, evaluating e_1 made a difference:

\[
\begin{align*}
E \vdash e_1 &: \text{lambda } x. \ e'_1 \\
E \vdash e'_1[e_2/x] &: e \\
E \vdash (e_1 \ e_2) &: e
\end{align*}
\]

What about in SSOS?

For SSOS, other rules will rewrite the expression until it matches the form $\text{lambda } x. \ e'_1$.
SSOS of the Application

- Recall the large-step operational semantics, evaluating e_1 made a difference:

 \[
 \frac{E \vdash e_1 : \text{lambda } x. \ e'_1}{E \vdash e'_1[e_2/x] : e} \quad \frac{E \vdash (e_1 \ e_2) : e}
 \]

- What about in SSOS?
SSOS of the Application

▶ Recall the large-step operational semantics, evaluating e_1 made a difference:

$$
\begin{align*}
E \vdash e_1 : & \text{lambda } x. \ e'_1 \\
E \vdash e'_1[e_2/x] : & e \\
\hline
E \vdash (e_1 \ e_2) : & e
\end{align*}
$$

▶ What about in SSOS?

▶ For SSOS, other rules will rewrite the expression until it matches the form $\text{lambda } x. \ e'_1$
First try:

\[
\langle e_2, E[x ← e_1] \rangle \rightarrow \langle e_3, _ \rangle
\]

\[
\langle \text{let } x = e_1 \text{ in } e_2, E \rangle \rightarrow \langle e_3, E \rangle
\]
SSOS of let

▶ First try:

\[
\frac{\langle e_2, E[x \leftarrow e_1]\rangle \rightarrow \langle e_3, -\rangle}{\langle let \ x = e_1 \ in \ e_2, E\rangle \rightarrow \langle e_3, E\rangle}
\]

▶ But we want **eager** semantics: We want to evaluate \(e_1 \) before adding to the environment.
SSOS of let

- First try:

\[
\frac{\langle e_2, E[x \leftarrow e_1] \rangle \rightarrow \langle e_3, _ \rangle}{\langle \text{let } x = e_1 \text{ in } e_2, E \rangle \rightarrow \langle e_3, E \rangle}
\]

- But we want **eager** semantics: We want to evaluate \(e_1 \) before adding to the environment.

- We want a rule that evaluates \(e_1 \) as much as possible and only then applies the let rule:
SSOS of let

- First try:
 \[
 \langle e_2, E[x \leftarrow e_1] \rangle \rightarrow \langle e_3, _ \rangle \\
 \langle \text{let } x = e_1 \text{ in } e_2, E \rangle \rightarrow \langle e_3, E \rangle
 \]

- But we want **eager** semantics: We want to evaluate \(e_1 \) before adding to the environment.

- We want a rule that evaluates \(e_1 \) as much as possible and only then applies the let rule:

- **Notation:** We will write \(\widehat{e} \) to indicate that expression \(e \) has been evaluated as much as possible.
SSOS of let cont.

- Here are the two rules for eager let in SSOS:
Here are the two rules for eager let in SSOS:

\[
\begin{align*}
\langle e_2, E[x \leftarrow \hat{e}_1] \rangle & \rightarrow \langle e_2, _ \rangle \\
\langle \text{let } x = \hat{e}_1 \text{ in } e_2, E \rangle & \rightarrow \langle e_3, E \rangle \\
\langle e_1, E \rangle & \rightarrow \langle \hat{e}_1, E' \rangle \\
\langle \text{let } x = e_1 \text{ in } e_2, E \rangle & \rightarrow \langle \text{let } x = \hat{e}_1 \text{ in } e_2, E' \rangle
\end{align*}
\]
Small-step vs. Big-step Semantics

- In big-step semantics, any rule may invoke any number of other rules in the hypothesis.
Small-step vs. Big-step Semantics

- In big-step semantics, any rule may invoke any number of other rules in the hypothesis
- This means any derivation is a tree.
Small-step vs. Big-step Semantics

- In big-step semantics, any rule may invoke any number of other rules in the hypothesis.
- This means any derivation is a tree.
- In small-step semantics, each rule only performs one step of computation.
Small-step vs. Big-step Semantics

- In big-step semantics, any rule may invoke any number of other rules in the hypothesis.
- This means any derivation is a tree.
- In small-step semantics, each rule only performs one step of computation.
- This means any derivation is a line.
Advantages of SSOS

- The main advantage of SSOS is that it allows us to distinguish between non-terminating computation and undefined computation.
Advantages of SSOS

▶ The main advantage of SSOS is that it allows us to distinguish between non-terminating computation and undefined computation.

▶ Recall: In BSOS, encountering an undefined expression, such as 3+"duck" got us “stuck”, i.e., we could never satisfy the hypothesis to reach a conclusion.
Advantages of SSOS

- The main advantage of SSOS is that it allows us to distinguish between non-terminating computation and undefined computation.

- Recall: In BSOS, encountering an undefined expression, such as 3+"duck" got us “stuck”, i.e., we could never satisfy the hypothesis to reach a conclusion.

- In SSOS, undefined expressions also get stuck, i.e. no rule applies.
Advantages of SSOS Cont.

- But, consider the following program: `fun f with x = (f x) in (f 1).`
Advantages of SSOS Cont.

- But, consider the following program: `fun f with x = (f x) in (f 1).
 - In BSOS, we will “get stuck”, i.e. we will never satisfy all hypothesis of the function invocation.
Advantages of SSOS Cont.

- But, consider the following program:
 \[
 \text{fun } f \text{ with } x = (f x) \text{ in } (f \ 1).
 \]
 - In BSOS, we will “get stuck”, i.e. we will never satisfy all hypothesis of the function invocation

- In SSOS, we will have an infinite derivation line
Advantages of SSOS Cont.

> But, consider the following program: \texttt{fun f with x = (f x) in (f 1)}.
>
> In BSOS, we will “get stuck”, i.e. we will never satisfy all hypothesis of the function invocation

> In SSOS, we will have an infinite derivation line

> **Upshot:** SSOS allow us to distinguish non-termination from errors
The other big difference is that we can quantify the cost of a computation with the number of steps in a small-step derivation.
Big vs. Small-Step Semantics

- The other big difference is that we can quantify the cost of a computation with the number of steps in a small-step derivation.

- This allows us to talk about (some) notions of complexity when analyzing small-step semantics.
Big vs. Small-Step Semantics

- The other big difference is that we can quantify the cost of a computation with the number of steps in a small-step derivation.

- This allows us to talk about (some) notions of complexity when analyzing small-step semantics.

- Main disadvantage of small step semantics is that they are less intuitive and usually harder to write.
Big vs. Small-Step Semantics

- The other big difference is that we can quantify the cost of a computation with the number of steps in a small-step derivation.

- This allows us to talk about (some) notions of complexity when analyzing small-step semantics.

- Main disadvantage of small step semantics is that they are less intuitive and usually harder to write.

- SSOS also **always** force one order, even if we would like to leave an order undefined.
Conclusion

▶ We have seen two formalisms for specifying meaning of programs
Conclusion

- We have seen two formalisms for specifying meaning of programs
- There are at least two more in common use: Denotational Semantics and Axiomatic Semantics
Conclusion

- We have seen two formalisms for specifying meaning of programs

- There are at least two more in common use: Denotational Semantics and Axiomatic Semantics

- However, operational semantics seem to be winning the “semantics wars”
Conclusion

- We have seen two formalisms for specifying meaning of programs

- There are at least two more in common use: Denotational Semantics and Axiomatic Semantics

- However, operational semantics seem to be winning the “semantics wars”

- Why: Easier to understand and easier to prove (most) properties with them