
CS345H: Programming Languages

Lecture 9: Principles of Typing

Thomas Dillig

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 1/29

Outline

I We will talk about types

I What types compute

I Why types are useful

I Brief survey of types in the real world

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 2/29

Motivation

I When writing programs, everything is great as long as the
program works.

I Unfortunately, this is usually not the case

I Programs crash, don’t compute what we want them to
compute, etc.

I This is a big problem: Arguably, the biggest problem software
faces today

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 3/29

Software Correctness

I We would really want to prove that software has the
properties we care about

I And in some sense, we seem to have all the ingredients:
I We have a formal understanding of syntax

I We have a rigorous mathematic notation to express meaning of
programs

I We even did some proofs in class showing that a small toy
program must evaluate to a certain integer

I So what is the problem?

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 4/29

Software Correctness Cont.

I Problem: Rice’s theorem. Any non-trivial property about a
Turing machine is undecidable

I This means that we can never give an algorithm, that for all
programs can decide if this program has an error on some
inputs.

I What can we do?

I Give up?

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 5/29

One Approach: Change the Language

I For some properties, we can formulate language rules such
that we can detect all errors of this kind before running the
program.

I Goal is to remove one source of error from the run-time
behavior of programs

I Example: Scoping

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 6/29

1

Dynamic Scope

I In dynamic scoping, when you use an identifier, it is bound to
the most recently defined identifier

I This is dynamic concept; i.e., you in general only know at
run-time what variable a name refers to

I Example:
fun f with x = x+y in let y = 3 in (f 2)

I Dynamically scoped languages: LISP, Perl, L

I Dynamic scoping means that you cannot check if identifiers
are valid until run-time!

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 7/29

Static Scope

I To avoid this kind of run-time error, we bind every identifier
to the closes source code location that defines an identifier
with this name

I This means we can check that all identifiers exist at compile
time, before running the program

I Example: void foo(int x) {

int y = x;

int x = 3;

int z = x; }

I Languages with static scoping: C, C++, Java, ML, ...

I Upshot: Can avoid one kind of run-time error by changing the
language rules

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 8/29

Dynamic vs. Static Scoping

I Is some cases, changing the rules works well and is the right
answer

I Static scoping is such an example.

I While it restricts the kinds of programs you can write, it has
another big benefit: Modularity

I With static scope, the behavior of a piece of code is
independent of its context, making reuse easier.

I But changing the rules only works in a few cases. What can
we do about all the other sources of software errors?

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 9/29

Big Idea

I Big Idea: Just because we cannot prove something about the
original program does not mean we cannot prove something
about an abstraction of the program.

I Strategy: In addition to the operational semantics, we will
also define abstract semantics that will overapproximate the
states a program is in

I Example: In L, the operational semantics compute a concrete
integer, string or list, while our abstract semantics only
compute the if the result is of kind integer, string or list.

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 10/29

Abstraction

I Trick to defining a useful abstraction: Be sure that anything
about this abstraction is decidable!

I Consider L and the simple types Int, String, List

I Claim: The abstract value of any expression is decidable

I In other words, we can give an always terminating algorithm
for any L program to decide if it evaluates to a String, Int,
and List

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 11/29

Abstraction

I Of course, any abstraction will be less precise than the
program

I One popular abstraction: types

I Let’s assume we have types Int and String

I Example: let x = "duck" in x

I Operational semantics yield concrete value "duck"

I Abstract semantics that only differentiate the kind (or type)
of the expression yield: String

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 12/29

2

Abstraction

I But we don’t just want any abstraction, we need abstractions
that overapproximate the result of the concrete program

I Recall the example: let x = "duck" in x

I Abstract value String overapproximates "duck" since
"duck" is a kind of string

I On the other hand, abstract value Int does not
overapproximate "duck".

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 13/29

Soundness

I Specifically, we only care about abstract semantics that are
sound

I Soundness means that for any program: If we evaluate it
under concrete semantics (operational semantics) and our
abstract semantics, the abstract value obtained
overapproximates the concrete value.

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 14/29

Soundness is Useful

I The reason we only care about sound abstract semantics is
the following:

I Theorem: If some abstract semantics are sound and an
expression if of abstract value x , then its concrete type y is
always part of the abstract value x .

I Why is this useful?

I This means that if a program has no error in the abstract
semantics, it is guaranteed not to have an error in the
concrete semantics.

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 15/29

Cost of Abstraction

I But using an abstraction comes at a cost:

I What do we know if a a program has an error in the abstract
semantics?

I Nothing. We only know that the program may have an error
(or not)

I If under some abstract semantics a program has an error, but
the program in fact never has this error under concrete
semantics, we say this is a false positive

I Finding the right abstractions is key! Abstraction must match
properties of interest to be proven.

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 16/29

Types

I In this class, we will focus on one kind of abstraction: types

I This means abstract values are the types in the language

I What is a type? An abstract value representing an (usually)
infinite set of abstract values

I Question: For proving what kind of properties are types as
abstract values useful?

I Answer: To avoid run-time type errors!

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 17/29

Untyped Languages
I Before we get into types...

I There languages that are untyped

I Example: Assembly language

I lw $acc $SP-4 will succeed even if $SP does not store a
pointer

I Untyped ⇒ fun memory corruption and undefined semantics if
something goes wrong

I We call a language where any type error will be detected
(either at run time or compile time) type-safe.

I Important Point: It is impossible to define meaning of non
type-safe languages

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 18/29

3

Dynamically Typed Languages

I Some languages, such as L, are perfectly happy to interpret
programs with type errors.

I Example:4+"duckling"

I But the type error is still detected at run-time.

I This means that the interpreter or compiler must check the
type of every expression and abort if types do not match.

I This strategy is known as dynamic typing.

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 19/29

Static Typing

I Strategy taken by statically typed language:
I You declare the type on every expression (or the compiler

infers it)

I If types of expressions don’t match, compiler refuses to
compile your code

I In other words, if for some expression the type the compiler
computes includes some value that could cause an error, the
compiler rejects it!

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 20/29

Static Typing Cont.

I Big advantage of static typing: Error are detected before
running the program!

I Disadvantage: Not every static type error corresponds to a
run-time error

I Why? Types are an abstraction! We trade decidability for
false positives.

I Consider the following L program:
if 0 then 1 else "duck"+4

I This program does not have a run-time error

I But it has a static type error!

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 21/29

The Type Wars

I Big and still ongoing debate on static vs. dynamic typing
today

I Languages with dynamic types: Python, PHP, JavaScript, L

I Languages with static types: Java, OCaml, C, C++

I Advantages of dynamic typing: Rapid prototyping, more
correct programs are allowed

I Advantages of static typing: No type errors at run-time

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 22/29

The Type Wars cont.

I Most development uses statically typed languages today.

I But typically, languages include “escape-hatch” for
programmers to opt-out of static checking in form of casts

I It is unclear whether this is the best of both worlds or the
worst of both worlds!

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 23/29

Type checking vs. Type inference

I We saw earlier that types are just a kind of abstract value

I Two strategies to compute types:

1. Ask the programmer

2. Compute types of expressions from the known types of
concrete values.

I Most popular languages use strategy (1), known as type
checking

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 24/29

4

Type Checking

I Type checking: The programmer provides some types
(typically, every variable) and the compiler complains if some
types are inconsistent.

I Languages with type checking: C, C++, Java, ...

I We will (formally) study type checking first.

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 25/29

Type Inference

I In languages with type inference, you don’t have to write any
types!

I The compiler automatically computes the “best” type of every
expression and reports an error if the computed types are not
compatible

I Very cool and intriguing idea. We will learn exactly how it
works in a few lectures

I There are languages with this feature: ML, Caml, Haskell, Go

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 26/29

Type checking

I When type checking, we first add syntax for types to a
language.

I Let’s start with the following toy language:

S → integer | string | identifier
| S1 + S2 | S1 :: S2
| let id : τ = S1 in S2

τ → Int | String

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 27/29

Operational Semantics

integer i

E ` i : i

string s

E ` s : s

identifier id

E ` id : E (id)

E ` S1 : i1
E ` S2 : i2

E ` S1 + S2 : i1 + i2

E ` S1 : s1
E ` S2 : s2

E ` S1 :: S2 : concat(s1, s2)

E ` S1 : e1
E [x ← e1] ` S2 : e2

E ` let id : τ = S1 in S2 : e2

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 28/29

Types

integer i

T ` i : Int

string s

T ` s : String

identifier id

T ` id : T (id)

T ` S1 : Int
T ` S2 : Int

T ` S1 + S2 : Int

T ` S1 : String
T ` S2 : String

T ` S1 :: S2 : String

T ` S1 : τ1
τ = τ1
T [x ← τ] ` S2 : τ3

T ` let id : τ = S1 in S2 : τ3

Thomas Dillig, CS345H: Programming Languages Lecture 9: Principles of Typing 29/29

5

