
The L Programming Language

Reference Manual

CS 345H
UT Austin

c©Thomas Dillig, 2012-2016

(2016/08/28 at 11:32:13)

1 Introduction

This manual describes the L programming language, which is a simple, func-
tional language small enough that a complete interpreter for L can be imple-
mented in a semester-long course. The programming language is similar in na-
ture to the untyped λ-calculus, but extends the λ-calculus with constructs such
as let bindings and named functions to make it more convenient to program
in L. The language is also very similar to real-world functional programming
languages, such as Lisp.

This manual gives an informal overview of the language, describes its syntax,
and gives precise semantics to the language. At the beginning of the semester,
students should only focus on the informal discussion of L (Sections 2 and 3).
Section 5 formally describing L’s syntax should be studied as we discuss lexing,
context-free grammars, and parsing in lecture. Similarly, students should only
read Section 6 after we discuss operational semantics in lecture.

2 Informal Description of L

An L program is simply an expression, and executing the program is equivalent
to evaluating the expression. For example, the simple expression

3

is a valid L program, and the value of this program is the integer 3.
The most basic expressions in L are integer constants and string constants,

such as “cs345”. More complicated integer expressions can be formed by using
binary arithmetic operators, such as +, *, -, and /. For example,

(3+6-1)*2

1

is a valid L expression with value 16.
Strings in the L language can also be concatenated using the + operator. For

example, the L expression

"cs" + "345"

evaluates to the string constant ‘‘cs345’’.
Conditional expressions in L are of the form:

if e1 then e2 else e3

If the expression e1 is non-zero, the value of the whole if expression is the value
of expression e2, otherwise it is the value of e3. For example,

if 5-3-2 then "yes" else "no"

evaluates to the string constant ‘‘no’’ since the expression 5-3-2 evaluates
to 0. To allow more interesting if expressions, L also allows comparing two
expressions using the logical operators =, <> <, <=, >, >=, &, |. The equals
(=) and not-equals (<>) operator can be applied to both string and integer
expressions. The expression e1 = e2 evaluates to 1 if e1 and e2 have the same
value, and to 0 otherwise. Similarly, the expression e1 <> e2 evaluates to 1 if
e1 and e2 evaluate to different values and to 0 otherwise. As an example, the
expression

1+3 = 2+2

evaluates to 1, since the result of evaluating 1+3 and 2+2 yield the same value.
Similarly, the expression

"cs" + "345" <> "cs345"

evaluates to 0, since ‘‘cs’’ + ‘‘345’’ evaluates to ‘‘cs345’’.
The comparison operators <, <=, > and >= only apply to integer expres-

sions. The expression e1 op e2 where op is <, <=, > or >= evaluates to 1 if e1
is less than, less than or equal to, greater than, or greater than or equal to e2

respectively, and to 0 otherwise. For example,

3+5 < 7

evaluates to 0, and the expression

"cs243" < "cs345"

yields the run-time error

Run-time error in expression ("cs243" < "cs345")

Binop < cannot be applied to strings

2

since the operator < cannot be applied to string expressions.
The only other logical operators in L are & and |, which also only apply to

integer expressions. The expression e1 & e2 evaluates to 1 if e1 and e2 both
evaluate to non-zero integers, and to 0 otherwise. Similarly, e1 | e2 evaluates
to 1 if either e1 or e2 (or both) evaluate to a non-zero value, and to 0 otherwise.
For example, the expression

if (3+4 < 10) & ("cs"+"345" <> "cs310") then "yes" else 0

evaluates to ‘‘yes’’ since the expression 3+4 < 10 and "cs"+"345" <> "cs310"

both evaluate to 1.

2.1 Let Bindings

Let bindings in L allow us to name and reuse expressions. Specifically, an
expression of the form

let x = e1 in e2

binds the value of e1 to identifier x and evaluates e2 under this binding. The
expression e2 is referred to as the body of the let expression, and e1 is called
the initializer. The value of the let expression is the result of evaluating e2.
For example,

let x = 3+5 in x-2

evaluates to 6, while the expression

let x = 3+5 in x+y

yields the run-time error:

Run-time error in expression y

Identifier y is not bound in current context

since the identifier y is not bound in the body of the let expression.
Let expressions in L can be arbitrarily nested. For example, consider the

nested let expressions:

let x = 3+5 in

let y = 2*x in

y+x

This is a valid L expression and evaluates to 24. Observe that the body of
the first let expression is let y = 2*x in y+x while the body of the second
(nested) let expression is y+x. As another example, consider the nested let
expression:

let x = let x = 3 in

x+1 in x

3

evaluates to 4. The initializer for the first (outer-level) let expression is let x=3

in x+1, which evaluates to 4. Thus, the value of x in the body of the outer let
expression is 4. As a final example of let expressions, consider:

let x = 2 in

let x = 3 in

x

evaluates to 3, since each identifier refers to the most recently bound value.

2.2 Lambda Expressions and Applications

As in λ-calculus, L also provides lambda expressions of the form:

lambda x1, ..., xn. e

For example, the L expression

lambda x, y. x+y

corresponds to an unnamed function that takes two arguments x and y and
evaluates their sum. The above L expression is equivalent to the L expression:

lambda x. lambda y. x+y

The transformation from the first lambda expression lambda x, y. x+y to
the second expression lambda x. lambda y. x+y is known as currying.

Of course, for lambda expressions to be useful, we also need to be able
to apply arguments to lambda abstractions. Application in L corresponds to
expressions of the form (e1 e2 ...en). Specifically, if e1 is an expression of
the form lambda x2, ...xn. e3, the expression e1 e2 ...en evaluates e3

with e2 bound to x2, e3 bound to x3 and so on. For example, the application
expression

(lambda x, y. x+y 6 7)

evaluates to 13.
As a more interesting example, consider the application expression

(lambda x, y. x+y 6)

which evaluates to the lambda expression

lambda y. (6 + y)

This example illustrates an interesting feature of L: Expressions in L do not
have to evaluate to constants; they can be partially evaluated functions, such as
lambda y. (6 + y) in this example.

Here, we highlight two possible mistakes one can make using application
expressions in L. First of all, observe that the expression

4

(lambda x. x) 4

is not a syntactically valid L expression, since it is not correctly parenthesized,
and will yield a parse error. The correct way of writing this expression is

(lambda x. x 4)

As a second caveat, the application expression

((let x =2 in x) 3)

is a syntactically valid L expression but will yield the run-time error:

Run-time error in expression (let x = 2 in x 3)

Only lambda expressions can be applied to other expressions

The problem here is that the first expression e1 in the application (e1 e2) must
evaluate to a lambda expression. On the other hand, the following expression

let x = lambda y. y in

(x 3)

is both syntactically and semantically valid and evaluates to 3.
Interesting aspects of L arise from the interaction between let expressions and

lambda expressions, the combination of which allows us to conveniently define
recursive functions. As an example, consider the following valid L program:

let f = lambda n. if n=0 then 1 else n* (f (n-1)) in

f 4

The let expression binds variable f to a recursive function for computing facto-
rial, and thus, the expression f 4 in the body evaluates to 4!, i.e., 24.

Observe that, unlike λ-calculus, L allows writing “naturally recursive” ex-
pressions such as the factorial function above. Specifically, it is legal in L to
refer to the name of a let bound function in the body of the let expression.

2.3 Function Definitions

In addition to lambda expressions, which correspond to anonymous function
definitions, the L language also makes it possible to define named functions
using the syntax:

fun f with x1, ... xn = e in e’

Here f is the name of the function being defined, x1, ...xn are the arguments
of function f, and e is the body of function f. The value of the expression is
the result of evaluating e’ where e’ may refer to function f.

Named function definitions of this form are in fact only “syntactic sugar” in
L. That is, they merely provide a more convenient way to write expressions that
can already be expressed using other constructs in the language. Specifically,
the function definition

5

fun f with x1, ... xn = e in e’

is in fact identical to the following let expression:

let f = lambda x1, ... xn. e in e’

To illustrate how to use named function definitions, here is an alternative
way of writing a program that computes the factorial of 4:

fun fact with n = if n=0 then 1 else n* (fact (n-1)) in

fact 4

Here is another example that illustrates the use of named functions in L:

fun even with x = if x=0 then 1 else (odd x-1) in

fun odd with x = if x=0 then 0 else (even x-1) in

(odd 7)

This L program evaluates to 1, since 7 is an odd number. Observe that functions
even and odd are mutually recursive; that is, these two functions are defined in
terms of each other.

2.4 Lists

In addition to integers and strings, the L language also supports lists. A list in
L is a general data structure consisting of a head and tail. Head refers to the
first element in the list, while the tail refers to the remaining elements in the
list. For example, the head of the list [1, 2, 3] is the integer 1, and its tail is
another list [2, 3].

L supports the following list operations:

• isNil: The expression isNil list evaluates to 1 if list is an empty
list, and 0 otherwise.

• e1@e2: The expression e1@e2 evaluates to a new list with head corre-
sponding to the value of e1 and tail corresponding to the value of e2.

• !e: The expression !e yields the head of the list if e evaluates to a list, and
the value e otherwise. For example, !(2@3) evaluates to 2, and !’’abc’’

evaluates to ‘‘abc’’.

• #e: The expression #e yields the tail of the list if e evaluates to a list, and
Nil otherwise. For example, #(2@3) evaluates to 3, #(1@2@3) evaluates
to [2, 3] and #2 evaluates to Nil.

To further illustrate lists in L, we consider some examples:

fun length with list =

if isNil list then 0 else (length #list)+1

in

(length 1@2@2@1)

6

Here, we define a function length to compute the number of elements in a list
and use this function to determine the size of the list [1, 2, 2, 1], which
evaluates to 4.

Here is another list function to concatenate two lists:

fun cat with l1, l2 =

if isNil l1 then l2 else

!l1@(cat #l1 l2)

in

(cat 1@2@3@4 5@6)

This L program evaluates to the list [1,2,3,4,5,6].
As a final example, here is a program that adds n to every element in a list:

fun add with l, n =

if isNil #l then l+n else

let hd = !l in

let tl = #l in

(hd+n)@(add tl n)

in

(add 1@2@3 2)

This program evaluates to the list [3,4,5].

2.5 Input Output in L

L also provides basic operators for performing input/output:

• print: The expression print e prints the value of expression e on the
console and evaluates to 0. For example,

print ‘‘a’’+‘‘bc’’

prints ‘‘abc’’ on the console and evaluates to 0; the expression

print (lambda x,y. x+y 2)

prints

lambda y. (2 + y)

and evaluates to 0. As a final example, the expression

let x = print (lambda x,y. x+y 2) in x+1

7

prints lambda y.(2 + y) and evaluates to 1.

• readInt: The expression readInt reads the integer entered by the user
and evaluates to this integer value. If the value entered by the user is not
an integer, then the expression evaluates to 0.

• readString: The expression readString reads the string entered by the
user and evaluates to this string constant. If the value entered by the user
is not a string constant, then the expression evaluates to the empty string.

2.6 Comments in L

The L language also supports comments. Anything written inside (* ...*)

corresponds to a comments. Comments in L may also be nested. For example,
the following is a syntactically well-formed comment in L:

(*

Comment 1 (* Here is comment 2 *)

)*

3 Running L Programs

To run L programs, call the L interpreter with the file containing the L program.
A binary version of the L interpreter is available at

/projects/cs345.tdillig/l-interpreter

on all UT Austin computer science machines. By convention, L programs end
with the extension .L. For example, assume you have a test.L file with the
following content:

(* A simple example in L *)

let x = 1 in

let y = 3 in

x+y

To interpret this file, you type:

/projects/cs345.tdillig/l-interpreter test.L

The output is as follows:

4

This means that the above program evaluates to value 4. You can also pass
the option -ast to l-interpreter to print the abstract syntax tree of any
expression. For this you simply run

/projects/cs345.tdillig/l-interpreter -ast test.L

8

This will also output the abstract syntax tree in addition to the result of the
program. You may find this option useful when implementing your own lexer
and parser. In this case, the output will be:

****************** AST ******************

Let x

VAL

INT: 1

BODY

Let y

VAL

INT: 3

BODY

BINOP: +

x

y

4

4 Lexical structure

The lexical units of L are integers, identifiers, strings, keywords, operators and
comments. Lexical units that require clarification are discussed below.

4.1 Integers

Integers are non-empty strings of digits 0-9. Observe that integers may contain
leading 0s, but no leading -.

4.2 Identifiers

Identifiers always start with an alpha character and can be followed by any
number of alpha-numeric characters. In L, alpha characters are the characters
a-z, A-Z and the character . For example 12AbC is a legal identifier, but 001D
is not. Numeric characters in L are the digits 0-9.

4.3 Strings

Strings in L start and end with ". Strings may contain newlines and L does not
expand any escape characters. For example, the following is a legal string in L:

"this is just

a test"

Strings may be of any length in L.

9

4.4 Keywords

L has the following keywords:

let, in, fun, with, lambda, if, then, else, print, readInt,

readString, isNil, Nil

All keywords in L are case-insensitive.

4.5 Comments

As discussed earlier, L supports nested comments. For example, the following
is a valid comment in L:

(* this (* is (* a test*)

))

5 L Syntax

The complete syntax of L is specified by the context-free grammar presented in
Figure 1.

Observe that this grammar in Figure 1 is ambiguous, and we discuss the
intended meaning of the ambiguous constructs. The first source of ambiguity
in the grammar is binary operators. For example, the L expression 2*3+4 can
be parsed in two ways: either as (2*3)+4 or as 2*(3+4). To disambiguate
the grammar, we therefore need to declare the precedence and associativity of
operators. Figure 2 shows the precedence of operators, where operators higher
up in the figure have higher precedence than those lower down in the figure.
Operators shown on the same line have the same precedence.

To illustrate how precedence declarations allow us to resolve ambiguities,
consider again the expression 2*3+4. Since * has higher precedence than +,
this means the expression should be parsed as (2*3)+4, instead of 2*(3+4).
Similarly, since ! has precedence than @, this means the expression !x@y should
be understood as (!x)@y rather than !(x@y).

Observe that precedence declarations are not sufficient to resolve all ambi-
guities concerning these operators; we also need associativity declarations. For
example, precedence declarations alone are not sufficient to decide whether the
expression 1+2+3 should be parsed as (1+2)+3 or as 1+(2+3). To resolve this
issue, we also need to specify the associativity of the binary operators.

In the L language, the binary operators +, -, *, /, &, |, =, <>, <,

>, <=, >= are all left-associative; the only right-associative operator is @. This
indicates that the expression 1+2+3 should be parsed as (1+2)+3, while the
expression 1@2@3 should be parsed as 1@(2@3).

In addition to the ambiguities arising from operators, there are additional
ambiguities in the grammar arising from let, fun, and lambda expressions. For
example, consider the expression:

10

Program = Expr
Expr = let ID = Exp in Expr

| fun ID with Id list = Expr in Expr
| lambda Id list. Expr
| if Expr then Expr1 else Expr2
| Expr1 + Expr2
| Expr1 & Expr2
| Expr1 | Expr2
| Expr1 − Expr2
| Expr1 ∗ Expr2
| Expr1/Expr2
| Expr1 = Expr2
| Expr1 <> Expr2
| Expr1 < Expr2
| Expr1 <= Expr2
| Expr1 > Expr2
| Expr1 >= Expr2
| INT CONST
| STRING CONST
| (expr list)
| print Expr
| readInt
| readString
| !Expr
| #Expr
| Expr1@Expr2
| Nil
| isNil Expr
| ID

Id list = ID | ID, Id list
expr list = Expr | Expr1 expr list

Figure 1: Syntax of the L Programming Language

!

@

isNil

* /

+ -

& |

= <> < > <= >=

print

Figure 2: Precedence of Operators in L

11

let x = 2 in let x = 3 in x+x

This expression can be parsed either as:

let x = 2 in (let x = 3 in x)+x

which has the value 5, or as the expression

let x = 2 in (let x = 3 in x+x)

which has the value 6.
To resolve this ambiguity, we stipulate that let, fun, and lambda bindings

extend as far to the right as possible. This means that the expression

let x = 2 in let x = 3 in x+x

should be parsed as:

let x = 2 in (let x = 3 in x+x)

Similarly, the ambiguous expression

lambda x. lambda y. y+x

should be parsed as

lambda x. (lambda y. y+x)

rather than as

lambda x. ((lambda y. y)+x)

6 Operational Semantics

Operational semantics is a formal specification for a programming language.
The operational semantics for L describes the meaning of every expression in
the L language. More specifically, it describes how, in a given context, every
expression e should be reduced to a simpler expression e′.

To define the operational semantics for L, we will first need an environment
E which maps each identifier to a value. The environment

E : [x1 7→ v1, . . . , xn 7→ vn]

indicates that the value of identifier xi is vi. For example, when analyzing the
body of the let expression

let x = 2 in x+8

12

the environment E contains the mapping x 7→ 2 to indicate that x is bound to
the value 2 in the body of the let expression. We use the notation E(x) = v to
denote that the result of looking up the identifier x in E is v. For our example,
we have E(x) = 2. We also use the notation

E[x← c]

to describe the environment that maps x to c and agrees with E for values of
all identifiers other than x. For example, if E is the environment

[x 7→ 2, y 7→ 4, z 7→ “abc′′]

then E[x← 99] is the environment:

[x 7→ 99, y 7→ 4, z 7→ “abc′′]

In this manual, we will give the specification of L using big step operational
semantics which are described using inference rules of the general form:

E1 ` e1 : v1
...

Ek ` ek : vk

E ` e(e1, . . . , ek) : v

This inference rule says that if e is an expression consisting of sub-expressions
e1, . . . ek, expression e is evaluated in environment E by recursively reducing
the expressions e1, . . . ek to v1, . . . vk in contexts E1, . . . Ek, and that the result
of evaluating e in context E is the value v.

Let us start with the specification for the simplest of L expressions, namely
integer and string constants:

Integer i

E ` i : i
(Int)

String s

E ` s : s
(String)

The first rule (Int) says that if i is an integer constant, then the result of
evaluating expression i is simply the integer value i. Similarly, the second rule
(String) says that if s is a string constant, the result of evaluating s is s itself.

A slightly more interesting rule is that for identifiers:

Identifier id
E(id) = e

E ` id : e
(Id)

This rule says that if id is an identifier, then the expression id evaluates to the
result of looking up id in environment E. For instance, evaluating identifier x
in context E : [x 7→ 2, . . .] yields the integer value 2.

Next, we present the semantics for let expressions:

13

E ` e1 : e1′

E[x← e′1] ` e2 : e′2
E ` let x = e1 in e2 : e′2

(Let)

To evaluate a let expression let x = e1 in e2 in context E, we first evaluate
the initializer expression e1 in environment E, which yields value e′1. Then, to
evaluate the body e2, we first obtain a new environment E′ in which to evaluate
e2 by binding identifier x to value e′1, i.e., E′ = E[x ← e′1]. Next, we evaluate
the body e2 in this new environment E′, which yields value e′2, which is also the
result of evaluating the entire let expression.

We now present the semantics for if-then-else expressions. The operational
semantics for this expression is presented using two inference rules, one in which
the conditional evaluates to a non-zero value, and another in which it evaluates
to zero:

E ` p : non-zero integer
E ` e1 : e′

E ` if p then e1 else e2 : e′
(If, true)

E ` p : 0
E ` e2 : e′

E ` if p then e1 else e2 : e′
(If, false)

In the first rule (If, true), the expression p evaluates to a non-zero value in
Environment E; thus we evaluate the expression e1 in the then branch, which
yields the value e′. In this case, the result of the whole if expression is also e′.
Observe that, in the case where p evaluates to a non-zero value, the expression
e2 is never evaluated.

The second rule (If, false) is similar to first one, except that the expression
p in environment E now evaluates to 0. Thus, we only evaluate expression e2 in
environment E, which yields the value e′ as the value of the whole if expression.

Next, we give semantics for lambda abstractions. Since lambda abstrac-
tions are essentially function definitions, we cannot really evaluate them until
this function is “called”, i.e., they are applied to some value. Thus, lambda
expressions just evaluate to themselves:

E ` lambda x1, . . . , xn.e : lambda x1, . . . , xn.e
(Lambda)

We now discuss the formal semantics for application expressions, which is
perhaps the most involved one. We consider two cases, one where the application
is of the form (e1 e2) and one where it is of the form (e1 e2 e3 . . . ek) where

14

k ≥ 3.

E ` e1 : lambda x.e′1
E ` e′1[e2/x] : e

E ` (e1 e2) : e
(Application, single)

E ` e1 : lambda x.e′1
E ` e′1[e2/x] : e

E ` (e e3 . . . ek) : e′

E ` (e1 e2 e3 . . . ek) : e′
(Application,multi)

Let’s first focus on the simpler rule, called (Application, single). To evaluate the
application (e1 e2), we first evaluate the expression e1. Note that application is
semantically nonsensical if the expression e1 is not a lambda abstraction; thus,
the operational semantics “get stuck” if e1 is not a lambda abstraction of the
form lambda x.e′1. This notion of “getting stuck” in the operational semantics
corresponds to having a run-time error. Assuming the expression e1 evaluates
to a lambda expression lambda x.e′1, we evaluate the application expression by
binding e2 to x and then evaluating the expressione′1[e2/x] as in β-reduction in
lambda calculus. Observe that we do not evaluate e2 first before binding it to x;
thus, L is a call-by-name language. (In a call-by-value language, the argument
e2 would be evaluated first and the result bound to formal x.)

We now explain the rule (Application, multi), which gives the semantics for
applications with more than one argument. As before, expression e1 should
evaluate to a lambda expression of the form lambda x.e′1. Steps one and two
of the rule (Application, multi) are identical to the (Application, single) rule.
However, after we compute the expression e as the result of applying e1 to
e2, we still need to apply the new expression e to the remaining expressions
e3, . . . , ek. For this, we evaluate the new expression (e e3 . . . ek) at step three of
the (Application, multi) rule. Observe that this rules makes progress since the
application evaluated at step three always contains one fewer element than the
original application, eventually ending with an application of rule (Application,
single).

In addition to lambda bindings, the L language also contains named func-
tions. Fortunately, we can define the meaning of function definitions by rewrit-
ten them as let expressions and lambda bindings. Specifically, we use the fol-
lowing equivalence in L:

fun f with x = e1 in e2 <=> let f = lambda x.e1 in e2

The only small complication is that function definitions in L may have more
than one argument, in which case we have to introduce more than one lambda
expression. Specifically, we can define the meaning of function definitions as
follows:

E ` let f = lambda x1. . . . lambda xn.e1 in e2 : ef

E ` fun f with x1, . . . xn = e1 in e2 : ef
(funDef)

15

Observe that this rule is structurally different form all previous rules in that it
defines the meaning of function definitions by “translating” them into a different
language construct.

6.1 Binary Operators

In this section we give operation semantics for all the binary operators in L. We
start with the arithmetic operators, which have the expected semantics:

E ` e1 : i′1(integer)
E ` e2 : i′2(integer)

E ` e1 + e2 : i′1 + i′2
(PlusInt)

E ` e1 : i′1(integer)
E ` e2 : i′2(integer)

E ` e1 − e2 : i′1 − i′2
(Minus)

E ` e1 : i′1(integer)
E ` e2 : i′2(integer)

E ` e1 ∗ e2 : i′1 ∗ i′2
(Times)

E ` e1 : i′1(integer)
E ` e2 : i′2(integer)

E ` e1/e2 : i′1/i
′
2

(Divide)

In addition to being applicable to integers, the operator + also concatenates
strings:

E ` e1 : s′1(string)
E ` e2 : s′2(string)

E ` e1 + e2 : s′1s
′
2

(PlusString)

The predicate operators =, <>, <, >, <=, >= evaluate to 0 if the predicate
does not hold and to 1 otherwise, as stated in the following operational semantic
rules. The operators =, <> can be applied to integers and strings, the remaining

16

predicate operators can only be applied to integers:

E ` e1 : e′1
E ` e2 : e′2
e′1, e

′
2 both integer or both string

e′1 = e′2
E ` e1 = e2 : 1

(EqualTrue)

E ` e1 : e′1
E ` e2 : e′2
e′1, e

′
2 both integer or both string

e′1 6= e′2
E ` e1 = e2 : 0

(EqualFalse)

E ` e1 : e′1
E ` e2 : e′2
e′1, e

′
2 both integer or both string

e′1 6= e′2
E ` e1 <> e2 : 1

(NotEqualTrue)

E ` e1 : e′1
E ` e2 : e′2
e′1, e

′
2 both integer or both string

e′1 = e′2
E ` e1 <> e2 : 0

(NotEqualFalse)

Here are the rules for the remaining predicates:

E ` e1 : i′1 (integer)
E ` e2 : i′2 (integer)
i′1 � i′2
E ` e1 � e2 : 1

(PredTrue)

E ` e1 : i′1 (integer)
E ` e2 : i′2 (integer)
i′1¬ � i′2
E ` e1 � e2 : 0

(PredFalse)

where � = { <,<=, >,>=}.
The last two operators are binary and and or. The binary and operator &

evaluates to 1 if both arguments evaluate to-non-zero integers and to 0 if at least
one argument evaluates to the integer 0. Again this operator is only defined for
integers:

E ` e1 : i′1 (integer)
E ` e2 : i′2 (integer)
i′1 6= 0 and i′2 6= 0

E ` e1&e2 : 1
(AndTrue)

E ` e1 : i′1 (integer)
E ` e2 : i′2 (integer)
i′1 = 0 or i′2 = 0

E ` e1&e2 : 0
(AndFalse)

The binary or operator evaluates to 1 if at least one of its arguments evaluates

17

to 1 and to zero if both of its arguments evaluate to 0:

E ` e1 : i′1 (integer)
E ` e2 : i′2 (integer)
i′1 6= 0 or i′2 6= 0

E ` e1|e2 : 1
(OrTrue)

E ` e1 : i′1 (integer)
E ` e2 : i′2 (integer)
i′1 = 0 and i′2 = 0

E ` e1|e2 : 0
(OrFalse)

6.2 List operations

In this section, we give precise meaning to the list-related operations defined in
L. Let us start with the constant Nil, that indicates the empty list. This rule
is a straightforward analogy of the Int or String rule presented earlier:

E ` Nil : Nil
(Nil)

Now that we have defined the meaning of Nil, we can now state the semantics
of the isNil operator. Since any value can either be Nil or non-nil, we have
two cases:

E ` e : Nil

E ` isNil e : 1
(isNil, true)

E ` e : c 6= Nil

E ` isNil e : 0
(isNil, false)

Here, which rule is triggered will depend on whether e evaluates to Nil or not.
Next, let us discuss the semantics of the ! operator. If the expression e this

operator is applied to is a list, !e returns the head of this list. We state this as
follows:

E ` e : [e1, e2]

E `!e : e1
(Car, list)

If expression e does not evaluate to a list, !e simply evaluates to e:

E ` e : e1(e1 not list)

E `!e : e1
(Car,not list)

The rules for the # operator are similar. First if #e is applied to a list, it
returns the tail of this list:

E ` e : [e1, e2]

E ` #e : e2
(Cdr, list)

Second, if #e is applied to en expression that is not a list, it returns Nil:

E ` e : e1(e1 not list)

E ` #e : Nil
(Cdr,not list)

The last list operation @ concatenates two elements into the head and tail
respectively of a new list, if the tail concatenated is non-nil. More specifically:

E ` e1 : e′1
E ` e2 : e′2 (e′2 not Nil)

E ` e1@e2 : [e′1, e
′
2]

(Cons,not Nil)

18

If the tail element is Nil, the operator @ simply returns the head.

E ` e1 : e′1
E ` e2 : Nil

E ` e1@e2 : e′1
(Cons,Nil)

7 Run-time Errors

As we have discussed before, in the formal specification of the L language it
is possible that the operational semantics “get stuck”, i.e., that no operational
semantics rule applies at a step in the computation. For example, consider the
simple expression:

"cs345" - 77

Here, the operator - is only defined on two integers (rule Minus), and there
is no rule in the operational semantics that applies in this case. Since this
corresponds to a run-time error in the execution, we report a run-time error to
the user. Specifically, we want to report that the operator - can only be applied
to two integers. Similarly, the following code also exhibits a run-time error:

let x = y in x

Here, the identifier y is not bound in E, therefore the rule Id does not apply. The
following is a comprehensive list of all run-time errors that can occur in L and
the message that should be reported in this case. If multiple error descriptions
fit, you should report the one listed first:

• Any binary operator other than @ is applied to at least one expression that
is a list:

"Binpo @ is the only legal binop for lists"

• A binary operator other than @ is applied to two expressions of different
type:

"Binop can only be applied to expressions of same type"

• A binary operator X other than +, =, <>, @ is applied to two strings:

"Binop X cannot be applied to strings"

• The first argument of an application expression is not a lambda-expression1:

1recall that function definitions are rewritten as let-bindings and lambda expressions

19

"Only lambda expressions can be applied to other expressions"

• Identifier ID in an expression that is being evaluated is not bound:

"Identifier ID is not bound in current context"

• The predicate in a conditional does not evaluate to an integer:

"Predicate in conditional must be an integer"

• Nil is used with a binop other than @:

"Nil can only be used with binop @"

20

