
CS 345H Programming Languages

Programming Assignment 3

Due October 30th, 2017 at 11:59pm

1 Overview of the Programming Project

Programming assignments 1-3 will direct you to design and build an interpreter for L. Each assignment
will cover one component of the interpreter: lexical analysis, parsing, interpreting L and performing type
inference on L.

For this assignment, you will build an interpreter for the L programming language. The specification
of L is given as operational semantics in the L reference manual and your interpreter must conform to
this specification. You may work either individually or in pairs for this assignment.

2 Abstract Syntax Tree

The data structures for the abstract syntax tree you will build for L ca be found in the /ast/ sub-
directory. You will need to understand the interface of the AST nodes to complete this assignment. The
AST nodes are identical to the ones you used in the last assignment. Please refer to the AST source code
and the handout of PA2 for any further details.

3 Symbol Table

For this assignment, you are provided with a symbol table implementation. The symbol table functions
like the environment E in the operational semantics. In other words, you will add bindings when you
encounter a let binding and look up bindings when you encounter identifiers. Since an identifier always
refers to the most recently defined identifier with this name, the symbol table support pushing and
popping contexts. If you push a context, add bindings and then pop, all bindings added since the push
will be removed. You will probably want to push and pop every time you process a let expression. For
more details, see the source code of the SymbolTable.

4 Files and Directories

To get started, create a directory where you want to do the assignment on any UT Austin computer
science computer and execute the following command in that directory:

/projects/cs345.tdillig/PA3/get-assignment

This command will copy a number of files to your directory. The only file you will need to modify for
this assignment is Evaluator.cpp This file contains a skeleton for an interpreter for L. You can actually
build an interpreter with the skeleton description, but it only evaluates very few constructs. You should
understand all the provided constructs before adding your own and carefully read the L manual.

Fall 2017/2018 page 1



CS 345H Programming Languages

4.1 Building, Running and Testing your Interpreter

To compile your interpreter, simply type

make

in your directory. This will build a binary called l-interpreter that you can run. For example, to run
your interpreter on the file test.L, you type:

./l-interpreter test.L

Once your interpreter is finished, this should evaluate L programs. For your reference, you can also run
a reference interpreter whose binary we provide. To run the reference interpreter, type:

/projects/cs345.tdillig/l-interpreter test.L

A big component of this assignment is to test your interpreter thoroughly. It is your responsibility
to ensure your interpreter follows the specification in the L manual exactly and never crashes. You will
want to feed many different inputs to your interpreter to test it.

4.2 Turning in and Grading

You must hand in the following for this assignment:

• The file Evaluator.cpp containing your interpreter

• Five interesting test cases to test your interpreter in a file called tests.L

For this assignment, you will receive 20% credit for your test cases and 80% for your interpreter. We
will test your interpreter automatically on the best selection of submitted test cases, so it is very much
in your interest to have your tests included.

Important: Since we grade your interpreter automatically, do not print anything in
your final interpreter since this will confuse our grading script and potentially result in a
bad grade for you.

For submission, please submit the file Evaluator.cpp as well as the file tests.txt with all your
test cases. Separate different tests by a newline with three (3) dashes, i.e. ---.

Fall 2017/2018 page 2


