
CS 345H Programming Languages

Programming Assignment 2

Due October 9, 2017 at 11:59pm

1 Overview of the Programming Project

Programming assignments 1-4 will direct you to design and build an interpreter for L. Each assignment
will cover one component of the interpreter: lexical analysis, parsing, interpreting L and performing type
inference on L.

For this assignment, you will build a parser for the L programming language. The tool you will use
for this is called bison. You will describe the grammar of L in an appropriate input format, and the
parser generator will generate the actual C++ code for parsing tokens into an L abstract syntax tree.
On-line documentation for all the tools needed for the project will be made available on the CS345H
web site. This includes the manual for for bison. You will need to refer to the bison manual to
complete this assignment. You may work either individually or in pairs for this assignment.

2 Abstract Syntax Tree

The data structures for the abstract syntax tree you will build for L ca be found in the /ast/ sub-
directory. You will need to understand the interface of the AST nodes to complete this assignment. This
section sketches the high-level deign of the AST library. Please refer to the AST source code for any
further details.

The provided AST library contains the following AST nodes:

AstBinOp

AstBranch

AstExpressionList

AstIdentifier

AstIdentifierList

AstInt

AstLambda

AstLet

AstList

AstNil

AstRead

AstString

AstUnOp

Expression

Observe that not every construct in L has an AST node. Notably, function definitions do not have any
type. Therefore you need represent function definitions as a combination of an AstLet and an AstLambda
as discussed in lecture.

All AST nodes inherit from the abstract base class Expression. This means the following code is
legal and will always succeed:

AstInt* i = ...

Expression* e = i;

Fall 2017/2018 page 1

CS 345H Programming Languages

On the other hand, the following code snipped will not compile because the expression e may not be of
type AstInt.

Expression* e = ...

AstInt* i = e;

However, often you know that an value of type Expression must really be a specific subtype. In this
case, you can cast the expression to the desired subtype in the following way:

Expression* e = ...

AstInt* i = static_cast<AstInt*>(e);

Observe that this will always compile, even if the type of e may not be AstInt. In this case, your program
will most likely override random memory values and crash later at an completely unrelated point! To
avoid this, you can also check the dynamic type of any expression before casting. You can do this in the
following way:

Expression* e = ...

assert(e->get_type() == AST_INT);

AstInt* i = static_cast<AstInt*>(e);

The types for all expressions are defined in enum expression_type in the file Expression.h. With this
extra assertion, your code will fail with an assertion failure notifying you of the problem at the source.
You should never cast without asserting the correct type of expressions first! You will save
many hours of painful debugging if you do.

For debugging, all AST nodes also have a to_string() method you can call that will print a human-
readable string representation of the node. For example, to print an expression, you would write:

Expression* e = ...

cout << "Expression e: " << endl << e->to_string() << endl;

All AST classes use factory make methods. This means you cannot allocate any AST node using the
new operator. For example, the following code will not compile:

Expression* e = new AstInt(2);

Instead, you write:

Expression* e = AstInt::make(2);

make methods are static members of the classes that allocate new instances for you. They also
manage all memory centrally, so you never need to delete any memory. Never call delete on any
AST nodes. Doing so will result in horrible crashes!

The Ast types AstExpressionList and AstIdentifierList also have a method append(e) that
returns a new list with the element appended. For instance, to obtain an expression list with expression
e added at the end, you would write:

AstExpressionList* l = ...

AstExpressionList* new_l = l->append(e);

Observe that all AST nodes are immutable; the method append returns a new expression list with the
desired element added.

Fall 2017/2018 page 2

CS 345H Programming Languages

3 Introduction to Bison

Bison allows you to implement a parser and associate semantic actions with each grammar rule. In
general, a bison file is structured as follows:

%{

Declarations

%}

Definitions

%%

Rules

In the declarations section, all token types are defined. These are all terminals in the L grammar.
After the token, you will need to specify associativity and precedence both for operators and some

non-terminals. For example, this section may contain:

%left TOKEN_PLUS

%left TOKEN_TIMES

This first of all states that plus and times are left-associative. Furthermore, it also encodes the precedence
of operators. Specifically, the associativity listed last has the highest precedence. Sometimes you need to
declare the precedence for operators that have no associativity, you can do this by placing %noassoc X

at the appropriate place in this list.
The rules section contains rules such as the two rules below for expressions:

expression: TOKEN_INT

{

string lexeme = GET_LEXEME($1);

long int val = string_to_int(lexeme);

Expression* e = AstInt::make(val);

$$ = e;

}

| expression TOKEN_PLUS expression

{

$$ = AstBinOp::make(PLUS, $1, $3);

}

Observe that the grammar encoded by these rules is

expression→ TOKEN INT | expression TOKEN PLUS expression

The semantic actions to build an AST as specified as C++ code inside the braces. Bison allows you
to access the attribute (or value) of each symbol in your grammar using special variables that start with
a $. Specifically, the variable $$ refers to the attribute of the non-terminal on the left-hand side and the
variables $1 through $n refer to the attribute of terminals and non-terminals on the right-hand side.

For example, in the rule

expression: expression TOKEN_PLUS expression

{

$$ = AstBinOp::make(PLUS, $1, $3);

}

Fall 2017/2018 page 3

CS 345H Programming Languages

the variable $$ is the value of the left-hand side (expression). This value is computed as an AST node
whose children are the value of the first ($1) and third ($3) symbol (both expressions) on the right-hand
side. Similarly, the action for TOKEN INT gets the lexeme from the token using variable $1 and assigns
the resulting AST node for integers to the variable $$. All your actions should be of this general form.

Observe that the C++ type of all $ variables is Expression. Sometimes you know that the type of
a particular $i is more specific; in this case you must cast the value as explained earlier.

3.1 Precedence of Rules

In addition to allowing precedence declarations on terminals, bison also supports precedence declaration
on rules. Specifically, the L manual specifies at the end of section 5 that all L expressions expand as far
to the right as possible. You can encode this in bison by specifying a dummy terminal EXPR with the
lowest associativity by placing the line

%nonassoc EXPR

at the top of your associativity declarations and adding %prec to the end of any rule that is ambiguous
to force expressions to extend as far right as possible. For example, you can disambiguate the rule for
the if statement as follows:

TOKEN_IF expression TOKEN_THEN expression TOKEN_ELSE expression %prec EXPR

Read the bison manual for an in-depth explanation of the %prec declaration.

3.2 Using Bison

Recall from lecture that bison does not work with any arbitrary grammar. You must read the bison

manual to understand how to write your grammar so it works with bison. If there is a problem with
your grammar, bison will report either a shift-reduce error or a reduce-reduce error. Refer to the manual
to understand how to remove these errors.

It is imperative that you add one rule at a time, compile, check the output for bison errors such
as shift/reduce and reduce/reduce conflicts, understand their source and fix them. Then, test the rule
you just wrote to ensure it actually creates the AST node you expect it to create. Typing the entire
grammar first and trying to fix these errors later is impossible. No one has ever successfully
completed a bison assignment this way and the course staff will also not be able to help
you debug your errors.

Important: You must check the output on the console after each compilation for errors.
Bison will still build a parser even if errors are present; it will just not work as expected.

4 Files and Directories

To get started, create a directory where you want to do the assignment on any William & Mary computer
science computer and execute the following command in that directory:

/projects/cs345.tdillig/PA2/get-assignment

This command will copy a number of files to your directory. The only file you will need to modify
for this assignment is parser.y This file contains a skeleton for a parser for L. Except for the sections
indicated, you are welcome to make modifications to our skeleton. You can actually build a parser with
the skeleton description, but it only parses only very few constructs. You should understand all the
provided constructs before adding your own and read the bison manual.

Fall 2017/2018 page 4

CS 345H Programming Languages

4.1 Building, Running and Testing your Parser

To compile your parser, simply type

make

in your directory. This will build a binary called parser that you can run. For example, to run your
parser on the file test.L, you type:

./parser test.L

Once your parser is finished, this should print the AST of your program to the screen. For your reference,
you can also run a reference parser whose binary we provide. To run the reference parser, type:

/projects/cs345.tdillig/parser test.L

A big component of this assignment is to test your parser thoroughly. It is your responsibility to
ensure your parser accepts all legal constructs in L as specified in the reference manual, rejects all invalid
ones and never crashes. You will want to feed many different inputs to your parser to test it.

4.2 Turning in and Grading

You must hand in the following for this assignment:

• The file parser.y containing your parser

• Five interesting test cases to test your parser in a file called tests.L

For this assignment, you will receive 20% credit for your test cases and 80% for your parser. We will
test your parser automatically on the best selection of submitted test cases, so it is very much in your
interest to have your tests included.

Important: Since we grade your parser automatically, do not print anything in your
final parser since this will confuse our grading script and potentially result in a bad grade
for you.

Fall 2017/2018 page 5

