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Strong and Weak UpdatesStrong and Weak Updates

 In static analysis, there is a distinction between two 
kinds of updates to abstract memory locations:

Strong vs weak

 Consider points-to edge from abstract location A to B:

 A strong update removes existing points-to edges 
from location A and adds new edge to C.

A CB
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 Consider points-to edge from abstract location A to B:

 A strong update removes existing points-to edges 
from location A and adds new edge to C.

A C
A may point to C, but
no longer B.



 

Strong and Weak UpdatesStrong and Weak Updates

 In static analysis, there is a distinction between two 
kinds of updates to abstract memory locations:

Strong vs weak

 Consider points-to edge from abstract location A to B:

 A weak update adds a new edge without removing 
existing edges.

A CB

C

A may point to B or C,
but we don't know 
which one.



 

When are Strong Updates When are Strong Updates 
Applicable?Applicable?

 In general, it is preferable to apply strong updates 
because it is more precise.

 However, we can only apply strong updates if the 
abstract location corresponds to one concrete 
location.
 This makes it difficult to apply strong updates to 

elements of unbounded data structures, such as arrays.

int* a = malloc(n*sizeof(int)) a
.
.
.= 

Statically unknown size n.



 

Strong Updates to ArraysStrong Updates to Arrays

 Many approaches overcome this difficulty by creating 
partitions of the array.

aa[k]=7;

a:>k

a:=k

a:<k

7

This abstract location
contains only the k'th
element of the array.



 

Strong Updates to ArraysStrong Updates to Arrays

 Many approaches overcome this difficulty by creating 
partitions of the array.

a:>k

a:=k

a:<k

7

We need to avoid 
creating an
unbounded number 
of partitions.

for(int k=0; 
    k < size; k++)

a[k] = 7;

7



 

Strong Updates to ArraysStrong Updates to Arrays

 Many approaches overcome this difficulty by creating 
partitions of the array.

for(int k=0; 
    k < size; k++)

a[k] = 7; a:>k

a:<=k 7
Finitizes the number
of partitions.



 

DrawbacksDrawbacks

 This approach has some drawbacks:
 Can create large number of explicit partitions

Limits scalability
 Heuristics to decide when to focus/blur 

Can be difficult to automate 
 „Shape” of partitions are fixed a priori

Typically contiguous ranges

 The rest of this talk is about a heap abstraction and 
update mechanism that does not have these 
drawbacks.



 

Symbolic Heap AbstractionSymbolic Heap Abstraction

 Key Idea #1: 
 Arrays are represented by abstract locations that are 

qualified by index variables.

 These index variables range over possible indices of 
the array.



 

Symbolic Heap AbstractionSymbolic Heap Abstraction

 Key Idea #2:
 Constraints on index variables select which concrete 

elements in the source location point  to which 
concrete elements in the target location.

This edge selects all 
elements of array a whose 

indices are in the range
 [0, size).

Each element in array a 
points to the corresponding 

element in array b.

By convention, target's 
index variables are primed.



 

Fluid UpdatesFluid Updates

 To perform a fluid update on the symbolic heap:

 Compute a constraint Φ specifying which elements in 
an abstract location A are modifed by the update.

 Now, the negation of Φ, ¬Φ, specifies the concrete 
elements in A not affected by the update.

 Hence, a fluid update conjoins ¬Φ with all existing 
edges from A, while adding new edge under Φ.



 

Fluid Update ExampleFluid Update Example

Consider a statement: a[k] = c;

The constraint describing
updated elements is:

Constraint describing 
elements not affected 
by update: 



 

What if we aren't sure which What if we aren't sure which 
elements are updated?elements are updated?

 In the previous example, we could precisely describe 
the exact set of elements that were written to.

 In general, we cannot always precisely specify which 
elements are updated.

for(i=0; i<size; i++) 
{

if(rand()) 
a[i] = NULL;

}

All elements in range [0, size) 
may be set to NULL, 

but no element 
must be set to NULL. 

So, an overapproximation
of the elements updated in 

the loop is:
 



 

Fluid Update with Fluid Update with 
OverapproximationsOverapproximations

Suppose we erroneously use the overapproximation 
for the update



 

Fluid Update with Fluid Update with 
OverapproximationsOverapproximations

Suppose we erroneously use the overapproximation 
for the update

This  says that after the loop,
a[i] is guaranteed not to

point to b[i]!



 

Fluid Update with Fluid Update with 
OverapproximationsOverapproximations

Suppose we erroneously use the overapproximation 
for the update

But after the loop
a[i] may still point to b[i]
because we don't know the
result of rand().



 

What went wrong?What went wrong?

 The negation of an overapproximation is  an 
underapproximation.

 Hence, if the fluid update uses an overapproximation, 
we underapproximate the set of elements not affected 
by the update.

UNSOUND!



 

Bracketing ConstraintsBracketing Constraints

 Solution: Constraints in the symbolic heaps are pairs 
of constraints, called bracketing constraints:

This specifies which elements
in the source location
may point to which 

elements in the target.

This specifies which elements
in the source location
must point to which 
elements in the target.



 

Bracketing Constraint ExampleBracketing Constraint Example

NULL

Any element in the range
[0, size) may point to null.

All even elements in the range
[0, size) must point to null.



 

Bracketing Constraint ExampleBracketing Constraint Example

NULL

But, odd elements in the range
[0, size) may or may not 

point to null.



 

Fluid Update Using Bracketing Fluid Update Using Bracketing 
Constraints Constraints 

 If we use bracketing constraints, the fluid update 
operation described earlier is sound.
 This is because negating a bracketing constraint yields 

correct over- and underapproximations.

 In particular, the negation of a bracketing constraint   
                             is given by:



 

Fluid Update Using Bracketing Fluid Update Using Bracketing 
ConstraintsConstraints

 Consider again the following initial symbolic heap:

If a bracketing constraint 
is precise, i.e.,
then we write a single constraint
instead of a pair. 



 

Fluid Update Using Bracketing Fluid Update Using Bracketing 
ConstraintsConstraints

 Consider again the following initial symbolic heap:

From now on, think of a single 
constraint as a  bracketing 
constraint where may 
and must conditions are the same.



 

Fluid Update Using Bracketing Fluid Update Using Bracketing 
ConstraintsConstraints

 Consider again the following initial symbolic heap:

for(i=0; i<size; i++) 
{

if(rand()) 
a[i] = NULL;

}

A bracketing constraint describing
the update condition is:

The negation of this constraint is:



 

Fluid Update Using Bracketing Fluid Update Using Bracketing 
ConstraintsConstraints

 Consider again the following initial symbolic heap:

for(i=0; i<size; i++) 
{

if(rand()) 
a[i] = NULL;

}

A bracketing constraint describing
the update condition is:

The negation of this constraint is:



 

Example RevisitedExample Revisited

 Consider again the following initial symbolic heap:

for(i=0; i<size; i++) 
{

if(rand()) 
a[i] = NULL;

}

A bracketing constraint describing
the update condition is:



 

Example RevisitedExample Revisited

 Consider again the following initial symbolic heap:

for(i=0; i<size; i++) 
{

if(rand()) 
a[i] = NULL;

}

A bracketing constraint describing
the update condition is:

a[i] may point to b[i] But it is not
guaranteed to.



 

Example RevisitedExample Revisited

 Consider again the following initial symbolic heap:

for(i=0; i<size; i++) 
{

if(rand()) 
a[i] = NULL;

}

A bracketing constraint describing
the update condition is:



 

Interpreting the Symbolic HeapInterpreting the Symbolic Heap

 So far, we described what a symbolic heap looks like 
and defined a fluid update operation on this heap.

 But how do we interpret/understand the facts that are 
encoded by the symbolic heap?



 

Interpreting the Symbolic HeapInterpreting the Symbolic Heap

 Consider the following: 

Where does a[2] point to?

Substitute 2 for i
1
 in the 

edge constraints. 



 

Interpreting the Symbolic HeapInterpreting the Symbolic Heap

 Consider the following: 

Where does a[2] point to?

For the edge to c, 
the constraint 5 <= 2
is unsatisfiable, hence, a[2]
cannot point to c[3].



 

Interpreting the Symbolic HeapInterpreting the Symbolic Heap

 Consider the following: 

Where does a[2] point to?

For the edge to b, 
substituiting 2 yields
i

2
' = 4; so a[2] points 

to b[4].  



 

Interpreting the Symbolic HeapInterpreting the Symbolic Heap

 Consider the following: 

Where do elements of a 
whose indices are in the 
range [0, 3] point to?

In general, we need to know
the points-to targets of those 
elements whose indices 
satisfy  some constraint.

Here,



 

Interpreting the Symbolic HeapInterpreting the Symbolic Heap

 Consider the following: 

Where do elements of a 
whose indices are in the 
range [0, 3] point to?

So, we need a generalized 
form of substitution, i.e.,
existential quantifier 
elimination.



 

Interpreting the Symbolic HeapInterpreting the Symbolic Heap

 Consider the following: 

Where do elements of a 
whose indices are in the 
range [0, 3] point to?

We can determine the points-to targets of elements 
whose indices are in [0, 3], by eliminating the quantifier
from the following formula (for the edge to b):

 



 

Interpreting the Symbolic HeapInterpreting the Symbolic Heap

 Consider the following: 

Where do elements of a 
whose indices are in the 
range [0, 3] point to?

This yields:

Elements of a in range [0,3] 
point to even elements of b
in range [0, 6].



 

Interpreting the Symbolic HeapInterpreting the Symbolic Heap

 To summarize, traversing edges (i.e., going from one 
abstract location to its points-to target)  requires 
existential quantifier elimination.

 Similar to image computation and computation of 
strongest post-conditions.



 

ImplementationImplementation

 The combination of symbolic heap abstraction and 
fluid updates forms the core of the Compass program 
verification system for C programs.
 Compass is path- and context-sensitive

 Summary-based
 Used for checking memory safety properties (buffer 

overruns, null errors, uninitialized reads, casting 
errors, …) as well as arbitrary user-provided 
assertions.

 Has successfully been scaled to real programs in the 
range of a few 10,000 lines of code.



 

Case StudyCase Study

 We first evaluate this technique on a set of 
challenging array benchmarks.

Very fast despite 
being very precise.

Also very memory 
efficient.



 



 



 



 



 



 



 



 

Unix CoreutilsUnix Coreutils

 A collection of widely used command-line utilities.

 Heavily use arrays, pointers, and string buffers.

 Precise heap analysis necessary for successful 
verification. 

Compass verified absence of
buffer overruns and null
dereferences with no false
positives and no annotations.



 

Thank YouThank You
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