
CS 345H Programming Languages

Programming Assignment 1

Due September 27 2017 at 11:59pm

1 Overview of the Programming Project

Programming assignments 1-4 will direct you to design and build an interpreter for L. Each assignment
will cover one component of the interpreter: lexical analysis, parsing, interpreting L and performing type
inference on L.

For this assignment, you are to write a lexical analyzer, also sometimes called a scanner, using a
lexical analyzer generator. The tool you will use for this is called flex. You will describe the set of tokens
for L in an appropriate input format, and the analyzer generator will generate the actual C++ code for
recognizing tokens in L programs. On-line documentation for all the tools needed for the project will be
made available on the CS345 web site. This includes the manual for flex used in this assignment, and the
documentation for bison (used in the next assignment). You will need to refer to the flex manual
to complete this assignment. You may work either individually or in pairs for this assignment.

2 Introduction to Flex

Flex allows you to implement a lexical analyzer by writing rules that match on user-defined regular
expressions and performing a specified action for each matched pattern. Flex compiles your rule file
(this file is called lexer.l in your assignment) to C++ source code implementing a finite automaton
recognizing the regular expressions that you specify in your rule file. Fortunately, it is not necessary to
understand or even look at the automatically generated (and often very messy) file implementing your
rules. Rule files in flex are structured as follows:

%{

Declarations

%}

Definitions

%%

Rules

%%

User subroutines

The Declarations and User subroutines sections are optional and allow you to write declarations and
helper functions in C++. The Definitions section is also optional, but often very useful as definitions
allow you to give names to regular expressions. For example, the definition

DIGIT [0-9]

allows you to define a digit. Here, DIGIT is the name given to the regular expression matching any single
character between 0 and 9. The following table gives an overview of the common regular expressions that
can be specified in flex:

Fall 2017/2018 page 1



CS 345H Programming Languages

x the character “x”
"x" the character “x”, even if x is an operator
[xy] the character x or y
[x-z] the characters x, y or z
[^x] any character but x
. any character but newline

[\n] newline
<Y>x an x where flex is in start condition Y
x? an optional x (0 or 1 instances of x)
x* 0,1,2,. . . instances of x
x+ 1,2,3,. . . instances of x
x|y an x or y
(x) and x
{YY} matches the pattern YY defined in your definitions section

The most important part of your lexical analyzer is the rules section. A rule in Flex specifies an
action to perform if the input matches the regular expression or definition at the beginning of the rule.
The action to perform is specified by writing regular C++ source code. For example, since COMMA is a
token in L, the rule:

"," {

return TOKEN_COMMA;

}

matches the string "," and returns the token code TOKEN COMMA.
As we have discussed in lecture, with some tokens such as integers, identifiers and strings we also

need to record the value or lexeme of the token. As an example, assume that every digit is one token
with token type TOKEN DIGIT. This is not the case in L; digits are not tokens in L, this is just
an example.

{DIGIT} {

SET_LEXEME(yytext);

return TOKEN_DIGIT;

}

This rule illustrates two important points of flex. First, it uses the definition of DIGIT defined earlier
in the rules section. Second, in any rule the string that matched the current pattern in stored in a
global variable called yytext of type char*. To assign the lexeme to the token, simply use the macro
SET LEXEME as shown in the example.

An important point to remember is that if the current input matches multiple rules, Flex picks the
rule that matches the largest number of characters. For instance, if you define the following two rules

[0-9]+ { // action 1}

[0-9a-z]+ {// action 2}

and if the character sequence 2a appears next in the file being scanned, then action 2 will be
performed since the second rule matches more characters than the first rule. If multiple rules match
the same number of characters, then the rule appearing first in the file is chosen. When writing rules
in Flex, it may be necessary to perform different actions depending on previously encountered tokens.
For example, when processing a closing comment token, you might be interested in knowing whether an
opening comment was previously encountered. For this, flex provides state declarations such as:

Fall 2017/2018 page 2



CS 345H Programming Languages

%Start COMMENT

which can be set to true by writing BEGIN(COMMENT). To perform an action only if an opening comment
was previously encountered, you can predicate your rule on COMMENT using the syntax:

<COMMENT> {

// the rest of your rule ...

}

There is also a special default state called INITIAL which is active unless you explicitly indicate the
beginning of a new state. You will need states for processing comments and strings. We strongly
encourage you to read the documentation on Flex on the CS312 website before writing your own lexical
analyzer.

3 Tokens in L

For this assignment, you will accept all tokens that are part of the L language. You will need to refer the
the L reference manual for what strings correspond to which tokens. The token types defined for you are
listed below. You must not define any other token types.

TOKEN_READSTRING

TOKEN_READINT

TOKEN_PRINT

TOKEN_ISNIL

TOKEN_HD

TOKEN_TL

TOKEN_CONS

TOKEN_NIL

TOKEN_DOT

TOKEN_WITH

TOKEN_LET

TOKEN_PLUS

TOKEN_MINUS

TOKEN_IDENTIFIER

TOKEN_TIMES

TOKEN_DIVIDE

TOKEN_INT

TOKEN_LPAREN

TOKEN_RPAREN

TOKEN_AND

TOKEN_OR

TOKEN_EQ

TOKEN_NEQ

TOKEN_GT

TOKEN_GEQ

TOKEN_LT

TOKEN_LEQ

Fall 2017/2018 page 3



CS 345H Programming Languages

TOKEN_IF

TOKEN_THEN

TOKEN_ELSE

TOKEN_LAMBDA

TOKEN_FUN

TOKEN_COMMA

TOKEN_STRING

TOKEN_IN

TOKEN_ERROR

Of special interest here is TOKEN_ERROR. Any time you encounter a lexing error, you simply return
TOKEN_ERROR. This will generate an error message and abort your lexer. You can also specify an error
message using SET_LEXEME if you choose to, but you are not required to do so for this assignment.

4 Files and Directories

To get started, create a directory where you want to do the assignment on any William & Mary computer
science computer and execute the following command in that directory:

/projects/cs345.tdillig/PA1/get-assignment

This command will copy a number of files to your directory. The only file you will need to modify
for this assignment is lexer.l This file contains a skeleton for a lexical description for L. There are
comments indicating where you need to fill in code, but this is not necessarily a complete guide. Part of
the assignment is for you to make sure that you have a correct and working lexer. Except for the sections
indicated, you are welcome to make modifications to our skeleton. You can actually build a scanner with
the skeleton description, but it does not do much. You should read the flex manual to figure out what
this description does do. Any auxiliary routines that you wish to write should be added directly to this
file in the appropriate section.

4.1 Building, Running and Testing your Lexer

To compile your lexer, simply type

make

in your directory. This will build a binary called lexer that you can run. For example, to run your lexer
on the file test.L, you type:

./lexer test.L

Once your lexer is finished, this should print all tokens and lexemes (if applicable) to the screen. For your
reference, you can also run a reference lexer whose binary we provide. To run the reference lexer, type:

/projects/cs345.tdillig/lexer test.L

A big component of this assignment is to test your lexer thoroughly. It is your responsibility to
ensure your lexer accepts all legal tokens in L, rejects all invalid ones and never crashes. You will want
to feed many different inputs to your lexer to test it.

Fall 2017/2018 page 4



CS 345H Programming Languages

4.2 Turning in and Grading

You must hand in the following for this assignment:

• The file lexer.l containing your lexer

• Ten interesting test cases to test your lexer in a file called tests.txt

For this assignment, you will receive 20% credit for your test cases and 80% for your lexer. We will
test your lexer automatically on the best selection of submitted test cases, so it is very much in your
interest to have your tests included.

Important: Since we grade your lexer automatically, do not print anything in your final
lexer since this will confuse our grading script and potentially result in a bad grade for you.

For submission, please submit the file lexer.l as well as the file tests.txt with all your test cases.
Separate different tests by a newline with three (3) dashes, i.e. ---.

Fall 2017/2018 page 5


