

Fluid Updates: Fluid Updates:
Beyond Strong vs. Weak Beyond Strong vs. Weak

UpdatesUpdates

Isil Dillig, Thomas Dillig, Alex AikenIsil Dillig, Thomas Dillig, Alex Aiken
Stanford UniversityStanford University

Strong and Weak UpdatesStrong and Weak Updates

 In static analysis, there is a distinction between two
kinds of updates to abstract memory locations:

Strong vs weak

 Consider points-to edge from abstract location A to B:

 A strong update removes existing points-to edges
from location A and adds new edge to C.

A CB

Strong and Weak UpdatesStrong and Weak Updates

 In static analysis, there is a distinction between two
kinds of updates to abstract memory locations:

Strong vs weak

 Consider points-to edge from abstract location A to B:

 A strong update removes existing points-to edges
from location A and adds new edge to C.

A C
A may point to C, but
no longer B.

Strong and Weak UpdatesStrong and Weak Updates

 In static analysis, there is a distinction between two
kinds of updates to abstract memory locations:

Strong vs weak

 Consider points-to edge from abstract location A to B:

 A weak update adds a new edge without removing
existing edges.

A CB

C

A may point to B or C,
but we don't know
which one.

When are Strong Updates When are Strong Updates
Applicable?Applicable?

 In general, it is preferable to apply strong updates
because it is more precise.

 However, we can only apply strong updates if the
abstract location corresponds to one concrete
location.
 This makes it difficult to apply strong updates to

elements of unbounded data structures, such as arrays.

int* a = malloc(n*sizeof(int)) a
.
.
.= 

Statically unknown size n.

Strong Updates to ArraysStrong Updates to Arrays

 Many approaches overcome this difficulty by creating
partitions of the array.

aa[k]=7;

a:>k

a:=k

a:<k

7

This abstract location
contains only the k'th
element of the array.

Strong Updates to ArraysStrong Updates to Arrays

 Many approaches overcome this difficulty by creating
partitions of the array.

a:>k

a:=k

a:<k

7

We need to avoid
creating an
unbounded number
of partitions.

for(int k=0;
 k < size; k++)

a[k] = 7;

7

Strong Updates to ArraysStrong Updates to Arrays

 Many approaches overcome this difficulty by creating
partitions of the array.

for(int k=0;
 k < size; k++)

a[k] = 7; a:>k

a:<=k 7
Finitizes the number
of partitions.

DrawbacksDrawbacks

 This approach has some drawbacks:
 Can create large number of explicit partitions

Limits scalability
 Heuristics to decide when to focus/blur

Can be difficult to automate
 „Shape” of partitions are fixed a priori

Typically contiguous ranges

 The rest of this talk is about a heap abstraction and
update mechanism that does not have these
drawbacks.

Symbolic Heap AbstractionSymbolic Heap Abstraction

 Key Idea #1:
 Arrays are represented by abstract locations that are

qualified by index variables.

 These index variables range over possible indices of
the array.

Symbolic Heap AbstractionSymbolic Heap Abstraction

 Key Idea #2:
 Constraints on index variables select which concrete

elements in the source location point to which
concrete elements in the target location.

This edge selects all
elements of array a whose

indices are in the range
 [0, size).

Each element in array a
points to the corresponding

element in array b.

By convention, target's
index variables are primed.

Fluid UpdatesFluid Updates

 To perform a fluid update on the symbolic heap:

 Compute a constraint Φ specifying which elements in
an abstract location A are modifed by the update.

 Now, the negation of Φ, ¬Φ, specifies the concrete
elements in A not affected by the update.

 Hence, a fluid update conjoins ¬Φ with all existing
edges from A, while adding new edge under Φ.

Fluid Update ExampleFluid Update Example

Consider a statement: a[k] = c;

The constraint describing
updated elements is:

Constraint describing
elements not affected
by update:

What if we aren't sure which What if we aren't sure which
elements are updated?elements are updated?

 In the previous example, we could precisely describe
the exact set of elements that were written to.

 In general, we cannot always precisely specify which
elements are updated.

for(i=0; i<size; i++)
{

if(rand())
a[i] = NULL;

}

All elements in range [0, size)
may be set to NULL,

but no element
must be set to NULL.

So, an overapproximation
of the elements updated in

the loop is:

Fluid Update with Fluid Update with
OverapproximationsOverapproximations

Suppose we erroneously use the overapproximation
for the update

Fluid Update with Fluid Update with
OverapproximationsOverapproximations

Suppose we erroneously use the overapproximation
for the update

This says that after the loop,
a[i] is guaranteed not to

point to b[i]!

Fluid Update with Fluid Update with
OverapproximationsOverapproximations

Suppose we erroneously use the overapproximation
for the update

But after the loop
a[i] may still point to b[i]
because we don't know the
result of rand().

What went wrong?What went wrong?

 The negation of an overapproximation is an
underapproximation.

 Hence, if the fluid update uses an overapproximation,
we underapproximate the set of elements not affected
by the update.

UNSOUND!

Bracketing ConstraintsBracketing Constraints

 Solution: Constraints in the symbolic heaps are pairs
of constraints, called bracketing constraints:

This specifies which elements
in the source location
may point to which

elements in the target.

This specifies which elements
in the source location
must point to which
elements in the target.

Bracketing Constraint ExampleBracketing Constraint Example

NULL

Any element in the range
[0, size) may point to null.

All even elements in the range
[0, size) must point to null.

Bracketing Constraint ExampleBracketing Constraint Example

NULL

But, odd elements in the range
[0, size) may or may not

point to null.

Fluid Update Using Bracketing Fluid Update Using Bracketing
Constraints Constraints

 If we use bracketing constraints, the fluid update
operation described earlier is sound.
 This is because negating a bracketing constraint yields

correct over- and underapproximations.

 In particular, the negation of a bracketing constraint
 is given by:

Fluid Update Using Bracketing Fluid Update Using Bracketing
ConstraintsConstraints

 Consider again the following initial symbolic heap:

If a bracketing constraint
is precise, i.e.,
then we write a single constraint
instead of a pair.

Fluid Update Using Bracketing Fluid Update Using Bracketing
ConstraintsConstraints

 Consider again the following initial symbolic heap:

From now on, think of a single
constraint as a bracketing
constraint where may
and must conditions are the same.

Fluid Update Using Bracketing Fluid Update Using Bracketing
ConstraintsConstraints

 Consider again the following initial symbolic heap:

for(i=0; i<size; i++)
{

if(rand())
a[i] = NULL;

}

A bracketing constraint describing
the update condition is:

The negation of this constraint is:

Fluid Update Using Bracketing Fluid Update Using Bracketing
ConstraintsConstraints

 Consider again the following initial symbolic heap:

for(i=0; i<size; i++)
{

if(rand())
a[i] = NULL;

}

A bracketing constraint describing
the update condition is:

The negation of this constraint is:

Example RevisitedExample Revisited

 Consider again the following initial symbolic heap:

for(i=0; i<size; i++)
{

if(rand())
a[i] = NULL;

}

A bracketing constraint describing
the update condition is:

Example RevisitedExample Revisited

 Consider again the following initial symbolic heap:

for(i=0; i<size; i++)
{

if(rand())
a[i] = NULL;

}

A bracketing constraint describing
the update condition is:

a[i] may point to b[i] But it is not
guaranteed to.

Example RevisitedExample Revisited

 Consider again the following initial symbolic heap:

for(i=0; i<size; i++)
{

if(rand())
a[i] = NULL;

}

A bracketing constraint describing
the update condition is:

Interpreting the Symbolic HeapInterpreting the Symbolic Heap

 So far, we described what a symbolic heap looks like
and defined a fluid update operation on this heap.

 But how do we interpret/understand the facts that are
encoded by the symbolic heap?

Interpreting the Symbolic HeapInterpreting the Symbolic Heap

 Consider the following:

Where does a[2] point to?

Substitute 2 for i
1
 in the

edge constraints.

Interpreting the Symbolic HeapInterpreting the Symbolic Heap

 Consider the following:

Where does a[2] point to?

For the edge to c,
the constraint 5 <= 2
is unsatisfiable, hence, a[2]
cannot point to c[3].

Interpreting the Symbolic HeapInterpreting the Symbolic Heap

 Consider the following:

Where does a[2] point to?

For the edge to b,
substituiting 2 yields
i

2
' = 4; so a[2] points

to b[4].

Interpreting the Symbolic HeapInterpreting the Symbolic Heap

 Consider the following:

Where do elements of a
whose indices are in the
range [0, 3] point to?

In general, we need to know
the points-to targets of those
elements whose indices
satisfy some constraint.

Here,

Interpreting the Symbolic HeapInterpreting the Symbolic Heap

 Consider the following:

Where do elements of a
whose indices are in the
range [0, 3] point to?

So, we need a generalized
form of substitution, i.e.,
existential quantifier
elimination.

Interpreting the Symbolic HeapInterpreting the Symbolic Heap

 Consider the following:

Where do elements of a
whose indices are in the
range [0, 3] point to?

We can determine the points-to targets of elements
whose indices are in [0, 3], by eliminating the quantifier
from the following formula (for the edge to b):

Interpreting the Symbolic HeapInterpreting the Symbolic Heap

 Consider the following:

Where do elements of a
whose indices are in the
range [0, 3] point to?

This yields:

Elements of a in range [0,3]
point to even elements of b
in range [0, 6].

Interpreting the Symbolic HeapInterpreting the Symbolic Heap

 To summarize, traversing edges (i.e., going from one
abstract location to its points-to target) requires
existential quantifier elimination.

 Similar to image computation and computation of
strongest post-conditions.

ImplementationImplementation

 The combination of symbolic heap abstraction and
fluid updates forms the core of the Compass program
verification system for C programs.
 Compass is path- and context-sensitive

 Summary-based
 Used for checking memory safety properties (buffer

overruns, null errors, uninitialized reads, casting
errors, …) as well as arbitrary user-provided
assertions.

 Has successfully been scaled to real programs in the
range of a few 10,000 lines of code.

Case StudyCase Study

 We first evaluate this technique on a set of
challenging array benchmarks.

Very fast despite
being very precise.

Also very memory
efficient.

Unix CoreutilsUnix Coreutils

 A collection of widely used command-line utilities.

 Heavily use arrays, pointers, and string buffers.

 Precise heap analysis necessary for successful
verification.

Compass verified absence of
buffer overruns and null
dereferences with no false
positives and no annotations.

Thank YouThank You

 Gopan, D., Reps, T., Sagiv, M.: A framework for numeric analysis of array operations. In:
POPL, NY, USA, ACM (2005) 338–350

 Deutsch, A.: Interprocedural may-alias analysis for pointers: Beyond k-limiting. In: PLDI,
ACM NY, USA (1994) 230–241

 Reps, T.W., Sagiv, S., Wilhelm, R.: Static program analysis via 3-valued logic. In:CAV.
Volume 3114 of Lecture Notes in Comp. Sc., Springer (2004) 15–30

 Chase, D.R., Wegman, M., Zadeck, F.K.: Analysis of pointers and structures. In:PLDI, NY,
USA, ACM (1990) 296–310

 Halbwachs, N., Peron, M.: Discovering properties about arrays in simple programs. In:
PLDI, NY, USA, ACM (2008) 339–34

 Jhala, R., Mcmillan, K.L.: Array abstractions from proofs. In: CAV. (2007)

 Schmidt, D.A.: A calculus of logical relations for over- and underapproximating static
analyses. Sci. Comput. Program. 64(1) (2007) 29–53

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

